Smart Materials: Design and...

50
Smart Materials: Design and Applications Yong Yao Loh MacMillan Group Meeting 24 January 2018

Transcript of Smart Materials: Design and...

Page 1: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Smart Materials: Design and Applications

Yong Yao Loh MacMillan Group Meeting

24 January 2018

Page 2: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Introduction to Smart Materials

Smart materials: Materials that are designed to have one or more properties that can be significantly changed in a controlled fashion by external stimuli

Page 3: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Outline

Light Responsive Systems Chemo Responsive Systems

Electrically Responsive Systems Applications of molecular motorsto organic synthesis

Page 4: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

RagnarGranit

HaldanHartline

GeorgeWald

1967 Nobel Prize inPhysiology or Medicine

Photo-responsive Materials: Retinal

MeMe Me

Me

O

11-cis-Retinal

opsin

MeEt Me

Me

NH

opsin

rhodopsin

NH

opsin

MeMe Me Me

H2N 4

4

4

-H2O

hν photoisomerization

cellular responsecascadevision

event

trans-Retinal

Up to 8 different opsins differing in few amino acid side chains modulate λmax to enable colour vision

Rando, R. R. Chem. Rev. 2001, 101, 1881–1896.

Page 5: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924–928.

NH

O

OH

O

N

R1

R2

R3

NR N

H

O

OH

O

N

R1

R2

R3

NRhv

cis-isomertrans-isomerno anti-bacterial activity inhibits bacterial growth

Use of Photoswitches in Antibiotics

NH

O

OH

O

NHN

broad spectrum anti-bacterial agents

binds to DNA gyrase, blocking DNA replication

R1

R2

R3

R1, R2, R3 = H or F

quinolones

can we control the antibacterial activity of the molecule using light?

Page 6: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

NH

O

OH

O

NN

NH

O

OH

O

NN

hv

cis-isomertrans-isomerno anti-bacterial activity inhibits bacterial growth

Me

MeO

MeOMe

kBT

Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924–928.

Use of Photoswitches in Antibiotics

NH

O

OH

O

NHN

broad spectrum anti-bacterial agents

binds to DNA gyrase, blocking DNA replication

R1

R2

R3

R1, R2, R3 = H or F

quinolones

can we control the antibacterial activity of the molecule using light?

Page 7: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

NH

O

OH

O

NN

NH

O

OH

O

NN

hv

cis-isomertrans-isomerno anti-bacterial activity inhibits bacterial growth

Me

MeO

MeOMe

kBT

Use of Photoswitches in Antibiotics

exposure of E. coli to non-irradiated trans-isomer exposure of E. coli to irradiated (365 nm) trans-isomer

Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924–928.

Page 8: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Use of Photoswitches in Antibiotics

thermal cis-trans isomerization at 37 ºCUV-Vis of compound before and after irradiation

Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924–928.

NH

O

OH

O

NN

NH

O

OH

O

NN

hv

cis-isomertrans-isomerno anti-bacterial activity inhibits bacterial growth

Me

MeO

MeOMe

kBT

Page 9: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Use of Photoswitches in Antibiotics

thermal cis-trans isomerization at 37 ºC

antibiotics are often excreted unmetabolized

auto-deactivation can help to combat this

build up in environment leads to bacterial resistance

Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924–928.

NH

O

OH

O

NN

NH

O

OH

O

NN

hv

cis-isomertrans-isomerno anti-bacterial activity inhibits bacterial growth

Me

MeO

MeOMe

kBT

Page 10: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Photocleavage

Me

O R2

OMeO

R1O NO2

Me

OMeO

R1O NOHO

O

R2

O O

O

R1 O OR1

R2

O OH

HO

O

R2

ortho-nitrobenzyl esters

courmarine esters

■ non-reversible■ offers a modular approach ■ rapid response

hv

hv

Ruskowitz, E. R.; DeForest, C. A. Nat. Rev. Mater. 2018, 3, 17087.

Page 11: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Velema, W. A.; Van Der Berg, J. P.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. ACS Chem. Biol. 2014, 9, 1969–1974.

Photocleavage

N

OF

Me

O

O

O

O

N

O OH

O

OH

NH

O N

S

O

MeMeO

O

fluoroquinolone

OO

O

OH

O

benzylpenicillin

active for E. coli active for S. aureusmasked carboxylic acid

essential for binding to DNAmasked carboxylic acid

interacts with transpeptidaseundergoes photocleavage at 312 nm undergoes photocleavage under visible light

Page 12: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Velema, W. A.; Van Der Berg, J. P.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. ACS Chem. Biol. 2014, 9, 1969–1974.

Photocleavage

N

OF

Me

O

O

O

O

N

O OH

O

OH

NH

O N

S

O

MeMeO

O

fluoroquinolone

OO

O

OH

O

benzylpenicillin

active for E. coli active for S. aureusmasked carboxylic acid

essential for binding to DNAmasked carboxylic acid

interacts with transpeptidaseundergoes photocleavage at 312 nm undergoes photocleavage under visible light

Page 13: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Photocleavage

● orthogonally addressable photocleavable groups

● enables control of composition of microbial populations

● allows complex mixtures of bacterial strains to be analyzed

Velema, W. A.; Van Der Berg, J. P.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. ACS Chem. Biol. 2014, 9, 1969–1974.

Page 14: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Barman, S.; Das, J.; Biswas, S.; Maiti, T. K.; Pradeep Singh, N. D. J. Mater. Chem. B 2017, 5, 3940–3944

Photocleavage: Targeted Drug Delivery to Cancer Cells

Light as a control element for drug delivery

spatial and temporal controleasily tuned and highly specific trigger

O

ODrug

photocleavage

O

OH

Drug

Can we further increase the specficity of drug delivery to discriminate between cancer cells and healthy cells?

N

MeMe

MeO NO2 N

MeMe

MeHO

NO2

H+

-OH

acid-chromism of spiropyrans

cancer cells have a low pH microenvironment; pH responsiveness can be exploited

absorbs in UV absorbs visible light

Page 15: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Barman, S.; Das, J.; Biswas, S.; Maiti, T. K.; Pradeep Singh, N. D. J. Mater. Chem. B 2017, 5, 3940–3944

cell viability studies

Photocleavage: Targeted Drug Delivery to Cancer Cells

N

MeMe

Me

OO

O

O

N

Cl

Cl

O

pH sensitive spiropyran

photocleavablecoumarin ester

chlorambucilchemotherapy medication

OO

O

O

N

Cl

Cl

HO

NMe

MeMe

O

O

OH

ON

Cl

Cl

HO

NMe

MeMe

HO

H+-OH

410 nm

hv

Page 16: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Sousa, C. M.; Berthet, J.; Delbaere, S.; Polónia, A.; Coelho, P. J. J. Org. Chem. 2015, 80, 12177–12181.

Armistead, W. H.; Stookey, S. D. Science 1964, 144, 14–16.

uv

modern day: plastic photochromic lenses

O

R2R1

R8

R7

R6

R5 R4

R3

OR8

R7

R6

R5 R4

R3

R1

R2 OR8

R7

R6

R5 R4

R3

R2

R1

napthopyran transoid-cis (TC) isomer transoid-trans (TT) isomer

Photochromic Lenses

AgCl Ag0 Cl

silver chloride silver atom chlorine atom

uv

1960s technology: glass photochromic lenses

aggregation of silver atoms into nanoparticles confers colour

products are metastable; revert to AgCl salt upon removal of light

Cu-doped AgCl is usually used to prevent loss of chlorine

uv

Page 17: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Sousa, C. M.; Berthet, J.; Delbaere, S.; Polónia, A.; Coelho, P. J. J. Org. Chem. 2015, 80, 12177–12181.

uv

modern day: plastic photochromic lenses

O

R2R1

R8

R7

R6

R5 R4

R3

OR8

R7

R6

R5 R4

R3

R1

R2 OR8

R7

R6

R5 R4

R3

R2

R1

napthopyran transoid-cis (TC) isomer transoid-trans (TT) isomer

Photochromic Lenses

fast transition slow transition

O

R2R1

Ph

uv

transoid-cis (TC) isomerfast transition

fused napthopyran isomercolourless

O

Ph

R2

R1

only photocleavageproduct

t1/2 = 63 ms at 20 ºC

Page 18: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Photocatalysts in Smart Materials

■ TiO2 has long been known to exhibit self-cleaning properties via two photocatalytic pathways

Mechanism 2: Formation of superhydrophilic surfaceMechanism 1: Photodecomposition of contaminants

■ More recently, TiO2 has been found to react with fossil fuel pollutants such as NO2

NOx molecules react photocatalytically with TiO2 to give nitric acid

nitric acid reacts with CaCO3 to give Ca(NO3)2

technology has also been adapted to for cement, named TioCem

eco-friendly paint called EcoPaint

Bedjanian, Y.; El Zein, A. J. Phys. Chem. A 2012, 116, 1758–1764.

Page 19: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Outline

Light Responsive Systems Chemo Responsive Systems

Electrically Responsive Systems Applications of molecular motorsto organic synthesis

Page 20: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Matsumoto, A.; Tanaka, M.; Suganami et al. Sci. Adv. 2017, 10.1126/sciadv.aaq0723

Smart Gel for Glucose-Responsive Insulin Delivery

Current treatments for diabetes

● “open-loop” insulin delivery based on patient self-administration

● suffers from inaccuracy of dose control

● overdose can lead to fatal hypoglycemia

● increasing interest in “closed-loop” delivery e.g. “artificial pancreas

● typically involve electronic sensors which suffer from high costs

current attempts to implement non-electronic closed-loop insulin delivery

centred around the use of glucose oxidase (GOD) or Concanavalin A (a sugar binding lectin)

protein-based materials are not amenable for long-term use due to denaturation and cytotoxcity

can we design an artifical pancreas that circumvents electronic sensors and proteinaceous materials?

Page 21: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Matsumoto, A.; Tanaka, M.; Suganami et al. Sci. Adv. 2017, 10.1126/sciadv.aaq0723

■ Phenylboronic acid (PBA) derivatives readily complex with 1,2- and 1,3-cis-diols

Smart Gel for Glucose-Responsive Insulin Delivery

BOH

OH

BOH

OHOH

glucose

HO OHglucose + 2H2O

BO

OHO

■ PBA derivatives can be incorporated into a polymer gel with an amphiphilic acylamide backbone

anionic, chargedneutral, uncharged

HN

HN

OHN

MeMe

Me

HN O

HN O

F

BHO OH

O O nnml

l:m:n = 87.5:7.5:5Me

HN O

MeMe

HN O

HN O

F

BHO OH

HN O

NH

O

azobisisobutyronitrile

DMSO, 60 ºC, 16 hhydrophilicity of gel governed by charged:uncharged ratio in the presence of glucose

OH-

Page 22: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

■ Mechanism of glucose-responsive smart gel

Smart Gel for Glucose-Responsive Insulin Delivery

Matsumoto, A.; Tanaka, M.; Suganami et al. Sci. Adv. 2017, 10.1126/sciadv.aaq0723

Page 23: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

■ Device structure

Smart Gel for Glucose-Responsive Insulin Delivery

no electronics and no proteinaceous materials involved

Matsumoto, A.; Tanaka, M.; Suganami et al. Sci. Adv. 2017, 10.1126/sciadv.aaq0723

Page 24: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

■ Efficacy of glucose-responsive smart gel

Smart Gel for Glucose-Responsive Insulin Delivery

GTT = glucose tolerance test

3g / kg body weight of glucosewas injected

Efficacy of insulin delivery in response to blood glucose levels is maintained over 3 weeks

Matsumoto, A.; Tanaka, M.; Suganami et al. Sci. Adv. 2017, 10.1126/sciadv.aaq0723

Page 25: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Sea Cucumber Inspired Intracortical Implants

what are intracortical implants?

implants that replace neural circuitry in that brain that no longer functions appropriately

contain microelectrodes which act as electrical contacts to bridge neural cells

wide variety of potential uses, ranging from the restoration of vision to the treatment of dementia

current challenges

functionality of current electrodes decrease over time

attributed to neuron degradation and foreign body encapsulation

due to mismatch between mechanical properties of electrode and brain tissue

proposed solution

development of mechanically adaptive implants

rigid to facilitate implantation; soften upon exposure to physiological conditions

aim to reduce inflammatory response of surrounding tissue

Montero De Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Chem. Rev. 2017, 117, 12851–12892.

Page 26: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Sea Cucumber Inspired Intracortical Implants

H-bonding between surface hydroxyl groups of cellulose nanocrystals can be disrupted by water molecules

can we harness this mechanical adaptivenesstowards intracotical implants?

■ Sea cucumber defends itself by stiffening its usually flexible dermis

in the presence of predators, glycoprotein stiparin, a stiffening agent is absorbed from extracellular matrix

stiparin bridges the collagen fibers,causing rapid aggregation

elastic modulus of dermis increasesfrom 5 MPa to 50 MPa

Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Science 2008, 319, 1370–1374.

Page 27: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Sea Cucumber Inspired Intracortical Implants

H-bonding between surface hydroxyl groups of cellulose nanocrystals can be disrupted by water molecules

can we harness this mechanical adaptivenesstowards intracotical implants?

Nguyen, J. K.; Park, D. J.; Skousen, J. L.; Hess-Dunning, A. E.; Tyler, D. J.; Rowan, S. J.; Weder, C.; Capadona, J. R. J. Neural Eng. 2014, 11, 56014.

elastic modulus of cellulose nanocrystal containingimplants (in a PVAc matrix) decreased 100x upon

implantation in artificial cerebral spinal fluid

Page 28: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Outline

Light Responsive Systems Chemo Responsive Systems

Electrically Responsive Systems Applications of molecular motorsto organic synthesis

Page 29: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Electrochromic Smart Windows

Desirable Properties

fast switching speed

high cycling stability

low manufacturing cost

mid-cycle stability

environmentally friendly; up to 40% cost savings

71% of electricity consumed in the US is from buildings

more than 30% of this load comes from indoor heating/cooling

Electrochomic windows: windows that change colour in response to applied potential difference

darkening of windows can help to block heat transfer

why electrochromic windows?

current technologies and limitations

metal oxides

viologens

polymer dispersed liquid crystals

conjugated conducting polymers

slow switching

sensitivity to UV

“on” state requires applied voltage

mostly coloured in both states

Mortimer, R. J. Annu. Rev. Mater. Res. 2011, 41, 241–268.

Page 30: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Hernandez, T. S.; Barile, C. J.; Strand, M. T.; Dayrit, T. E.; Slotcavage, D. J.; McGehee, M. D. ACS Energy Lett. 2017, 104–111.

Electrochromic Smart Windows: Recent Advances

■ Reversible Metal Electrodeposition of Bi and Cu

Electrodeposition of Cu is well understood, very uniform, but Cu is red in colour

Bi is black and opaque, aesthetically desirable for smart windows

Page 31: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Hernandez, T. S.; Barile, C. J.; Strand, M. T.; Dayrit, T. E.; Slotcavage, D. J.; McGehee, M. D. ACS Energy Lett. 2017, 104–111.

Electrochromic Smart Windows: Recent Advances

■ Reversible Metal Electrodeposition of Bi and Cu

Electrodeposition of Cu is well understood, very uniform, but Cu is red in colour

Bi is black and opaque, aesthetically desirable for smart windows

Page 32: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Hernandez, T. S.; Barile, C. J.; Strand, M. T.; Dayrit, T. E.; Slotcavage, D. J.; McGehee, M. D. ACS Energy Lett. 2017, 104–111.

Electrochromic Smart Windows: Recent Advances

■ Reversible Metal Electrodeposition of Bi and Cu

Electrodeposition of Cu is well understood, very uniform, but Cu is red in colour

Bi is black and opaque, aesthetically desirable for smart windows

Cu (s)

- e-

Cu+ (aq)

- e-

Cu2+ (aq)

Bi (s)

Bi3+ (s)Cu (s) +

Br- (aq)

CuBr (s)

oxidation of Cu occurs first

low Cu:Bi high Cu:Bi too high Cu:Bi

control of Cu:Bi ratio is critical for rapid stripping

Page 33: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Electrochromic Smart Windows: Recent Advances

■ Reversible Metal Electrodeposition of Bi and Cu

5cm x 5cm prototype

60 s deposition

transmission easily controlled

10 s stripping

Hernandez, T. S.; Barile, C. J.; Strand, M. T.; Dayrit, T. E.; Slotcavage, D. J.; McGehee, M. D. ACS Energy Lett. 2017, 104–111.

Page 34: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Dynamic Camouflage via Plamonic Tuning

Plasmon: a quanta of plasma oscillations

Plasma oscillations: rapid oscillations of electron density in conducting media like metals

optical properties of plasmonic metal-nanostructures are highly sensitive to material thickness

can we exploit reversible electrodeposition to control optical properties in real time?

Device Synthesis & Design

1. nanoholes are etched into SiO2/ITO glass by

complete etching of SiO2

2. Au core is deposited,creating an array of

Au nanodomes

3. Au nanodomes are filledwith gel electrolytecontaining Ag+ ions

Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. ACS Nano 2016, 10, 1788–1794.

Page 35: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Dynamic Camouflage via Plamonic TuningOptical properties of device as a function of electrodeposition time

Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. ACS Nano 2016, 10, 1788–1794.

Page 36: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Dynamic Camouflage via Plamonic TuningApplication to artificial chameleon

whole body is coveredwith plasmonic cell device

sensors are capable ofdetecting red, green and blue

computer chip will outputvoltage signals based on sensor

plasmonic cell will adjustcolour accordingly

Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. ACS Nano 2016, 10, 1788–1794.

video available at: http://pubs.acs.org/doi/suppl/10.1021/acsnano.5b07472

Page 37: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Outline

Light Responsive Systems Chemo Responsive Systems

Electrically Responsive Systems Applications of molecular motorsto organic synthesis

Page 38: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Chiral Catalysis Using Molecular Machines

OSH

OMe

O

SOMe

Proof of concept: stimuli-responsive chiral catalysis using molecular machines

enantioselectiveor

O

SOMe

Me

MeMe

MeMe

Me

NH

N

NMeMe

HN

HN

S

CF3

CF3

(2R,2’R)-(P,P)-transcatalyst

BH-bonding

thiourea catalyst

ADMAP

co-catalyst

(2R,2’R)-(M,M)-ciscatalyst

(2R,2’R)-(P,P)-ciscatalyst

● stimuli responsive 3-stage rotary cycle

● rotor controls chirality of system

● distinct enantioselectivity at each stage

● cooperative catalysis

Wang, J.; Feringa, B. L. Science 2011, 331, 1429.

Page 39: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Chiral Catalysis Using Molecular Machines

Proof of concept: stimuli-responsive chiral catalysis using molecular machines

S/R = 49/51 S/R = 75/25 S/R = 23/77

(2R,2’R)-(M,M)-cis (2R,2’R)-(P,P)-cis(2R,2’R)-(P,P)-trans

cooperative catalysis is key for reactivity and stereoselectivity

Page 40: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Chiral Catalysis Using Molecular Machines

Proof of concept: stimuli-responsive chiral catalysis using molecular machines

Me

MeMe

MeMe

Me

HN

O

Ph2P

NH

O

PPh2

hv Δ

(M,M)-cis (P,P)-cis(P,P)-trans

TsHN O

O

O

O

NHTsNTs

OO

NTs

OO

Pd2dba3

(M,M)-cis-ligand

DIPEA, THF0 ºC to rt

Pd2dba3

(P,P)-cis-ligand

DIPEA, THF0 ºC to rt

94:6 e.r.85% yield

93:7 e.r.90% yieldPd-catalyzed desymmetrization

stimuli-responsive ligands can be designed for asymmetric transition metal catalysis

Zhao, D.; Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 1–7.

Page 41: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140–143.

Use of Rotaxanes as On/Off Switches for Catalysis

R O HN

O

CF3

NH

OO

NH

CF3

HN

O

HN

O O R

NH

ON

O

OO

O

O

HN

O

squaramide of thread binds topyridyl-2,6-dicarboxyamide unit of macrocycle

dibenzylamine of thread binds to crown ether region of macrocycle, but only when protonated

squaramide unit

dibenzylamine unit

rotaxane thread

rotaxane macrocycle

pyridyl-2,6-dicarboxyamide

crown ether

Page 42: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

NH

ON

O

OO

O

O

HN

O

R O HN

O

CF3

NH

OO

NH

CF3

HN

O

HN

O O R

Use of Rotaxanes as On/Off Switches for Catalysis

Ph

O

Ph

O

Me O

PhNO2

squaramide blockedPh Ph

O O

Me

Oiminium catalysis

Ph Ph

O O

PhNO2

dibenzylamine blockedH-bonding catalysis

H+

40% yield 75% yieldtrace impuritytrace impurity

1:1 ratio of products observed when free catalyst is used

Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140–143.

Page 43: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

NH

ON

O

OO

O

O

HN

O

R O HN

O

CF3

NH

OO

NH

CF3

HN

O

HN

O O R

Use of Rotaxanes as On/Off Switches for Catalysis

Ph

O

Ph

O

Me O

PhNO2

squaramide blockedPh Ph

O O

Me

Oiminium catalysis

Ph Ph

O O

PhNO2

dibenzylamine blockedH-bonding catalysis

H+

40% yield 75% yieldtrace impuritytrace impurity

1:1 ratio of products observed when free catalyst is used

Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140–143.

Page 44: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

R O HN

O

CF3

NH

OO

NH

CF3

HN

O

HN

O O R

Use of Rotaxanes as On/Off Switches for Catalysis

Ph

O

Ph

O

Me O

PhNO2

squaramide blockedPh Ph

O O

Me

Oiminium catalysis

Ph Ph

O O

PhNO2

dibenzylamine blockedH-bonding catalysis

H+

40% yield 75% yieldtrace impuritytrace impurity

1:1 ratio of products observed when free catalyst is used

Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski, B.; Mishiro, K. Chem. Sci. 2015, 6, 140–143.

Page 45: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Use of Rotaxanes as On/Off Switches for Catalysis

NH

OONN N N N

N

RO ORO

O O

O

O

OO

O

Me Me

triazolium groups can act as anionbinding catalysts, abstracting halides

Proposal: Leverage On/Off Switch on Rotaxanes For Tandem Catalysis

halide abstraction;radical addition to olefin

enamine catalysis;nucleophilic addition to olefin

Eichstaedt, K.; Jaramillo-Garcia, J.; Leigh, D. A.; Marcos, V.; Pisano, S.; Singleton, T. A. J. Am. Chem. Soc. 2017, 139, 9376–9381.

Page 46: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Use of Rotaxanes as On/Off Switches for Catalysis

NH

OONN N N N

N

RO ORO

O O

O

O

OO

O

Me Me

triazolium groups can act as anionbinding catalysts, abstracting halides

Proposal: Leverage On/Off Switch on Rotaxanes For Tandem Catalysis

halide abstraction;radical addition to olefin

enamine catalysis;nucleophilic addition to olefin

Eichstaedt, K.; Jaramillo-Garcia, J.; Leigh, D. A.; Marcos, V.; Pisano, S.; Singleton, T. A. J. Am. Chem. Soc. 2017, 139, 9376–9381.

Page 47: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Stereodivergent Synthesis Using Molecular Machines

substrate

substratelinker

N

NN N N N

NHN NH

Et3SiO

PhPh

OSiEt3

PhPh

NN

N

OO

O

O

O

Me

Hsubstrate can be

released by reduction

rotary switch governed byE/Z isomerization of hydrazone;

switch is pH sensitive

chiral amine catalysts can faciliate iminium or enamine activation modes; sequential reactions

O

H

● mimics sequence-specific synthesis in biology

● allows substrate to be moved between catalytic sites

● enables stereospecific sequential synthesis

Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374–378.

Page 48: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Stereodivergent Synthesis Using Molecular Machines

N

NN N N N

NHN

(S)(R)

NHEt3SiO

PhPh

OSiEt3

PhPh

NN

N

OO

O

O

O

Me

H

rotary switch governed byE/Z isomerization of hydrazone;

switch is pH sensitive

chiral amine catalysts can faciliate iminium or enamine activation modes; sequential reactions

H

O

* *OH

H

OOH

SR1

H

OOH

SR1

R2

O

H

substrate can be released by reduction

R1SH R2

Im En

*

point of stereocontrol point of stereocontrol

stereochemistry of products can be programmed; dependent on decision to engage rotary switch

Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374–378.

Page 49: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Stereodivergent Synthesis Using Molecular Machines

H

OOH

H

O

(S)OH

SR1

R1SHIm

E-rotor

ImZ-rotor

H

O

(R) OHSR1

R1SH

R2En

E-rotor

En

Z-rotor

R2

R2En

E-rotor

En

Z-rotor

R2

H(R)

O

(R) OHSR1

R2

H(S)

O

(R) OHSR1

R2

H(R)

O

(S)OH

SR1

R2

H(S)

O

(S)OH

SR1

R2

69:31 d.r., 73:27 e.r.

63:37 d.r., 59:41 e.r.

70:30 d.r., 74:26 e.r.

70:30 d.r., 80:20 e.r.

stereoselectivities are attenuated by the poor fidelityof the switch states; only 80:20 E:Z to 90:10 Z:E

important proof-of-concept that molecular machines can facilitate stereodivergent synthesis

Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374–378.

Page 50: Smart Materials: Design and Applicationschemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/YYL... · Smart Materials: Design and Applications ... to organic synthesis. Ragnar

Outline

Light Responsive Systems Chemo Responsive Systems

Electrically Responsive Systems Applications of molecular motorsto organic synthesis