Slides i Intro Dsp

download Slides i Intro Dsp

of 24

Transcript of Slides i Intro Dsp

  • 8/8/2019 Slides i Intro Dsp

    1/24

    1

    Fundamentals of digital signalprocessing

  • 8/8/2019 Slides i Intro Dsp

    2/24

    2

    Sound modeling

    sound

    symbols

    aims

    analysis

    synthesis

    processing

    classification:

    signal models

    source models

    abstract models

  • 8/8/2019 Slides i Intro Dsp

    3/24

    3

    0 500-0.05

    0

    0.05

    x(t)

    t in s ec

    0 10 20-0.05

    0

    0.05

    n

    x(n)

    0 10 20-0.05

    0

    0.05

    n

    y(n)

    0 500-0.05

    0

    0.05

    t in s ec

    y(t)

    Digital signals

    analog

    sampling

    processingreconstruction

    sampling interval T

    sampling frequency fs= 1/T

  • 8/8/2019 Slides i Intro Dsp

    4/24

    4

    Digital signals: time representations

    8000 samples

    100 samples

    line with dots

    vertical quantization

    integere.g. -32768 .. 32767

    normalizede.g. -1 .. (1-Q)Q = quantization step

    0 1000 2000 3000 4000 5000 6000 7000 8000-0.5

    0

    0.5

    x(n)

    0 100 200 300 400 500 600 700 800 900 1000

    -0.5

    0

    0.5

    x(n)

    0 10 20 30 40 50 60 70 80 90 100-0.05

    0

    0.05

    x(n)

    n

  • 8/8/2019 Slides i Intro Dsp

    5/24

    5

    Spectrum: analog vs. digital signal

    sampling leads to a replication of the baseband spectrum

  • 8/8/2019 Slides i Intro Dsp

    6/24

    6

    Spectrum: analog vs. digital signal

    Sampling leads to a replication of the analog signal spectrum

    Reconstruction of the analog signal:

    low pass filtering the digital signal

  • 8/8/2019 Slides i Intro Dsp

    7/24

    7

    Discrete Fourier Transform

    Magnitude

    Phase

  • 8/8/2019 Slides i Intro Dsp

    8/24

    8

    0 0.5 1 1.5 2 2.5 3 3.5

    x 104

    -40

    -20

    0

    20

    |X(f)|indB

    f in Hz

    Magnitude s pectrum |X(f)| in dB

    Discrete Fourier Transform (example)

    FFT with 16 points

    cosine (16 points)

    magnitude (16 points)

    normalization:0 dB for sinusoid 1

    magnitude(frequency points)

    step fs/N

    magnitude dB vs. Hz

    0 2 4 6 8 10 12 14 16

    -1

    0

    1

    a)

    n

    Cos ine s ignal x(n)

    0 2 4 6 8 10 12 14 16

    0

    0.5

    1

    b)

    k

    Magnitude s pectrum |X(k)|

    0 0.5 1 1.5 2 2.5 3 3.5

    x 104

    0

    0.5

    1

    c)

    f in Hz

    Magnitude s pectrum |X(f)|

    Nkfs/

  • 8/8/2019 Slides i Intro Dsp

    9/24

    9

    Inverse Discrete Fourier Transform (DFT)

    if X(k) = X*(N-k)then IDFT gives N discrete-time real values x(n)

  • 8/8/2019 Slides i Intro Dsp

    10/24

    10

    Frequency resolution

    Zero padding: to increasefrequency resolution

    0 2 4 6

    -1

    0

    1

    2

    x(n)

    8 sa mples

    0 2 4 6

    0

    2

    4

    6

    8

    10

    |X(k)|

    8-point FFT

    0 5 10 15

    -1

    0

    1

    2

    n

    x(n)

    8 samples + zero-padding

    0 5 10 15

    0

    2

    4

    6

    8

    10

    k

    |X(k)|

    16-point FFT

  • 8/8/2019 Slides i Intro Dsp

    11/24

    11

    Window functions

    to reduce leakage:

    weight audio samples bya window

    Hamming window

    wH(n) = 0.54 0.46 cos(2n/N)

    Blackman window

    wB(n) = 0.42 0.5cos(2n/N) + 0.08(4n/N)

  • 8/8/2019 Slides i Intro Dsp

    12/24

    12

    Window

    Reduction of the leakage effect bywindow functions:

    (a) the original signal,(b) the Blackman window function

    of length N=8,

    (c) product x(n)w(n) with 0n N-i,(d) zero-padding applied to z(n)

    w(n) up to length N= 16

    The corresponding spectra areshown on the right side.

  • 8/8/2019 Slides i Intro Dsp

    13/24

    13

    Spectrograms

  • 8/8/2019 Slides i Intro Dsp

    14/24

    14

    Waterfall representation

    0 1000 2000 3000 4000 5000 6000 7000 8000-1

    -0.5

    0

    0.5

    1

    Signal x(n)

    x(n)

    n

    0 5 10 15 20

    0

    2000

    4000

    6000

    -100

    -50

    0

    Waterfall Representation of Short-time FFTs

    f in Hz

    n

    Magnitudein

    dB

  • 8/8/2019 Slides i Intro Dsp

    15/24

    15

    Digital systems

  • 8/8/2019 Slides i Intro Dsp

    16/24

    16

    Definitions

    Unit impulse

    Impulse reponse h(n) = output to a unit impulseh(n) describes the digital sistem

    Discrete convolution:y(n)=x(n)*h(n)

  • 8/8/2019 Slides i Intro Dsp

    17/24

    17

    Algorithms and signal graphs

    Delay

    e.g. y(n) = x(n-2)

    Weighting factor

    e.g. y(n) = a x(n)

    Addition

    e.g.y(n) = a1 x(n) + a2 x(n)

  • 8/8/2019 Slides i Intro Dsp

    18/24

    18

    Simple digital system

    weighted sum over several input samples

  • 8/8/2019 Slides i Intro Dsp

    19/24

    19

    Transforms

    Frequency domain desciption of the digital system

    Z transform

    Discrete time Fouriertransform

    Transfer function H(z):Z transform of h(n)

    Frequency response:Discrete time Fouriertransform of h(n)

  • 8/8/2019 Slides i Intro Dsp

    20/24

    20

    Causal and stable systems

    Causality: a discrete-time system is causal

    if the output signal y(n) = 0 for n

  • 8/8/2019 Slides i Intro Dsp

    21/24

    21

    IIR systems

    = system with infinte impulse response

    e.g. second order IIR system

    Difference equation

    Transfer function

  • 8/8/2019 Slides i Intro Dsp

    22/24

    22

    IIR systems

    = system with infinte impulse response h(n)

    Difference equation

    Z transform of diff. eq.

    Transfer function

  • 8/8/2019 Slides i Intro Dsp

    23/24

    23

    FIR systems

    = system with finite impulse response h(n)

    e.g. second order FIR system

    Difference equation

    Z transform of diff. eq.

    Transfer function

  • 8/8/2019 Slides i Intro Dsp

    24/24

    24

    Fir example

    computation of frequency response

    impulse response

    magnitude resp.

    pole/zero plot

    phase resp. 0 2 4-0.1

    0

    0.1

    0.2

    0.3

    (a) Impuls e Re s ponse h(n)

    n

    -1 0 1 2

    -1

    0

    1

    Re(z)

    Im(z)

    (c) Pole/Zero plot

    4

    0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    f in kHz

    |H(f)|

    (b) Magnitude Res pons e |H(f)|

    0 10 20 30 40

    -2

    -1.5

    -1

    -0.5

    0

    f in kHz

    H(f)/

    (d) Phase Response H(f)