Skin Pass Mill and Tension Levelling -Asasas

84
*** * * * * ISSN 1018-5593 European Commission technical steel research ^^^naa Mechanical working (Rolling mills) The mechanical and metallurgical effects of skin passing and tension levelling STEEL RESEARCH

Transcript of Skin Pass Mill and Tension Levelling -Asasas

Page 1: Skin Pass Mill and Tension Levelling -Asasas

* * * * * * *

ISSN 1018-5593

European Commission

technical steel research ^ ^ ^ n a a

Mechanical working (Rolling mills)

The mechanical and metallurgical effects of skin passing and tension levelling

STEEL RESEARCH

Page 2: Skin Pass Mill and Tension Levelling -Asasas
Page 3: Skin Pass Mill and Tension Levelling -Asasas

European Commission

technical steel research Mechanical working (Rolling mills)

The mechanical and metallurgical effects of skin passing and tension levelling

T. de la Rue British Steel pic - Welsh Technology Centre

Port Talbot West Glamorgan SA13 2NG

United Kingdom

Contract No 7210-EA/822

1 July 1990 to 30 June 1992

Final report

v * Directorate-General XII Science, Research and Development

1996 EUR 15849 EN

Page 4: Skin Pass Mill and Tension Levelling -Asasas

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int.).

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the

following information

Cataloguing data can be found at the end of this publication

Luxembourg: Office for Official Publications of the European Communities, 1996

ISBN 92-827-7123-7

© ECSC-EC-EAEC, Brussels • Luxembourg, 1996 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged

Printed in Luxembourg

Page 5: Skin Pass Mill and Tension Levelling -Asasas

SUMMARY

THE MECHANICAL AND METALLURGICAL EFFECTS OF SKIN PASSING AND TENSION LEVELLING

British Steel pic

ECSC Agreement No. 7210.EA/822

Final Summary Report

An exercise has been carried out to investigate the mechanical and metallurgical effects of skin passing and tension levelling. The investigation was hampered by a lack of suitable cut sheet orders, nevertheless five coils were processed using different levels of skin passing and tension levelling. Full width x 2m length samples were taken at each processing stage for measurement of shape, gauge profile, surface texture, tensile mechanical properties and formability properties.

The investigation showed that for EDD steel qualities low levels of tension levelling gave a significant improvement in strip shape, but that levels as low as 0.5% increased strip hardness and the 0.2% proof stress and reduced the work hardening coefficient ni such that the material may be rendered unsuitable for its intended use.

The transverse gauge profile of strip is not affected by skin passing at 0.4-0.8% extensions or by additional tension levelling up to 1.5% extension. Tension levelling up to 0.5% has no effect on surface texture and skin passing at 0.4% has only a marginal effect when compared to the texture obtained at 0.8% skin pass extension.

Combinations of 0.4% skin passing and low levels of tension levelling, up to 0.5% resulted in strip with similar mechanical and formability properties to those of the normal 0.8% skin pass material and would fully satisfy the property and texture specifications for EDD exposed part applications. Limited residual surface stress measurements using a Stresscan 500C system showed that the technique may after further study offer some use for the on-line determination of strip shape.

A number of investigations were also carried out into plant problems. They related to the design and operating set up of roller and tension levellers on various units. The pilot tension leveller rig was successfully used to simulate plant practices in a number of these investigations.

Page 6: Skin Pass Mill and Tension Levelling -Asasas

CONTENTS

PAGE NO.

1. INTRODUCTION 1

1.1. Background to Research Programme 1 1.2. Summary of Intended Programme 1

2. PLANT INVESTIGATIONS INTO THE EFFECTS OF SKIN PASSING AND 2 TENSION LEVELLING

2.1. Final Acceptance Trial of an Inspection Line Tension Leveller 2 2.2. Plant Production Trial Coils 3 2.3. Investigations into Various Plant Problems 6 2.4. Use of Pilot Tension Leveller Rig in Plant Problem Investigations 8

3. CONCLUSIONS 9

4. RECOMMENDATIONS 10

5. REFERENCES 10

TABLES 11

FIGURES 28

APPENDICES

I Off-Line Shape Assessment 53 II Details of Tensile Testing 55 III Details of Modified Stretch Draw Test 57

IV

Page 7: Skin Pass Mill and Tension Levelling -Asasas

LIST OF TABLES

1. Shape Assessment of Tension Leveller Final Acceptance Trial Coil.

2. Transverse Gauge Characteristics of Tension Leveller Final Acceptance Trial Coil.

3. Mechanical Properties - Tensile Test Results for the Tension Leveller Final Acceptance Trial Coil.

4. Shape Assessment of Trial Coils 82076 and 82078.

5. Shape Assessment of Trial Coils 16528,16637 and 17430.

6. Transverse Gauge Characteristics of Trial Coils 82076 and 82078.

7. Transverse Gauge Characteristics of Trial Coils 16528,16637 and 17430.

8. Surface Texture Characteristics of Trial Coils 82076 and 82078.

9. Surface Texture Characteristics of Trial Coils 16528,16637 and 17430.

10. Mechanical Properties: Tensile Test Results for Coil 82076.

11. Mechanical Properties: Tensile Test Results for Coil 82078.

12. Mechanical Properties: Tensile Test Results for Coil 16528.

13. Mechanical Properties: Tensile Test Results for Coil 16637.

14. Mechanical Properties: Tensile Test Results for Coil 17430.

15. Modified Stretch Draw Results for Coils 82076 and 82078: Lubricated Condition.

16. Modified Stretch Draw Results for Coils 82076 and 82078: Dry Condition.

17. Modified Stretch Draw Results for Coils 16528,16637 and 17430: Dry Condition.

V

Page 8: Skin Pass Mill and Tension Levelling -Asasas

LIST OF FIGURES

1. Off-Line Shape Measurement on the Coil used for the Final Acceptance Trial of the Tension Leveller (Skin Pass Only).

2. Off-Line Shape Measurements on the Coil Used for the Final Acceptance Trial of the Tension Leveller (Skin Pass and Tension Levelling).

3. Relationship Between Flatness Index and Total Wave Height for a 2m Long Sample.

4. Rockwell B Hardness Values Across the Width of the Tension Leveller Final Acceptance Trial Coil Samples.

5. Transverse Gauge Profiles of the Tension Leveller Final Acceptance Trial Coil Samples.

6. Description of Original and Modified Processing Routes and Sampling Positions for the Plant Trial Coils.

7. Histograms of Degree of Flatness After Each Process for Coils 82076 and 82078.

8. Histograms of Degree of Flatness After Each Process for Coils 16528,16637 and 17430.

9. Off-Line Shape Measurements for Coil 82076 at Various Processing Stages.

10. Off-Line Shape Measurements for Coil 82078 at Various Processing Stages.

11. Off-Line Shape Measurements for Coil 16528 at Various Processing Stages.

12. Off-Line Shape Measurements for Coil 16637 at Various Processing Stages.

13. Off-Line Shape Measurements for Coil 17430 at Various Processing Stages.

14. Transverse Gauge Profiles for Trial Coils 72086 and 72088 at Various Processing Stages.

15. Transverse Gauge Profiles for Trial Coils 16528, 16637 and 17430 at Various Processing Stages.

16. Residual Surface Stress Differences for Coil 16528 at Various Process Stages.

17. Residual Surface Stress Differences for Coil 16637 at Various Process Stages.

18. Residual Surface Stress Differences for Coil 17430 at Various Process Stages.

19. Equivalent Surface Stress to Cause Curvature in D.R. Tinplate.

20. Residual Longitudinal Stress in Straight Strip After Four Bends of Decreasing Curvature.

21. Relationship Between Roll Penetration and Effective Radius of Curvature.

22. Present Setting of Roller Levellers ("Wedge").

23. Modified Setting of Roller Levellers.

VI

Page 9: Skin Pass Mill and Tension Levelling -Asasas

24. Effects of Springback in D.R. and S.R. Tinplate During Tension Levelling.

25. Pilot Tension Leveller Rig.

26. Relationship Between Tension Stress, Penetration and Radius of Curvature of 3.1mm Hot Dipped Galvanised Material for a 45mm Diameter Bending Roll.

VII

Page 10: Skin Pass Mill and Tension Levelling -Asasas
Page 11: Skin Pass Mill and Tension Levelling -Asasas

SOMMAIRE LES EFFETS MECANIQUES ET METALLURGIQDES

DE L'ECROUISSAGE ET DU DRESSAGE PAR TRACTION British Steel pic Accord ECSC n° 7210.EA/822 Sommaire final

On a effectue une etude ayant pour objectif de determiner les effets mecaniques et métallurgiques de 1'ecrouissage et du dressage par traction. Malgré une insuffisance de commandes de toles appropriees, on a pu realiser cinq couronnes a plusieurs niveaux d'ecrouissage et de dressage par traction. On a preleve des echantillons grande largeur sur 2 m a chaque stade de production pour en mesurer la forme, le profil d'epaisseur, la texture de surface, les proprietes mecaniques a la traction et la formabilite. Cette etude a montre que pour les toles de qualité emboutissage profond, des valeurs faibles de dressage par traction ont permis une amelioration sensible de la forme des feuillards, mais que des niveaux reduits (jusqu'a 0,5 %) avaient pour effet d'en augmenter la durete et la limite d'allongement (0,2 %) tout en reduisant le coefficient d'augmentation de durete nx jusqu'au point ou le materiau risque de ne plus convenir a 1'utilisation envisagee. Le profil d'epaisseur transversal des feuillards n'est affecte ni par un ecrouissage permettant des extensions de 0,4 / 0,8 % ni par un dressage par traction supplémentaire de jusqu'a 1,5 %. Un ecrouissage de jusqu'a 0,5 % n'a aucun effet sur la texture de surface, et un ecroussage a 0,4 % n'a qu'un tres faible effet par rapport a la texture obtenue a 0,8 %. Des combinaisons d'un ecrouissage de 4,0 % et de faibles niveaux de dressage par traction (de jusqu'a 0,5 %) ont donne des feuillards avec des proprietes mecaniques et de formabilite analogues a celles du materiau dresse a 0,8 %, et repondraient done aux specifications relatives aux proprietes et a la texture pour des applications des toles de qualite emboutissage profond. Les mesures des contraintes residuelles limitees de surface, effectuees a l'aide d'un systéme stresscan 500C, ont montre que cette technique pourrait eventuellement etre employee pour la determination en-ligne de la forme des feuillards. On a effectue egalement plusieurs etudes portant sur des problémes de fabrication, et notamment sur la conception et le fonctionnement des rouleaux a dresser et des rouleaux de tension. Pour certaines etudes, on a pu utiliser l'appareil d'essai en laboratoire pour simuler des techniques d'usine.

IX

Page 12: Skin Pass Mill and Tension Levelling -Asasas

TABLE DES MATIERES

1. INTRODUCTION

PAGE

1.1 Le contexte 1 1.2 Sommaire du programme de recherches 1

2. ETUDES DES EFFETS DE L'ECROUISSAGE ET DU DRESSAGE PAR TRACTION 2 2.1 Rouleaux de tension : controle de reception definitive 2 2.2 Couronnes d'essai 3 2.3 Etudes portant sur divers problemes de fabrication 6 2.4 L'utilisation de l'appareil de contrôle en

laboratoire pour etudier des problemes en usine 8

3. CONCLUSIONS 9

4. RECOMMANDATIONS 10

5. REFERENCES 10

TABLES 11

FIGURES 28

ANNEXES

I Mesures en laboratoire de la forme 53 II Essais de traction 55

III Essai d'étirage modifié 57

Page 13: Skin Pass Mill and Tension Levelling -Asasas

LISTE DES TABLES 1. Controle du fonctionnement des rouleaux de tension :

essai de reception definitive des couronnes d'essai 2. Controle des profils d'epaisseur transversaux 3. Proprietes mecaniques - resultats des essais de traction 4. Forme des couronnes d'essai 82076 et 82078 5. Forme des couronnes d'essai 16528, 16637 et 17430 6. Caracteristiques des profils d'epaisseur transversaux

d'essai 82076 et 82078 7. Caracteristiques des profils d'epaisseur transversaux

d'essai 16528, 16637 et 17430

couronnes

couronnes

8. Texture de surface : couronnes d'essai 82076 et 82078 9. Texture de surface : couronnes d'essai 16528, 16637 et 17430

10. Proprietes mecaniques a la traction, couronne n° 82076 11. Proprietes mecaniques a la traction, couronne n° 82078 12. Proprietes mecaniques a la traction, couronne n" 16528 13. Proprietes mecaniques a la traction, couronne n° 16637 14. Proprietes mecaniques a la traction, couronne n" 17430 15. Resultats des essais d'etirage modifie : couronnes 82076 et 82078 :

lubrifiees 16. Resultats des essais d'etirage modifie : couronnes 82076 et 82078 :

non lubrifiees 17. Resultats des essais d'etirage modifie : couronnes 16528, 16637 et

17430 : non lubrifiees

XI

Page 14: Skin Pass Mill and Tension Levelling -Asasas

LISTE DES FIGURES 1. Mesures en laboratoire de la forme de la couronne utilisee pour

l'essai de reception definitive des rouleaux de tension (ecrouissage uniquement)

2. Mesures en laboratoire de la forme de la couronne utilisee pour l'essai de reception definitive des rouleaux de tension (ecrouissage et dressage par traction)

3. Rapport entre l'indice de planeite et la hauteur d'onde : echantillon de 2 m de long

4. Valeurs de durete Rockwell B : couronnes d'essai

5. Profils d'epaisseur transversaux : couronnes d'essai

6. Couronnes d'essai : methodes d'usinage et positions de pr^levement originales et modifiees

7. Histogrammes du degr6 de planeite apres chaque stade d'usinage : couronnes 82076 et 82078

8. Histogrammes du degre de planeite apres chaque stade d'usinage : couronnes 16528, 16637 et 17430

9. Mesures hors-ligne de la forme, couronne n° 82076 a divers stades d'usinage

10. Mesures hors-ligne de la forme, couronne n° 82078 a divers stades d'usinage

11. Mesures hors-ligne de la forme, couronne n" 16528 a divers stades d'usinage

12. Mesures hors-ligne de la forme, couronne n° 16637 a divers stades d'usinage

13. Mesures hors-ligne de la forme, couronne n° 17430 a divers stades d'usinage

14. Profils d'epaisseur transversaux, couronnes 72086 et 72088 a divers stades d'usinage

15. Profils d'epaisseur transversaux, couronnes 16528, 16637 et 17430 a divers stades d'usinage

16. Differences de contrainte de surface residuelle, couronne 16528 a divers stades d'usinage

17. Differences de contrainte de surface residuelle, couronne 16637 a divers stades d'usinage

18. Differences de contrainte de surface residuelle, couronne 17430 a divers stades d'usinage

19. Contrainte de surface equivalente pour une courbure de fer-blanc double reduction

XII

Page 15: Skin Pass Mill and Tension Levelling -Asasas

20. Feuillards droits : contraintes longitudinales residuelles apres quatre cintrages a courbure degressive

21. Rapport entre la penetration et le rayon effectif de courbure 22. Reglage existant des dresseuses a rouleaux ("en coin") 23. Reglage modifie des dresseuses a rouleaux 24. Effets de ressort : fer-blanc double/simple reduction pendant le

dressage par traction 25. Rouleux de tension : appareil pilote 26. Rapport entre l'effort de traction, la penetration et le rayon de

courbure d'un materiau de 3,1 mm galvanise a chaud au moyen d'un cylindre de cintrage de 45 ram de diamêtre

XIII

Page 16: Skin Pass Mill and Tension Levelling -Asasas
Page 17: Skin Pass Mill and Tension Levelling -Asasas

Zusammenfassung Die mechanischen und metallurgischen Effekte des Kaltnachwalzens und Streckrichtens British Steel plc EGKS-Vertrag Nr. 7210.EA/822

Zusammenfassender Schlußbericht Man hat die mechanischen und metallurgischen Effekte des Kalt­nachwalzens und Streckrichtens untersucht. Diese Untersuchung ist an dem Mangel an Auftragen fur geeignetes, geschnittenes Groblech gehindert worden, trotzdem konnten aber funf Bunde auf verschiedenen Niveaus des Kaltnachwalzens und Streckrichtens verarbeitet werden. Man hat Probestucke voller Breite x 2 m lang in jedem Verarbeitungsstadium wegen Messung der Form, des Dickeprofils, des Oberflachengefuges, der mechanischen Zug- und Verformbarkeitseigenschaften abgenommen. Die Untersuchung hat gezeigt, dal3 niedrige Streckrichtniveaus im Falle von extratiefgezogenen Stahlguten zu einer signifikanten Verbesserung der Bandform geführt haben, aber Niveaus von so niedrig wie 0,5% haben die Bandharte und die 0,2%. Dehngrenze erhoht und den Kalthartungskoeffizienten nt derartig reduziert, so daS der Werkstoff fur den beabsichtigten Einsatz ungeeignet sein konnte. Das Querdickeprofi1 des Bandes wird nicht durch Kaltnachwalzen beim 0,4-0,8%. Dehnen oder durch weiteres Streckrichten beim Dehnen bis zu 1,5% beeintrachtigt. Im Vergleich zu dem beim Kaltwalzdehnen bei 0,8% gewonnenen Gefüges hat Streckrichten bis zu 0,5% keinen Effekt auf das Oberflächengefuge gehabt und Kaltnachwalzen bei 0,4% wirkt sich nur nebensachlich aus. Kombinierungen des 0,4%. Kaltnachwalzens und niedriger Streck­richtniveaus bis zu 0,5% haben in einem Band mit mechanischen und Verformbarkeitseigenschaften resultiert, die denen des normalen 0,8%. Kaltnachwalzwerkstoff ahnlich sind, und diese wurden die Vorschriften hinsichtlich der Eigenschaften und des Gefüges bei Anwendung der ausgesetzten Teile eines extratiefgezogenen Stahls vol! erfüllen. Limitierte Messungen der Restoberflachenspannung mit dem Stresscan-System 500C haben gezeigt, daß die Technik nach weiterer Untersuchung gewisse Verwendung fur die Online-Bestimmung der Bandform bieten kann. Man hat auch verschiedene Untersuchungen in bezug auf die Betriebsprobleme durchgefuhrt. Diese haben sich auf die Konstruk-tion und die Betriebseinstellung der Walzen und Streckricht-maschinen in verschiedenen Einheiten bezogen. Man hat die Versuchsanlage der Streckrichtmaschine erfolgreich fur Simulation der Betriebsverfahren in einer Anzahl dieser Untersuchungen eingesetzt.

XV

Page 18: Skin Pass Mill and Tension Levelling -Asasas

Inhaltsverzeichnis Seite

1. Einleitung 1

1.1 Vorgeschichte des Forschungsprogramm 1 1.2 Überblick des geplanten Programms 1

2. Untersuchungen im Betrieb über die Effekte des Kaltnachwalzens und Streckrichtens 2

2.1 Endabnahmeversuche mit der Streckricht-maschine in einer Prüflinie 2

2.2 Produktion der Versuchsbunde im Betrieb 3 2.3 Untersuchungen uber die verschiedenen

Betriebsprobleme 6 2.4 Einsatz der Versuchsanlage einer Streck-

richtmaschine bei den Untersuchungen der Betriebsprobleme 8

3. Schlußfolgerungen 9

4. Empfehlungen 10

5. Literaturverzeichnis 10

Tabellen 11

AbbiIdungen

Anhänge

28

I Bewertung der Offline-Form ^ II Details der Zugversuche 55 III Details des modifizierten Reckziehversuchs 57

XVI

Page 19: Skin Pass Mill and Tension Levelling -Asasas

Aufstellung der Tabellen

1. Bewertung der Bundform im Endabnahmeversuch mit der Streck-richtmaschine

2. Querdickecharakteristika des Bundes im Endabnahmeversuch mit der Streckrichtmaschine

3. Mechanische Eigenschaften - Zugversuchergebnisse fur das Bund im Endabnahmeversuch mit der Streckrichtmaschine

4. Formbewertung der Versuchsbunde 82076 und 82078

5. Formbewertung der Versuchsbunde 16528, 16637 und 17430

6. Querdickecharakteristika der Versuchsbunde 82076 und 82078

7. Querdickecharakteristika der Versuchsbunde 16528, 16637 und 17430

8. Oberflächengefugecharakteristika der Versuchsbunde 82076 und 82078

9. Oberflachengefugecharakteristika der Versuchsbunde 16528, und 16637 und 17430

10. Mechanische Eigenschaften: Zugversuchergebnisse fur Bund 82076

11. Mechanische Eigenschaften: Zugversuchergebnisse fur Bund 82078

12. Mechanische Eigenschaften: Zugversuchergebnisse fur Bund 16528

13. Mechanische Eigenschaften: Zugversuchergebnisse fur Bund 16637

14. Mechanische Eigenschaften: Zugversuchergebnisse fur Bund 17430

15. Ergebnisse des modifizierten Reckziehens fur Bunde 82076 und 82078: geschmierter Zustand

16. Ergebnisse des modifizierten Reckziehens fur Bunde 82076 und 82078: trockener Zustand

17. Ergebnisse des modifizierten Reckziehens fur Bunde 16528, 16637 und 17430: trockener Zustand

XVII

Page 20: Skin Pass Mill and Tension Levelling -Asasas

Aufstellung der Abbildungen

jedem ProzeS fur Bunde jedem ProzeB fur Bunde

1. Offline-Formmessungen an dem im Endabnahmeversuch mit der Streckrichtmaschine eingesetzten Bund (nur Kaltnachwalzen)

2. Off1ine-Formmessungen an dem im Endabnahmeversuch mit der Streckrichtmaschine eingesetzten Bund (Kaltnachwalzen und Streckrichten)

3. Beziehung zwischen dem Ebenheitsindex und der Gesamtwellen-hohe fur ein 2 m langes ProbestUck

4. Rockwell-Hartewerte B tiber die Breite der Bundproben im Endabnahmeversuch mit der Streckrichtmaschine

5. Querdickeprofile der Bundproben im Endabnahmeversuch mit der Streckri chtmasch i ne

6. Beschreibung der ursprungl ichen und modif izierten Verarbei-tungsrouten und Probenahmepositionen fur die Bunde im Betriebsversuch

7. Histogramme des Ebenheitsgrades nach 82076 und 82078

8. Histogramme des Ebenheitsgrades nach 16528, 16637 und 17430

9. Off1ine-Formmessungen fur Bund 82076 nach verschiedenen Ver-arbeitungsstadien

10. Off1ine-Formmessungen fur Bund 82078 nach verschiedenen Ver-arbeitungsstadien

11. Off1ine-Formmessungen fur Bund 16528 nach verschi* arbeitungsstadien

12. Off1ine-Formmessungen fur Bund 16637 nach verschiedenen Ver-arbe i tungsstad i en

13. Off1ine-Formmessungen fur Bund 17430 nach verschiedenen Ver-arbe i tungsstad i en

14. Querdickeprofile fur Versuchsbunde 72086 und 72088 nach ver­schiedenen Verarbeitungsstadien

15. Querdickeprofile fur Versuchsbunde 16528, 16637 und 17430 nach verschiedenen Verarbeitungsstadien

16. Unterschiede der Restoberflachenspannung fur Bund 16528 nach verschiedenen Verarbeitungsstadien

17. Unterschiede der Restoberflachenspannung fur Bund 16636 nach verschiedenen Verarbeitungsstadien

18. Unterschiede der Restoberflachenspannung fur Bund 17430 nach verschiedenen Verarbeitungsstadien

19. Aquivalente Oberflachenspannung zur Verursachung von Biegung im doppelt reduzierten WeiBblech

20. Restlangsspannung im geraden Band nach vier Biegungen der abnehmenden Biegung

21. Beziehung zwischen der Walzendurchdringung und dem effekti-ven Radius der Biegung

22. Aktuelle Einstellung der Walzenrichtmaschinen ("Keil") 23. Modifizierte Einstellung der Walzenrichtmaschinen 24. Ruckfedereffekte im doppelt und einfach reduzierten WeiB-

blech wahrend des Streckrichtens 25. Versuchsanlage der Streckrichtmaschine 26. Beziehung zwischen der Zugspannung, Durchdringung und des

Radius der Biegung des 3,1 mm feuerverzinkten Werkstoffes fur eine Biegerolle mit einem Durchmesser von 45 mm

edenen Ver-

XVIII

Page 21: Skin Pass Mill and Tension Levelling -Asasas

THE MECHANICAL AND METALLURGICAL EFFECTS OF SKIN PASSING AND TENSION LEVELLING

British Steel pic

ECSC Agreement No. 7210.EA/822

Final Technical Report

1. INTRODUCTION

1.1. Background to Research Programme

The flatness of the strip and its freedom from residual stresses are critical in many applications particularly on slit strip and when high speed, automated machines are used for forming the strip. The skin passing and tension levelling operations are used to produce flat strip.

It is known that increased levels of skin passing and tension levelling work harden the strip and alter its mechanical properties to reduce its formability potential.

This work will examine the effects of variations in these plant processing operations on the yield strength, ductility, residual stress levels and surface appearance of the strip.

1.2. Summary of Intended Programme

The research programme had one main objective:-

1. To develop control strategies for skin passing and tension levelling to enable the routine production of flat steel strip which would meet the highest requirements for formability and surface finish.

To complete the programme of research it was anticipated that the following areas would be studied:-

1. Techniques for the examination of residual stress distribution through the thickness and for assessment of curvature and camber will be established.

2. Carry out plant trials in which the relevant operating parameters will be monitored. Samples from coils will be collected at various stages of processing for off-line determination of those properties and characteristics for which on-line measurement is impractical. A wide range of products in terms of gauge, formability requirements and customer applications will be covered.

3. Assess the effects of varying process conditions on the mechanical properties and surface appearance of the strip and use this data to propose control strategies.

4. The information gained from plant investigations will also be compared with the results of existing mathematical models and used to develop and refine these.

5. Carry out further plant trials to evaluate the proposed control strategies and to assess the prediction of refined mathematical models.

Page 22: Skin Pass Mill and Tension Levelling -Asasas

2. PLANT INVESTIGATIONS INTO THE EFFECTS OF SKIN PASSING AND TENSION LEVELLING

2.1. Final Acceptance Trial of an Inspection Line Tension Leveller

2.1.1. Outline of Trial and Sampling Procedure^)

As part of the final acceptance trials for the tension leveller, off-line shape and gauge profile assessments of normal 0.7% skin passed material processed on the line were made. A 20 tonne coil, 1465 x 0.7mm, was fed through the inspection line with the leveller in ambush. During this first pass, two adjacent samples, 2m x width, were taken 20m into the coil, at the centre of the coil (the coil rewelded) and 20m from the end of the coil. During this sampling operation, lines were scribed on the coil at three selected zones along its length for elongation measurement.

The coil was returned to the entry mandrel and fed through the line in a continuous operation with the tension leveller engaged and set at different levels of elongation for each of the prescribed zones (0.5, 1.0 and 1.5% elongation). The coil was again returned to the entry mandrel and run through the line slowly with the tension leveller in ambush. At each of the pre-selected zones, the line was stopped for elongation measurements and for 2m long x width samples for shape measurement.

2.1.2. Off-Line Shape Measurement Results^)

Details of the off-line shape assessment method used are given in Appendix 1. The results are summarised in Table 1. Figs, la, b and c are the results of the measurements made on the adjacent samples taken from the non tension levelled material. They all show an obvious centre looseness, approximately 800mm wide, with moderate loose edges. The degree of centre looseness improved along the coil length from 411 units at the head end to 151 units at the tail end.

Figs.2a, 2b and 2c are the results of the measurements made after 0.5, 1.0 and 1.5% elongation with tension levelling. They clearly show a considerable improvement in strip shape. At 0.5% elongation, the flatness index was within ±5 1 units, at 1% elongation it was within ±0.5 I units (which is close to the level of accuracy that the equipment can measure) and at 1.5% elongation the flatness index was within ± 3 1 units. Fig.3 shows the relationship between flatness index and total wave height for a sample length of 2m.

2.1.3. Hardness Variation Across Coil Widths

Rockwell B hardness measurements were carried out across the width of the sample sheets to establish if hardness variations could account for the wavy edges after tension levelling 0.5 and 1.5%, Figs.2a and 2c. The results are plotted in Fig.4 and show that at 0.5% extension the drive side edge was appreciably softer than the rest of the coil width (corresponding to its long edge, Fig.2a) and that for the 1.5% extension sample, both edges were softer. The results also clearly illustrate the effects of work hardening via tension levelling, in showing the increased overall hardness values after each change of elongation.

2.1.4. Transverse Gauge Measurements'1)

Transverse gauge profile measurements were made using a continuous gauge profilometer. The profiles are shown in Fig.5, this overlay shows that the profiles are consistent along the length of the coil and do not change with tension levelling.

Table 2 gives details of the characteristic values of the samples. The values for the gauge drop are given in two forms, i.e. the extreme edge measurement related to the centre line gauge and the measurement taken 5mm in from each edge, again related to the centre line gauge. The crown (centre - average of edge readings) and wedge (difference of edge readings) is calculated from the measurements taken 25mm in from each edge and again related to the centre line gauge. The gauge edge drop taken 5mm in from the edges shows a 50% improvement over that for the extreme edges. The calculated crown appears to be

Page 23: Skin Pass Mill and Tension Levelling -Asasas

fairly consistent along the length of the coil only varying by 6um, and is not affected by tension levelling. Essentially, there is no wedge in the coil pre and post tension levelling.

2.1.5. Mechanical Properties - Tensile Testing

Details of the tensile testing method, the sample positions tested, the parameters measured and the European specifications to satisfy EDD, extra deep drawing, Fe P05, requirements are given in Appendix II.

The tensile test results on the samples obtained in 2.1.1. are listed in Table 3. From these, it can be seen that, with the exception of the two head end samples, the mechanical tensile properties of the coil in the 0.7% skin passed condition are uniform. The effect of additional tension levelling is to alter the mechanical properties, in particular, to increase Rpo.2> reduce ni but make no significant change to Ago-For this particular coil the effect of 0.5% tension levelling was to increase Rpo.2 by 10 N/mm2, 1% tension levelling increased it by 28 N/mm2 and 1.5% tension levelling increased it by 36 N/mm2. Aso remained virtually unchanged at ~43.0% at all levels of extension 0-1.5%.

2.2. Plant Production Trial Coils

2.2.1. Outline of Trial and Sampling Procedure*2)

An outline of the original processing conditions and sampling procedures is given in Fig.6a. Essentially, coils were processed to enable samples to be collected in the following conditions:-

(i) Non-skin passed.

(ii) 0.8% skin passed.

(iii) 0.4% skin passed.

(iv) 0.4% skin passed + 0.3% tension levelling.

(v) 0.4% skin passed + 0.5% tension levelling.

Only the first two coils were processed using these conditions, subsequent coils were processed as outlined in Fig.6b. This enabled samples to be collected in the above conditions and also with 0.8% skin passed + 0.5% tension levelling.

2.2.2. Off-Line Shape Measurement Results*3-4)

The off-line shape assessment measurement for the trial coils are summarised in Tables 4 and 5 and in histogram form in Figs.7 and 8. The data presented is the flatness index, I units (minimum to maximum variation across the sample).

From these results it can be seen that all five coils had poor shape in the cold reduced and annealed condition, generally there was some improvement in shape with normal amounts of skin passing, but significant improvement only occurred when low amounts of levelling were applied to material which had previously been given 0.4 and 0.8% skin passing.

A more detailed view is given in Figs.9-13 which are plots of the off-line shape variation across the width of the coil at each processing stage. In each of these figures, the flatness variation is plotted over the mean value which is set at zero.

Fig.9 shows that Coil 82076 had a heavy loose centre, tight i 's and loose edges in the as annealed condition, which, with a 0.4% skin pass changed to a very loose D/S edge, retained the loose O/S edge and tight D/S i but loosing the loose centre. It then became virtually flat when small amounts of tension

Page 24: Skin Pass Mill and Tension Levelling -Asasas

levelling were applied to the 0.4% skin passed material. The base material with the normal 0.8% skin pass still retained a slightly loose centre with a suggestion of tight edges.

Fig. 10 shows that Coil 82078 had a pronounced D/S i buckle and a loose O/S edge in the as annealed condition. With a 0.4% skin pass the D/S i buckle was eliminated and the shape changed to a slightly loose centre with a hint of edge slackness. The coil became virtually flat when small amounts of tension levelling were applied to the 0.4% skin passed material. The normal 0.8% skin passed material was virtually flat with a hint of centre looseness.

Fig.ll shows that the shape of Coil 16528 in the as annealed condition changes gradually long its length from a loose centre at the head end to virtually flat at the mid coil position to a tight centre at the tail end with loose edges throughout the length of the coil. 0.4% and 0.8% skin passing did little to remove the loose centre. Small amounts of tension levelling after 0.4% and 0.8% skin passing removed the centre looseness completely, but did little to remove the loose edges which effect up to 200mm in from each edge of the coil.

Fig. 12 shows a similar change in shape along its length for Coil 16637 in the as annealed condition as was seen in Coil 16528. Similarly, 0.4% and 0.8% levels of skin passing did little to affect the shape, but additional low levels of tension levelling removed all of the loose centre and left only a suggestion of O/S loose edge.

Fig. 13 again showed a similar variation in the shape of Coil 17430 along its length in the as annealed condition. 0.4% skin passing did little to change the shape but 0.8% skin passing and small additional amounts of tension levelling to both 0.4% and 0.8% skin passed material effectively removed the centre looseness.

2.2.3. Transverse Gauge Measurements*3*4)

Tables 6 and 7 give details of the gauge characteristics of the trial coils and Figs. 14 and 15 show overlays of all the sample profiles. From these results it can be seen that the profiles are fairly consistent along the length of each coil and they are not affected by varying the levels of skin passing and tension levelling.

2.2.4. Surface Texture Measurements*5-6)

The surface texture characteristics of the trial coils are listed in Tables 8 and 9. Coils 82076 and 82078 were rolled in sequence on the temper mill as were coils 16528, 16637 and 17430. However, the surface textures of the coils were all somewhat different, due mainly to the different textures of the base tandem mill rolled material (Samples 1-3). That the surface textures of the individual coils is different is of no importance. What is important is that there is only a very little difference in texture, within individual coils, for material which has received a 0.4% skin pass and material which has received the normal 0.8% skin pass. The surface texture of 0.4% skin passed material is acceptable for exposed part applications. Low levels of tension levelling, up to 0.5% extension, do not affect the surface texture of skin passed material.

2.2.5. Mechanical Properties - Tensile Testing

The tensile test results on the samples taken from the five plant production trial coils are listed in Tables 10-14.

The results from the first two trial coils 82076 and 82078, Tables 10 and 11 show that there is very little difference between the tensile mechanical properties of the material having received 0.4% skin pass and 0.3 and 0.5% additional tension levelling and material having received the nominal 0.8% skin pass only. All the processing conditions applied to these two particular coils produced material to satisfy the requirements for Fe P05 grade.

For the last three trial coils, an extra processing condition was employed in addition to the range of conditions used on the two earlier coils, i.e. 0.5% tension levelling applied to 0.8% skin passed material.

Page 25: Skin Pass Mill and Tension Levelling -Asasas

The results are listed in Tables 12,13 and 14. From these results it can be seen that as for the two earlier trial coils, there was very little difference in the tensile mechanical properties of the material having received 0.4% skin pass and 0.3 and 0.5% additional tension levelling and material having received the nominal 0.8% skin pass only. However, the effect of applying 0.5% tension level to material having received 0.8% skin pass was to raise Rpo.2 by —10 N/mm2.

Although the additional 0.5% tension levelling applied to the nominal 0.8% skin pass did not cause the material to fall out of the EN 10130 specification for Fe P05 grade in these particular cases, given the distribution of mechanic properties normally obtained, the 10 N/mm2 increase in Rpo.2 would be expected to result in a significant number of coils falling out of the Fe P05 specification if 0.5% tension levelling were to be applied on a routine basis.

2.2.6. Mechanical Properties - Modified Stretch Draw

Details of the modified stretch draw test are given in Appendix III.

Modified stretch draw tests have been carried out on all the plant trial coils. Tests were carried out both in the dry condition, free of any lubricant, where the results are influenced by the mechanical properties of the steel, gauge and surface texture (frictional effects) and in the fully lubricated condition, where the results are influenced by gauge and mechanical properties only.

Three tests were carried out on each sample sheet on blanks punched from positions, i D/S, centre and i O/S, corresponding the tensile test sample positions.

The results, fracture height achieved and punch load to achieve fracture are listed in Table 15 for Coils 82076 and 82078 in the lubricated condition, Table 16 for Coils 82076 and 82078 in the dry condition and Table 17 for Coils 16528,16637 and 17430 in the dry condition.

As can be seen from the data in Tables 15,16 and 17, there is some variation in the results for fracture height achieved and the punch load to achieve fracture for samples tested under the same conditions. This can probably be explained by the variations in the control of the processing parameters, i.e. 0.8% S.P. ± 0.1%, 0.4% S.P. ± 0.1%, 0.3% and 0.5% T.L. ± 0.05% and minor gauge variations sample to sample.

However, from the results for each individual coil it would appear that there is no significant difference in the stretch draw behaviour of material with 0.4% skin pass and either 0.3% or 0.5% tension levelling and normal 0.8% skin passed material in both the dry and lubricated conditions. Similarly, the addition of 0.5% tension levelling to material which has received 0.8% skin pass does not appear to have a significantly deleterious effect on the material stretch draw properties, but there is an indication in Coil 16637 that these properties are beginning to deteriorate.

2.2.7. Residual Stress Measurements

Residual surface stress measurements have been carried out on samples from three of the plant production trial coils using the Stresscan 500C system. This system uses the Barkhausen noise effect to measure surface layer residual stresses which are given in terms of a dimensionless parameter called MP.

Measurements were carried out at 100mm intervals across the width of the strip in the longitudinal direction (corresponding to the off-line shape measurements, Section 2.2.2.). Both surfaces were measured using a standard air gap of 0.2mm and a depth setting of 0.2mm.

The results are plotted in Figs.16, 17 and 18 and are the difference between the difference of the top and bottom residual surface stress and the average surface residual stress difference:-

_ (oTL - oBL) i.e. {oTL - oBL) - E"

1 n

Page 26: Skin Pass Mill and Tension Levelling -Asasas

The results for Coil 16528, Fig.16, can be compared directly with the shape curves, Fig.ll , similarly results for Coils 16637 and 17430, Figs.17 and 18 can be compared with Figs.12 and 13.

There is some agreement between the shape curves and the residual surface stress curves. In general, the flat samples, i.e. samples 8-13 tend to give "flat" but skewed residual stress curves. Examples of good agreement can be seen in 17430-4 and 10 and 16528-5, but yet the clearly bad shape of 16637-4,5,6 and 7 was not reflected at all in the residual surface stress measurement.

This preliminary study of residual stress indicates that a much more detailed study is required to establish what relationships exist between residual surface stress and shape measurements.

2.3. Investigations into Various Plant Problems

2.3.1. Investigation of a Tinplate Line Tension Levelling Performance

An investigation into the strip levelling performance of the tension levellers on the Nos.3 and 4 electrolytic tinning lines and the No.l tin free steel line at British Steel Trostre was initiated because of a long middle shape problem on the Nos.l and 3 lines. The product from the No.4 line was satisfactory which enabled the performance of the levellers to be compared.

A theoretical analysis combined with sample and plant measurements was carried out. During the investigation a defective gearbox was discovered on the No.3 line and its replacement reduced the severity of the defect. The theoretical analysis was used to establish an operating envelope for the present product mix as a number of changes had been made to the levellers since their installation. Recommendations were also made for controlled trials on tension levels and the contribution of the bridle roll drives*7*. A programme of work was agreed and implemented.

2.3.2. Investigation of Residual Stress and Cross Bow in a Paint Coating Line

The problem of cross bow in strip of about 1mm gauge travelling in a supported catenary through a low temperature thermal treatment oven was made much worse when a 305mm diameter deflector roll engaged the strip. The effect of this roll in modifying the through thickness residual stress distribution resulting from tension levelling in a 5 roll leveller with 50mm diameter work rolls was investigated. The cross bow correction roll at the exit of the leveller was also 305mm diameter and adjustment of its height and the effect this had on the residual stress distribution made it possible to eliminate the excess cross bow which was generated by the engagement of the deflector roll.

The effect of variations in the through thickness residual stress profile across the width of the levelled product was also investigated to identify the origins of non-circular cross bow profiles sometimes seen in process line strip catenaries.

2.3.3. Investigation of a Tinplate Bowed Blanks Problem

2.3.3.1. Introduction to the Problem

Modern machines for the production of can sides for three piece cans typically use 0.14-0.17mm gauge double reduced tinplate as feedstock. This material is normally supplied in sheet form and then slit and cut into blanks by the customer. The blanks are increasingly loaded by automatic feeders and if the blanks bow after slitting and cutting from the large sheets then feeding problems can result. The process of rolling and tension levelling produce residual stress through the thickness of the strip. A sheet can appear flat or within acceptable limits of cross bow and long bow at dispatch, but when cut up into blanks can bow due to these residual stresses. This is because the surface tensile and compressive stresses are in equilibrium in the large sheet, but not in the blank.

Page 27: Skin Pass Mill and Tension Levelling -Asasas

An investigation was made into the operation of both tension leveller and roller leveller in relation to the residual stress distribution through the thickness of the strip and the relationship between the radius of curvature of the blanks and residual stress.

2.3.3.2. Curvature of Blanks and Residual Stress

An attempt was made to establish the maximum amount of curvature that could be corrected for a particular roll diameter by bending 20mm wide strips of 0.17mm gauge double reduced tinplate around steel bars of various diameters and measuring of the springback angle. The experiment failed because the technique employed did not ensure conformation of the strip around the bar. The experiment will be repeated using a more sophisticated technique. Fig.19 shows the equivalent elastic stresses at the strip surface calculated for a range of curvatures for 0.14 and 0.17mm gauge double reduced tinplate. These results can be related to the projected stress distribution through the thickness after tension levelling and roller levelling.

Fig.20 shows the changes in residual longitudinal stress after bending and straightening after four bends of decreasing curvature^. Generally, the bending stresses over each roll must be reduced in a linear manner through a multi-roll leveller to reduce the residual stresses through the thickness of the strip.

2.3.3.3. Tension Leveller Operation

The tension leveller on the tinning line currently employs a five bending roll system with all work rolls being 25mm diameter. In order to assist in the reduction of residual stress and long bow it was recommended that the penetration of the bending rolls in the second cassette be approximately 65% of that of the first cassette and that the diameter of the last work roll be increased to 45mm which would result in less sensitive correction of long bow. In addition, Thies et al<9) suggest that for minimum residual stress, the bridle tension should be maintained at 90 N/mm2 for double reduced tinplate. This would require careful balancing of bridle tension and roll penetration consistent with the required elongation.

2.3.3.4 Roller Leveller Operation

The design of the roller leveller used has a fixed bottom frame with seven rollers and an adjustable top frame of six rollers means that the penetration of the rollers can only be set as a 'wedge' with the maximum penetration of the first roller reducing progressively to the final roller. Using the relationship from Fig.21 derived by examination of the roller leveller geometry, the 'wedge' set up produces a non­linear curvature/stress relationships from entry to exit, Fig.22. This does not, therefore, produce the optimum stress reversals required for reduction of residual stress.

A possible method of overcoming this problem is the adoption of a two stage process as suggested by Panknin et aK10>, i.e. the top frame is split into two sections with each section individually adjustable. By use of the roll penetration set up shown in Fig.23, an almost linear curvature reduction can be achieved from entry to exit.

2.3.4. Optimisation of Wrap Angles During Tension Levelling of Tinplate

Two different designs of tension levellers are used in British Steel Tinplate. In order to optimise the performance of the levellers, it was necessary to establish the wrap angle required to achieve maximum surface strain for the two tinplate qualities normally produced, i.e.

(i) Single reduced tinplate, 0.2mm gauge, yield stress 275 N/mm2.

(ii) Double reduce tinplate, 0.17mm gauge, yield stress 550 N/mm2.

As both grades produce 'springback' when defected around rolls, it was necessary to determine the minimum bending angle required before plastic deformation occurred. This was done by bending small strips round a 25mm diameter pin (same diameter as work rolls in the tension levellers) at various angles and measuring the residual angle after release of tension. The results of these tests are shown in Fig.24

Page 28: Skin Pass Mill and Tension Levelling -Asasas

and indicate that the minimum wrap angle for single reduced tinplate was 6.5° and for double reduced tinplate 11°.

The maximum surface strain that can be achieved = strip thickness/bending roll diameter.

For S.R. tinplate = .2_ = 0.008 25

For D.R. tinplate = 117_= 0.0068 25

This can be related to the wrap angle by the difference in arc length between the centre line and the extreme surface of the strip when bend around a roller.

S„-Sc = [(r + G)-(r+*G)]9

where S0 = Arc length of extreme surface of strip Sc = Arc length of centre of strip r = Roller radius G = Strip gauge 9 = Wrap angle, radians

For S.R. tinplate 9 = 0.008 = 0.08 Radians = 4.6° .1

For D.R. tinplate 9 = 0.0068 = 0.08 Radians =4.6°

.085

Thus the optimum wrap angles to achieve maximum strain are:-

For S.R. tinplate; 4.6° + springback 6.5° = 11.1°

For D.R. tinplate; 4.6° + springback 11.0° = 15.6° These results clearly demonstrate that different leveller settings are required for each tinplate quality. The S.R. setting is totally ineffective for D.R. whilst the D.R. setting would induce severe cross bow and line bow in S.R. material.

2.4. Use of Pilot Tension Leveller Rig in Plant Problem Investigations

2.4.1. Cyclic Strip Marking on an EZ Coating Line

The pilot tension leveller rig, Fig.25, has been used to investigate a problem which arose during the commissioning of an EZ coating line. It was found that cyclic strip marking was present on some coils when the surface was stoned. An investigation had shown*11) that the tension leveller aggravated any marks generated by rolling at the micron level and the effect appeared to be a function of the leveller design geometry, in particular the diameter and spacing of the bending and anticurvature rolls. Subsequent plant trials*12) using different bending roll diameters and penetrations have enabled a leveller set up practice to be developed which minimises the cyclic marking problem.

2.4.2. Slitting of 3.1mm Hot Dipped Galvanised Material

The pilot rig has also been used to investigate problems encountered with 3.1mm gauge hot dipped galvanised material which is subsequently slit into narrow widths. During slitting, the edge widths exhibit cambering and twisting. An analysis of the stress and strain distributions, through the strip thickness, during tension levelling was made^) . The pilot rig was used to investigate the relationships between tension stresses, penetration values and radius of strip curvature for a 45mm diameter bending roll as used in the plant tension leveller, Fig.26.

Page 29: Skin Pass Mill and Tension Levelling -Asasas

Based on the above analysis and pilot rig work, recommendations have been made for specific values of strip tension, drive motor currents, bending roll positioning and line speed in order to give minimum residual stress in the strip.

3. CONCLUSIONS

1. Investigations carried out during the final acceptance trial of a rewind line tension leveller confirmed that tension levelling improves the shape of coil strip, but that even with levels as low as 0.5% extension, work hardening occurs which may render the strip unsuitable for its intended application. Strip hardness is increased, as is the 0.2% proof stress and the work hardening coefficient ni is reduced, but the total elongation is virtually unchanged.

2. The same investigation showed that tension levelling, up to 1.5% extension, has no effect on the transverse gauge profile of the coil; crown, wedge and edge drop are not affected.

3. Plant production trials confirm that the transverse gauge profile after cold rolling in the tandem mill is not affected by subsequent skin passing at 0.4-0.8% extension or by additional tension levelling of 0.5% extension.

4. Surface texture measurements on samples from plant production trial coils show that tension levelling, up to 0.5% extension, has no effect on surface texture. Slight differences were observed between the textures obtained with 0.4% and 0.8% dry temper rolling, however, the differences were only marginal and would not have rendered the material unsuitable for even the most demanding outside part qualities. The major influence on the final strip surface texture obtained was the incoming tandem mill texture

5. For steel strip in the gauge range 0.7-1.2mm, low levels of tension levelling, 0.3% extension, were very effective in removing tight/loose centre and ± buckles, but did not always remove loose edges, particularly on wide material. Increasing tension levelling to 0.5% extension was only marginally more effective than 0.3% in improving shape.

6. For steel strip in the gauge range 0.7-1.2mm, combinations of 0.4% skin passing and low levels of tension levelling, up to 0.5% resulted in strip with tensile mechanical properties similar to those of the normal production route 0.8% skin pass material. The addition of 0.5% tension levelling to normal production 0.8% skin pass material resulted in some deterioration of mechanical properties. Given the distribution of mechanical properties normally obtained, the 10 N/mm2 increase in Rpo.2 would result in a significant number of coils falling out of the Fe P05 specification if 0.5% tension levelling were to be applied on a routine basis.

7. For steel strip in the gauge range 0.7-1.2mm, the combination of 0.4% skin passing and low levels of tension levelling also gave similar modified stretch draw test results to those of the normal 0.8% skin pass material. However, in this test the deterioration of mechanical properties when 0.5% tension levelling was given to normal 0.8% skin pass material was not as evident as in the tensile test results.

8. The results of this study show that the normal production route of 0.8% skin passing results in a product with satisfactory mechanical properties, but it is not necessarily flat. If an order for EDD quality material also has a requirement for good flatness, then the only guaranteed way to satisfy both these requirements is to employ a lower than normal skin pass, typically 0.4% extension, followed by a low level of tension levelling, typically 0.3% extension.

9. The measurement of residual surface stress using a method based on the Barkhausen effect has shown some degree of tie up with off-line shape measurements. However, this aspect of the investigation was somewhat limited and a more detailed investigation is required before the usefulness or otherwise of the technique for relating residual stress to shape can be established.

Page 30: Skin Pass Mill and Tension Levelling -Asasas

10. A number of investigations have been carried out into plant problems. The problems related to the design and operating set up of roller and tension levellers on various units and recommendations have been made which have overcome or reduced the severity of the problems. The pilot tension leveller rig was successfully used in a number of these investigations.

4. RECOMMENDATIONS FOR FUTURE WORK

1. The results of this investigation have demonstrated that in order to ensure a flat product with EDD forming quality it is necessary to employ lower than normal levels of skin passing and low levels of tension levelling. One can understand the plant management reluctance to use very low levels of skin passing such as 0.4% as a routine production route. Further work should be carried out to investigate whether skinpass levels of 0.5-0.6% combined with 0.2-0.3% tension levelling can also satisfy the flatness and EDD formability requirements.

2. Further work should be carried out on the measurement of residual stress and shape measurement of samples to ascertain if the Stresscan 500C system used can form a useful tool for the on-line measurement of strip shape.

5. REFERENCES

1. C. Trinder, Welsh Laboratories Technical Note No.WL/RF/TN/0281/P/3/91/D, 2nd December, 1991.

2. T.E. De La Rue, Plant Trial Procedure QT349, August 1991.

3. C. Trinder, Welsh Laboratories Analysis & Testing Report No. T11970,17th December, 1991.

4. C. Trinder, Welsh Laboratories Analysis & Testing Report No. T.12348,14th May, 1992.

5. R. Lewis, Welsh Laboratories Analysis & Testing Report No. T. 12009,19th December, 1992.

6. L. Curtis, Welsh Laboratories Analysis & Testing Report No. T.12290,15th April, 1992.

7. J.M. Moore, Welsh Laboratories Technical Note No. WL/RF/TN/0281/1/90/D, 12th October, 1990.

8. A.W. McCrum, Private Communication 1991.

9- H. Thies et al, Investigations on Strip Flatness in a Tension-Flex Levelling Machine, Stahl Eisen 1983 103(21).

10- w - Panknin et al, Research into the Levelling, Straightening and Flexing of Coiled Strip Material and Its Effects on Surface Finish, Sheet Metal Industries, October 1973, pp.578-586.

11. O.J. Wakelin, Welsh Laboratories Technical Note No. WL/RF/TN/0281P/4/91/D, 4th December, 1991.

12. J.M. Moore, Shotton No.3 EGL Tension Leveller Trials with Bending Rolls of Different Diameters, 16th December, 1991.

13. J.M. Moore, Welsh Laboratories Technical Note No. WL/R/F/TN/1032C/12/91/D, 19th November, 1991.

10

Page 31: Skin Pass Mill and Tension Levelling -Asasas

TABLE 1

SHAPE ASSESSMENT OF FINAL TENSION LEVELLER ACCEPTANCE TRIAL COIL

Sample Identity

1 1A

2 2A

3 3A

4

5

6

Width (mm)

1467 1465

1467 1468

1467 1467

1463

1465

1463

Gauge (mm)

0.708 0.703

0.699 0.693

0.694 0.687

0.687

0.705

0.697

Sample Location

H/E H/E

Mid Coil Mid Coil

T/E T/E

Mid Coil

iCoil

fCoil

Tension Levelling

Elongation, %

0 0

0 0

0 0

1.0

0.5

1.5

Flatness Index

(I Units)*

41 37

22 33

15 19

1

9

5

Fig. No.

la lb

lb lc

lc lc

2b

2a

2c

*11 Unit = 0.001% Length Differential

11

Page 32: Skin Pass Mill and Tension Levelling -Asasas

TABLE2

TRANSVERSE GAUGE CHARACTERISTICS OF TENSION LEVELLER FINAL ACCEPTANCE TRIAL COIL

Sample Identity

1 1A

2 2A

3 3A

4

5

6

Width (mm)

1467 1465

1467 1468

1467 1467

1463

1465

1463

Centre Line

Gauge (urn)

708 703

699 693

694 687

687

705

697

Gauge Edge Drop

Edge-Centre Line

D. Side

pm

68 97

84 78

88 84

77

87

78

%

9.60 13.80

12.02 11.16

12.68 12.22

11.21

12.34

11.19

0 . Side

um

72 97

69 68

100 94

88

90

86

%

10.17 13.80

9.87 9.73

14.41 13.68

12.81

12.77

12.34

5mm-Centre Line

S. Side

pm

43 49

41 31

45 38

41

41

41

%

6.07 6.97

5.87 4.43

6.48 5.53

5.97

5.82

5.88

0 . Side

pm

36 40

33 40

40 51

47

50

59

%

5.08 5.69

4.72 5.72

5.76 7.42

6.84

7.09

8.46

Crown

pm

25 28

23 24

29 27

28

26

27

%

3.53 3.98

3.29 3.43

4.18 3.93

4.08

3.69

3.87

Wedge

pm

-2 -15

-1 0

-6 0

-3

-3

+ 8

%

0.28 2.13

0.14 0

0.86 0

0.44

0.43

1.15

Positive Wedge = Heavy Drive Side

All percentages are relative to centre line gauge

Page 33: Skin Pass Mill and Tension Levelling -Asasas

TABLE 3

MECHANICAL PROPERTIES TENSILE TEST RESULTS FOR THE TENSION LEVELLER FINAL ACCEPTANCE TRIAL COIL

to

Sample Identity

1H/E

1AH/E

2 Mid Coil

2A Mid Coil

3T/E

3AT/E

5 iCoil

4 Mid Coil

6 JCoil

Position in Sheet

i Width O/P Side Centre Centre

i Width Drive/Side i Width OP/Side

Centre Centre

i Width Drive/Sid< * Width OP/Side

Centre Centre

i Width Drive/Sid( i Width OP/Side

Centre Centre

i Width Drive/Sidt i Width OP/Side

Centre Centre

i Width Drive/Side i Width OP/Side

Centre Centre

J Width Drive/Side i Width O/P Side

Centre Centre

i Width Drive/Side i Width O/P Side

Centre Centre

i Width Drive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Side

Process

0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP 0.7% SP

0.7%SP + 0.5%T.L. 0.7%SP + 0.5%T.L. 0.7%SP + 0.5%T.L. 0.7%SP + 0.5%T.L. 0.7%SP+1.0%T.L. 0.7%SP+1.0%T.L. 0.7%SP+1.0%T.L. 0.7%SP+1.0%T.L. 0.7%SP+1.5%T.L. 0.7%SP+1.5%T.L. 0.7%SP+1.5%T.L. 0.7%SP+1.5%T.L.

L L T L L L T L L L T L L L T L L L T L L L T L L L T L L L T L I. I. T L

Gauge mm

0.685 0.688 0.694 0.685 0.695 0.700 0.701 0.694 0.688 0.693 0.695 0.690 0.688 0.693 0.695 0.689 0.690 0.694 0.696 0.688 0.682 0.684 0.687 0.684 0.687 0.692 0.695 0.691 0.683 0.686 0.690 0.683 0.686 0.692 0.686 0.690

Rpo.2 N/mm2

165 166 171 165 166 171 169 168 159 160 159 157 164 155 158 152 150 151 155 152 156 164 155 152 165 166 164 163 183 186 179 185 191 191 193 188

Rm N/mm*

303 305 301 303 303 305 299 302 303 303 298 303 302 303 299 302 296 297 295 300 298 301 296 297 302 306 298 302 303 306 300 306 305 307 302 304

Ag %

23.9 23.6 21.7 23.6 23.4 24.4 22.0 25.5 23.8 23.4 22.6 24.7 24.3 24.4 23.6 25.4 24.2 22.9 22.2 25.5 24.4 23.2 23.0 23.4 24.4 23.3 22.7 22.4 22.4 22.1 22.2 23.3 23.3 22.8 24.3 22.8

ABU %

44.2 44.5 40.9 44.8 43.9 42.5 43.7 43.6 44.4 43.9 41.5 43.9 42.4 43.5 40.5 44.1 44.7 39.2 44.2 43.4 41.8 43.8 44.4 43.8 46.3 42.4 46.9 44.2 43.9 42.9 39.0 42.3 43.0 41.9 44.4 42.4

ni 5-10%

0.233 0.234 0.230 0.235 0.233 0.229 0.232 0.230 0.241 0.240 0.243 0.244 0.261 0.248 0.243 0.252 0.252 0.255 0.251 0.258 0.251 0.254 0.252 0.252 0.236 0.239 0.244 0.227 0.217 0.214 0.226 0.215 0.208 0.210 0.212 0.210

n2 10-15%

0.224 0.225 0.218 0.224 0.221 0.220 0.217 0.222 0.228 0.229 0.226 0.230 0.232 0.231 0224 0.233 0.229 0.231 0.224 0.234 0.231 0.232 0.226 0.231 0.221 0.224 0.222 0.227 0.211 0.212 0.214 0.212 0.207 0.209 0.207 0.208

«13 15-20%

0.220 0.223 0.213 0.222 0.219 0.221 0.214 0.218 0.223 0.223 0.218 0.223 0.225 0.226 0.218 0.227 0.225 0.223 0.215 0.227 0.225 0.227 0.219 0.222 0.222 0.223 0.214 0.222

0.215 0.211 0.211 0.214 0.210 0.211 0.209 0.214

ri 5%

2.05 2.09 2.28 2.00 2.09 2.02 2.32 1.94 1.95 2.06 2.20 2.08 2.08 2.02 2.16 1.98 2.14 2.06 2.20 2.03 2.27 2.07 2.14 2.11

2.07 1.99 2.32 2.00 2.02 2.05 2.24 1.97 2.07 2.09 2.27 2.14

f2 10%

2.03 2.02 2.24 1.98 2.05 2.02 2.25 1.99 2.01 2.07 2.18 2.00 2.05 2.01 2.16 1.99 2.10 1.97 2.20 2.04 2.18 2.05 2.14 2.12 2.09 1.98 2.20 1.98 1.98 2.00 2.17 1.95 2.05 2.05 2.25 2.07

ra 15%

1.99 2.01 2.24 1.97 2.03 1.99 2.19 1.99 1.98 2.01 2.16 1.95 2.03 1.96 2.15 1.94 2.08 1.94 2.17 2.02 2.12 2.01 2.12 2.09 2.01 1.94 2.17 1.94 1.95 1.94 2.13 1.91 2.03 2.00 2.17 2.04

T4 20%

1.97 1.95 2.22 1.95 1.98 1.97 2.18 1.95 1.95 1.96 2.12 1.94 1.99 1.93 2.13 1.90 2.04 1.88 2.16 1.96 2.09 1.97 2.10 2.05 1.95 1.90 2.11 1.90 1.92 1.92 2.06 1.88 2.01 1.97 2.15 1.99

Page 34: Skin Pass Mill and Tension Levelling -Asasas

TABLE 4

SHAPE ASSESSMENT OF TRIAL COILS 82076 AND 82078

Sample Identity

82076- 1 82076- 2 82076- 3 82076- 4 82076- 5 82076- 6 82076-7 82076- 8 82076- 9 82076-10 82076-11

82078- 1 82078- 2 82078- 3 82078- 4 82078- 5 82078- 6 82078-7 82078- 8 82078- 9 82078-10 82078-11

Width (mm)

915 915 915 915 916 916 916 915 917 917 917

915 915 915 916 916 916 916 916 917 917 917

Gauge (mm)

1.187 1.193 1.230 1.203 1.209 1.204 1.203 1.184 1.195 1.189 1.200

1.218 1.223 1.228 1.200 1.200 1.201 1.207 1.213 1.207 1.208 1.198

Process

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

Flatness Index

(I Units)*

58.0 36.0 18.0 71.0

0.5 0.5 0.4 0.9

10.0 10.0 12.0

24.0 38.0

9.0 11.0

0.6 0.6 0.8 0.5 4.0 3.0 2.0

Fig. No.

9a 9a 9a 9c 9f 9g 9d 9e 9b 9b 9b

10a 10a 10a 10c lOf 10g lOd lOe 10b 10b 10b

*11 Unit = 0.001% Length Differential

14

Page 35: Skin Pass Mill and Tension Levelling -Asasas

TABLE 5

SHAPE ASSESSMENT OF TRIAL COILS 16637 AND 17430

Sample Identity

16528- 1 16528- 2 16528- 3 16528- 4 16528- 5 16528- 6 16528- 7 16528- 8 16528- 9 16528-10 16528-11 16528-12 16528-13 16637 -1 16637 -2 16637 -3 16637 -4 16637 -5 16637 -6 16637 -7 16637 -8 16637 -9 16637-10 16637-11 16637-12 16637-13 17430- 1 17430- 2 17430- 3 17430- 4 17430- 5 17430- 6 17430- 7 17430- 8 17430- 9 17430-10 17430-11 17430-12 17430-13

Width (mm)

1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250

Gauge (mm)

1.010 1.000 1.017 1.010 1.003 0.944 0.985 0.985 0.993 0.994 0.987 0.989 0.990 0.863 0.862 0.850 0.837 0.843 0.819 0.832 0.842 0.843 0.828 0.838 0.832 0.829 0.699 0.705 0.665 0.694 0.684 0.688 0.698 0.690 0.683 0.698 0.678 0.690 0.677

Process

C.R. Anneal C.R. Anneal C.R. Anneal 0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

C.R. Anneal C.R. Anneal C.R. Anneal 0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

C.R. Anneal C.R. Anneal C.R. Anneal 0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

Flatness Index

(I Units)*

19 17 41 22 17 15 15 16 14 17 15 11 14 21 5 33 23 22 25 23 2 4 6 3 4 4 9 14 32 9 8 11 4 3 3 4 4 6 7

Fig. No.

11a 11a 11a lie lib lib lib lie lid llf llg llh Hi 12a 12a 12a 12e 12b 12b 12b 12c 12d 12f 12g 12h 12i 13a 13a 13a 13e 13b 13b 13b 13c 13d 13f 13f 13h 13i

* 11 Unit = 0.001% Length Differential

15

Page 36: Skin Pass Mill and Tension Levelling -Asasas

TABLE 6

TRANSVERSE GAUGE CHARACTERISTICS OF TRIAL COILS 72086 AND 72088

Sample Identity

82076- 1 82076- 2 82076- 3 82076- 4 82076- 5 82076- 6 82076- 7 82076- 8 82076- 9 82076-10 82076-11 82078- 1 82078- 2 82078- 3 82078- 4 82078- 5 82078- 6 82078- 7 82078- 8 82078- 9 82078-10 82078-11

Width (mm)

915 915 915 915 916 916 916 915 917 917 917 915 915 915 916 916 916 916 916 917 917 917

Gauge (um)

1.187 1.193 1.230 1.203 1.209 1.204 1.203 1.184 1.195 1.189 1.200 1.218 1.223 1.228 1.200 1.200 1.201 1.207 1.213 1.207 1.208 1.198

Edge Drop

0. Side

um

75 69 75 63 49 64 70 57 80 75 72 68 63 67 60 45 41 71 38 75 58 54

%

6.32 5.78 6.09 5.27 4.05 5.32 5.82 4.81 6.69 6.31 6.00 5.58 5.15 5.46 5.00 3.75 3.41 5.88 3.13 6.21 4.80 4.51

D. Side

um

62 63 70 75 66 61 58 58 53 54 65 68 60 56 74 63 66 66 66 61 65 68

%

5.22 5.28 5.69 6.23 5.46 5.07 4.82 4.90 4.44 4.54 5.42 5.58 4.91 4.56 6.17 5.25 5.50 5.47 5.44 5.05 5.38 5.68

Crown

um

19 25 32 24 25 26 23 23 21 22 21 24 17 23 20 18 21 20 19 20 20 20

%

1.60 2.10 2.60 2.00 2.07 2.16 1.91 1.94 1.76 1.85 1.75 1.97 1.39 1.87 1.67 1.50 1.75 1.66 1.65 1.66 1.66 1.67

Wedge

um

-7 -12 + 2 -3 + 9 + 2 0

+ 2 -8 -2 + 2 -10 -16 -2

+ 11 -3 + 1 -4 2 -2 -3 + 5

%

0.59 1.01 0.16 0.25 0.74 0.17 0.00 0.17 0.67 0.17 0.17 0.82 1.31 0.16 0.92 0.25 0.08 0.33 0.16 0.17 0.25 0.42

Positive Wedge = Heavy Operators Side

All percentages are relative to centre line gauge

16

Page 37: Skin Pass Mill and Tension Levelling -Asasas

TABLE 7

TRANSVERSE GAUGE CHARACTERISTICS OF TRIAL COILS 16528.16637 AND 17430

Sample Identity

16528- 1 16528- 2 16528- 3 16528- 4 16528- 5 16528- 6 16528- 7 16528- 8 16528- 9 16528-10 16528-11 16528-12 16528-13 16637 -1 16637 -2 16637 -3 16637 -4 16637 -5 16637 -6 16637 -7 16637 -8 16637 -9 16637-10 16637-11 16637-12 16637-13 17430- 1 17430- 2 17430- 3 17430- 4 17430- 5 17430- 6 17430- 7 17430- 8 17430- 9 17430-10 17430-11 17430-12 17430-13

Width (mm)

1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1620 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250

Gauge (mm)

1.010 1.000 1.017 1.010 1.003 0.944 0.985 0.985 0.993 0.994 0.987 0.989 0.990 0.863 0.862 0.850 0.837 0.843 0.819 0.832 0.842 0.843 0.828 0.838 0.832 0.829 0.699 0.705 0.665 0.694 0.684 0.688 0.698 0.690 0.683 0.698 0.678 0.690 0.677

Crown

um 31 24 23 31 38 34 32 34 30 28 29 31 27 25 30 13 28 19 20 22 21 19 16 16 19 17 18 13 10 18 13 19 16 20 19 25 23 19 17

%

3.07 2.40 2.26 3.07 3.79 3.42 3.25 3.45 3.02 2.82 2.94 3.13 2.73 2.90 3.48 1.53 3.35 2.25 2.44 2.64 2.49 2.25 1.93 1.91 2.28 2.05 2.58 1.84 1.50 2.59 1.90 2.76 2.29 2.90 2.78 3.58 3.39 2.75 2.51

Wedge

um -10 + 11 + 32 0

-34 + 14 -17 -9 -16 + 5 -7 -13 -15 + 8 + 9 -16 0 -3 0 -3 -8 -5 -15 -13 -6 -15 + 3 -18 -5 -9 -10 -26 + 3 + 4 -5 -2 + 1 -2 0

%

-0.99 + 1.10 + 3.15

0 -3.39 + 1.41 -1.73 -0.91 -1.61 + 0.50 -0.71 -1.31 -1.52 + 0.93 + 1.04 -1.88

0 -0.36

0 -0.36 -0.95 -0.59 1.81 -1.55 -0.72 -1.81 + 0.43 -2.55 -0.60 -1.30 -1.46 -3.78 + 0.43 + 0.58 -0.73 -0.29 + 0.15 -0.29

0

Positive Wedge = Heavy D/Sides Percentage Results are Relative to the Centre Line Gauge

17

Page 38: Skin Pass Mill and Tension Levelling -Asasas

TABLE 8

SURFACE TEXTURE CHARACTERISTICS OF TRIAL COILS 82076 AND 82078

Sample Identity

82076- 1 82076- 2 82076- 3 82076- 4 82076- 5 82076- 6 82076- 7 82076- 8 82076- 9 82076-10 82076-11 82078- 1 82078- 2 82078- 3 82078- 4 82078- 5 82078- 6 82078- 7 82078- 8 82078- 9 82078-10 82078-11

Process Condition

C.R. Anneal C.R. Anneal C.R. Anneal 0.4% S.P.

0.4%S.P.+ 0.5%T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3%T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

C.R. Anneal C.R. Anneal C.R. Anneal 0.4% S.P.

0.4% S.P. + 0.5%T.L. 0.4% S.P. + 0.5% T.L. 0.4%S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

Top Long

Ra

0.59 0.82 0.74 0.74 0.83 0.73 0.91 0.74 0.61 0.87 0.95 1.54 1.96 1.55 1.26 1.45 1.42 1.52 1.41 1.34 1.38 1.32

S(o)

151 152 159 146 154 158 155 159 153 163 150 219 172 213 204 185 179 181 197 188 183 191

Top Trans

Ra

0.71 0.82 0.78 0.74 0.76 0.71 1.04 0.75 0.61 0.90 0.91 1.46 1.80 1.41 1.24 1.43 1.35 1.49 1.38 1.34 1.39 1.32

S(o)

232 224 215 179 193 182 161 182 183 188 170 244 203 258 219 194 204 197 205 206 200 212

Bot Long

Ra

0.91 1.38 1.17 1.01 1.00 1.02 1.10 1.00 1.00 1.09 1.04 1.20 1.54 1.17 0.97 1.17 1.16 1.20 1.05 1.19 1.13 1.07

S(o)

297 200 257 207 223 214 200 211 210 195 218 143 142 139 152 152 156 161 155 159 161 163

Bot Long

Ra 0.92 1.16 1.03 1.01 0.94 1.00 1.07 1.00 0.99 1.09 1.09 1.16 1.44 1.13 0.98 1.11 1.08 1.17 1.08 1.16 1.15 1.07

S(o)

360 279 321 255 237 247 241 237 238 227 227 177 159 173 174 166 176 173 170 168 169 179

N.B. Instrument used Surtronic 3P, 0.8mm cut off 25mm traverse length. Each Figure is an average of 9 results, i.e. 3 each at Edge, Centre, Edge.

18

Page 39: Skin Pass Mill and Tension Levelling -Asasas

TABLE 9

SURFACE TEXTURE CHARACTERISTICS OF TRIAL COILS 16528.16637 AND 17430

Sample Identity

16528 -1 16528 -2 16528 -3 16528 -4 16528 -5 16528 -6 16528 -7 16528 -8 16528 -9 16528-10 16528-11 16528-12 16528-13

16637 -1 16637 -2 16637 -3 16637 -4 16637 -5 16637 -6 16637 -7 16637 -8 16637 -9 16637-10 16637-11 16637-12 16637-13

17430 -1 17430 -2 17430 -3 17430 -4 17430 -5 17430 -6 17430 -7 17430 -8 17430 -9 17430-10 17430-11 17430-12 17430-13

Process Condition

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% SP 0.8% SP 0.8% SP 0.8% SP

0.8%SP+0.5%TL 0.8%SP+0.5%TL 0.4%SP + 0.3%TL 0.4%SP+0.3%TL 0.4%SP+0.5%TL 0.4%SP+0.5%TL

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% SP 0.8% SP 0.8% SP 0.8% SP

0.8%SP+0.5%TL 0.8%SP+0.5%TL 0.4%SP+0.3%TL 0.4%SP+0.3%TL 0.4%SP+0.5%TL 0.4%SP+0.5%TL

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% SP 0.8% SP 0.8% SP 0.8% SP

0.8%SP+0.5%TL 0.8%SP+0.5%TL 0.4%SP+0.3%TL 0.4%SP+0.3%TL 0.4%SP+0.5%TL 0.4%SP+0.5%TL

Top Long

Ra

1.37 1.66 1.25 0.89 1.02 0.94 0.88 0.93 0.85 0.93 0.94 1.05 0.93

1.24 1.23 1.25 0.96 0.88 0.88 0.96 0.92 0.86 0.92 0.87 0.86 0.93

0.72 1.06 0.91 0.86 0.79 0.86 0.96 0.81 0.84 0.79 0.77 0.70 0.77

S(o)

182 164 150 223 210 215 217 234 258 201 207 220 204

157 146 116 190 232 230 198 220 208 202 200 209 201

210 213 205 255 266 256 299 271 290 276 253 268 266

Top Transverse

Ra

1.11 1.25 1.07 0.91 0.94 0.96 0.91 0.93 0.84 0.97 0.93 0.98 0.95

1.22 1.17 0.97 0.90 0.84 0.86 0.92 0.91 0.91 0.89 0.86 0.92 0.85

0.75 0.95 0.87 0.82 0.79 0.80 0.91 0.82 0.86 0.78 0.77 0.70 0.78

S(o)

257 206 241 220 201 214 217 245 254 213 224 211 216

167 169 147 208 230 219 236 218 206 229 203 217 214

306 326 320 274 271 283 317 293 273 301 290 283 277

Bottom Long

Ra

1.29 1.41 1.15 1.49 1.57 1.59 1.49 1.65 1.38 1.19 1.39 1.38 1.29

1.26 1.25 1.19 1.48 1.47 1.41 1.40 1.50 1.43 1.28 1.23 1.29 1.24

0.77 0.95 1.02 1.31 1.48 1.50 1.45 1.47 1.56 1.39 1.28 1.12 1.28

S(o)

236 216 225 205 205 212 215 215 233 215 212 208 207

178 181 209 216 205 196 213 218 241 194 207 215 227

341 277 286 241 250 256 265 261 262 256 239 228 257

Bottom Transverse

Ra

1.14 1.29 1.06 1.32 1.51 1.54 1.48 1.55 1.35 1.26 1.35 1.32 1.25

1.13 1.16 1.06 1.35 1.36 1.35 1.32 1.41 1.38 1.29 1.16 1.27 1.21

0.72 0.88 1.05 1.28 1.52 1.43 1.37 1.46 1.52 1.18 1.16 1.09 1.19

S(o)

239 239 242 220 207 218 222 230 232 226 222 228 236

223 247 273 233 228 214 220 230 240 231 221 227 217

400 366 345 278 239 264 275 270 265 296 288 285 266

Rolling Order

3 ~) 1 r2

j ") >3

\ i

5

1 I r 4

J 1 r5 I J

7 ) ( 7 6 (

J 1 i 7 ( J

19

Page 40: Skin Pass Mill and Tension Levelling -Asasas

TABLE 10

MECHANICAL PROPERTIES-TENSILE TEST RESULTS FOR COIL82076

O

Sample Idi-mity

82076-1

82076-2

82076-3

82076-4

82076-5

82076-6

82076-7

82076-8

82076-9

82076-10

82076-11

Position in Sheet

i Width O/P Side Centre Centre

J Wi.lth Drive/Sidi

i Width O/P Side Centre Centre

1 Width Drive/Sidi

i Width O/P Side Centre Centre

} Width Drive/Si.],

i Width O/P Side Centre Centre

J Width Drive/Sidi

i Width O/P Side Centre Centre

| Width Drive/Sid<

i Width O/P Side Centre Centre

i Width Drive/Sidt

i Width O/P Side Centre Centre

1 Width Drive/Sidi

1 Width O/P Side Centro Centre

) Width Drive/Sidi

i Width O/P Side Centre Centre

i Width Drivu/Siil.

| Width O/P Side Centro Centre

J Width Drive/Sidi

i Width O/P Side Centre Centre

i Width Drive/Sidi

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. 0.4% S.P. 0.4% S.P.

0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

0.4% S.P. + 0.5% T.L. 0.4% S . P . + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0 . 3 % T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8%S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

Gauge mm

1.178 1.186 1.185 1.190

1.190 1.191 1.184 1.189

1.209 1.210 1.209 1.203

1.179 1.179 1.170 1.176

1.174 1.174 1.179 1.176

1.193 1.197 1.194 1.194

1.176 1.182 1.179 1.175

1.183 1.186 1.190 1.182

1.187 1.190 1.182 1.181

1.165 1.166 1.169 1.171

1.200 1.198 1.187 1.191

ReL N/mm2

180 182 194 184

180 184 198 181

176 177 192 178

Rp<>2 N/min'^

148 153 155 161

155 155 160 155

162 153 167 153

160 152 160 153

161 152 155 151

148 150 154 148

149 147 148 145

146 146 148 143

Rm N/mni-

294 295 296 295

297 298 298 298

300 300 299 300

300 302 301 301

304 304 303 303

305 305 302 304

304 305 303 305

302 305 302 304

302 303 301 302

299 301 300 297

302 303 301 301

A. % 2.4 3.0 3.8 2.8

2.4 2.4 3.6 2.8

2.0 2.2 3.8 2.2

Ag %

26.7 25.4 25.1 26.7

25.4 24.8 25.0 26.4

24.7 25.7 23.2 24.4

26.4 23.8 22.3 24.6

25.2 23.2 22.4 24.7

23.4 24.3 22.3 23.0

21.9 22.9 21.5 24.1

23.8 22.2 21.8 23.8

23.2 22.6 23.1 24.9

23.6 23.1 22.8 22.5

22.9 24.0 22.4 24.7

ABO

% 49.2 46.1 47.0 44.7

47.5 45.2 43.8 45.5

45.1 47.0 45.7 46.9

46.7 46.0 44.6 45.4

45.3 43.6 46.0 45.0

42.9 46.3 44.5 46.4

46.8 45.5 42.7 45.5

47.0 44.2 45.6 46.3

45.4 44.5 43.7 45.8

46.2 45.8 46.9 45.2

46.7 47.5 40.6 43.2

ni 5-10%

0.287 0.286 0.304 0.289

0.294 0.289 0.301 0.294

0.292 0.289 0.286 0.290

0.266 0.267 0.260 0.271

0.258 0.259 0.263 0.261

0.258 0.256 0.267 0.254

0.260 0.263 0.265 0.265

0.254 0.260 0.261 0.260

0.254 0.254 0.252 0.254

0.251 0.254 0.263 0.254

0.258 0.264 0.262 0.265

n 2

10-15%

0.255 0.255 0.251 0.254

0.257 0.254 0.256 0.258

0.256 0.252 0.246 0.254

0.239 0.240 0.231 0.244

0.233 0.236 0.232 0.235

0.231 0.232 0.231 0.230

0.233 0.235 0.234 0.236

0.230 0.232 0.233 0.234

0.230 0.229 0.227 0.231

0.229 0.232 0.232 0.233

0.231 0.237 0.233 0.238

na 15-20%

0.241 0.241 0.239 0.239

0.241 0.240 0.236 0.242

0.239 0.238 0.232 0.239

0.230 0.230 0.227 0.230

0.230 0.228 0.219 0.228

0.225 0.221 0.219 0.222

0.227 0.223 0.220 0.223

0.222 0.223 0.220 0.224

0.224 0.221 0.217 0.224

0.244 0.223 0.222 0.226

0 .225 0.227 0.219 0.226

ri 5%

1.50 1.45 2.88 1.71

1.42 1.55 2.73 1.55

1.61 1.53 1.90 1.53

1.83 1.98 1.97 1.90

1.97 1.87 2.03 1.97

1.97 1.91 2.24 2.04

1.92 2.06 1.90 1.88

1.97 1.92 2.05 2.03

1.87 1.96 1.92 1.85

1.95 1.79 1.97 1.92

1.94 1.92 1.86 1.96

r-i 10%

1.60 1.62 2.35 1.81

1.61 1.65 2.28 1.73

1.75 1.71 1.93 1.72

1.86 1.87 1.92 1.90

1.95 1.88 1.95 1.94

1.92 1.85 2.03 1.89

1.91 1.91 1.88 1.84

1.90 1.93 1.95 1.90

1.76 1.83 1.84 1.84

1.87 1.83 1.86 1.88

1.85 1.87 1.85 1.89

ra 15%

1.65 1.66 2.21 1.80

1.61 1.66 2.14 1.75

1.75 1.71 1.94 1.79

1.83 1.80 1.88 1.87

1.89 1.87 1.93 1.89

1.88 1.81 1.96 1.86

1.86 1.89 1.89 1.81

1.83 1.86 1.90 1.88

1.84 1.85 1.87 1.83

1.82 1.79 1.79 1.83

1.84 1.85 1.81 1.84

r* 20%

1.68 1 7 1 2.11 1.81

1.67 1.69 2.05 1.75

1.75 1.75 1.95 1.79

1.81 1.80 1.85 1.83

1.84 1.85 1.90 1.87

1.86 1.77 1.94 1.78

1.83 1.87 1.84 1.81

1.83 1.82 1.88 1.81

1.83 1.80 1.83 1.81

1.79 1.78 1.78 1.81

1.79 1.83 1.77 1.82

Page 41: Skin Pass Mill and Tension Levelling -Asasas

TABLE 11

MECHANICAL PROPERTIES -TENSILE TEST RESULTS POK COIL82078

M

Sample Identity

82078-1

82078-2

82078-3

82078-4

82078-5

82078-6

82078-7

820788

82078-9

82076 10

82078-11

i Width O/P Side Centre Centre

i Width Drive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sidt i Width O/P Side

Centre Centre

J Width Drive/Sidt i Width O/P Side

Centre Centre

i Width Orive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sidt i Width O/P Side

Centre Centre

i Width Drive/Sidt

i Width O/P Side Centre Centre

i Width Drive/Sidt J Width O/P Side

Centre Centre

\ Width Drive/Sidt

i Width O/P Side Centre Centre

J Width Drive/Sidt

i Width O/P Side Centre Centre

\ Width Drive/Sidt

i Width O/P Side Centre Centre

4 Width Drive/Sidt

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. 0.4% S.P. 0.4% S.P.

0.4% S.P. + 0.5%T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5%T.L.

0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0 8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

L L T L

L L T L L L T L

L L T L

L L T L L L T L

L L T L

L L T L

L L T L

L I. T L

L L T L

Gauge mm

1.211 1.209 1.200 1.211

1.210 1.205 1.194 1.195

1.236 1.227 1.239 1.231

1.185 1.187 1.185 1.190

1.186 1.195 1.190 1.183

1.182 1.185 1.184 1.182

1.195 1.190 1.191 1.190

1.177 1.193 1.195 1.174

1.166 1.172 1.180 1.175

1.197 1.194 1.202 1.201

1.173 1.177 1.178 1.169

ReL N/mm2

183 192 204 189

179 180 196 184

181 183 196 181

RP0.2 N/mm^

165 157 161 152

156 157 161 157

157 168 161 159

151 154 160 154

152 152 169 156

155 149 158 157

165 151 157 169

156 152 158 159

Rm N/nim*

293 295 295 293

295 297 297 295

299 302 299 299

298 300 298 296

299 300 298 300

300 301 298 299

297 300 298 298 298 298 297 300

300 297 297 300

300 299 297 300

299 299 298 301

A„ % 3.0 3.2 4.3 3.0

2.2 2.6 4.4 2.8

2.2 2.2 3.4 2.0

Ag %

25.8 25.4 24.8 24.7

24.4 25.3 24.6 23.8

26.1 24.6 23.0 24.2

23.0 25.6 22.9 23.8

23.9 22.7 21.7 23.2

24.6 22.5 22.3 22.5

24.4 25.0 23.1 22.7

23.9 24.2 21.8 23.2

23.8 23.9 22.1 22.3 23.8 22.5 23.8 23.3

22.7 24.1 22.7 21.9

Aao %

44.5 44.5 43.8 45.7

45.4 46.6 43.5 44.9

46.6 45.7 44.9 46.4

43.8 46.2 43.3 46.0

46.3 43.3 41.6 43.3

45.8 43.9 45.0 44.0

47.6 44.1 41.6 43.8 44.8 45.9 44.0 43.7

42.6 44.1 42.6 43.3 44.9 44.6 45.0 42.4

45.3 43.6 41.1 42.7

ni 5-10%

0.281 0.277 0.282 0.284

0.284 0.286 0.285 0.287

0.285 0.279 0.269 0.283

0.253 0.249 0.254 0.258

0.252 0.251 0.253 0.250

0.246 0.247 0.252 0.244

0.264 0.257 0.256 0.257

0.255 0.255 0.249 0.248 0.248 0.254 0.245 0.243 0.247 0.253 0.249 0.239 0.242 0.252 0.247 0.241

n2 10-15%

0.246 0.245 0.234 0.250

0.250 0.254 0.243 0.255

0.254 0.244 0.237 0.250

0.232 0.230 0.230 0.235

0.231 0.232 0.228 0.231

0.228 0.227 0.226 0.226

0.236 0.234 0.229 0.232 0.232 0.232 0.226 0.227

0.226 0.232 0.223 0.224 0.227 0.231 0.227 0.221

0.222 0.231 0.226 0.224

na 15-20%

0.236 0.238 0.234 0.239

0.238 0.236 0.233 0.236

0.238 0.236 0.227 0.236

0.226 0.226 0.220 0.229

0.224 0.222 0.220 0.221

0.223 0.226 0.220 0.222

0.231 0.226 0.219 0.225

0.227 0.229 0.218 0.224 0.222 0.227 0.219 0.221 0.220 0.225 0.216 0.221

0.222 0.223 0.213 0.221

ri 5%

1.39 1.42 2.27 1.25

1.45 1.55 2.01 1.51 1.64 1.71 1.69 1.75

1.85 1.75 2.04 1.83

1.87 1.86 1.91 1.82

1.86 1.86 1.86 1.81

1.69 1.72 1.86 1.70 1.84 1.85 1.96 1.86

1.85 1.87 1.86 1.84 1.83 1.86 1.96 1.80

1.96 1.85 1.79 1.84

T2 10%

1.56 1.60 2.15 1.66

1.58 1.65 1.92 1.67

1.76 1.87 1.78 1.89

1.87 1.83 1.81 1.78

1.83 1.83 1.81 1.78

1.81 1.85 1.88 1.80

1.73 1.81 1.89 1.77

1.83 1.83 1.84 1.83 1.81 1.83 1.80 1.81 1.84 1.82 1.87 1.82

1.88 1.85 1.86 1.83

r3 15%

1.62 1.66 2.08 1.63

1.64 1.67 1.91 1.69

1.81 1.91 1.82 1.89

1.87 1.84 2.01 1.88

1.79 1.78 1.82 1.79

1.79 1.78 1.86 1.77

1.76 1.79 1.88 1.78 1.81 1.80 1.85 1.84 1.81 1.83 1.81 1.84 1.81 1.83 1.84 1.79

1.86 1.80 1.79 1.83

r4 20%

1.64 1.71 2.07 1.67

1.67 1.67 1.88 1.70

1.81 1.91 1.83 1.90

1.87 1.84 1.97 1.87

1.77 1.79 1.83 1.77

1.78 1.77 1.82 1.77

1.74 1.80 1.88 1.76 1.77 1.77 1.81 1.81 1.79 1 81 1.77 1.85 1.78 1.80 1.82 1.78

1.83 1.79 1.84 1.84

Page 42: Skin Pass Mill and Tension Levelling -Asasas

TABLE 12

Sample Idt-ntily

16528-1

165282

16528-3

16528 4

16528-5

16528-6

16528-7

16528-8

16528-9

16528 10

16528-11

16528-12

16528 13

Position in Sheet

i Width O/P Side Centre Centre

i Width Drivu/Sidi J Width O/P Side

Centre Centre

i Width Drive/Sidt i Width O/P Side

Centre Centre

i Width Drive/Sidi i Width O/P Side

Centre Centre

1 Width Orive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sid. i Width O/P Side

Centre Centre

J Width Drive/Sul. i Width O/P Side

Centre Centre

J Width Drive/Sidi i Width O/P Side

Centre Centre

1 Width Drivc/Sidi i Width O/P Side

Centre Centre

i Width Drive/Sidt

i Width O/P Side Centre Centre

i Width Drive/Sidt

i Width O/P Side Centre Centre

4 Width Drive/Sidi

C.R. Anneal C.R. Anneal C.K. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. 0.4% S.P. 0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S. P. 0.8% S.P. 0.8%S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5%T.L. 0.8% S.P. + 0.5%T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

0.4%S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

MECHANICAL PROPERTIES -TENSILE TEST RESULTS FOR COIL 16528

L L T L L L T L L L T L L L T L L 1. T L L L T L L L T L L L T L L L T L L L T L

L L T L

L L T L

L L T L

Gauge mm

1.000 1.002 1.000 0.999 0.992 1.005 0.997 1.004 1.006 1.028 1.015 1.022 1.002 1.001 0.998 0.993 0.985 0.996 0.990 0.987 0.991 0.993 0.991 0.996

0.989 0.991 0.984 0.990 0.992 0.987 0.988 0.994

0.983 0.990 0.993 0.991 0.981 0.993 0.988 0.987

0.989 0.995 0.996 0.988

0.987 0.984 0.985 0.990

0.982 0.995 0.992 0.986

ReL N/mm-

173 178 189 180 180 175 193 179 171 168 181 171

Rp»2 N/nim*

149 149 150 149 153 155 165 153 155 155 157 163

162 169 156 159

167 173 163 167

165 172 164 163

155 157 158 155

156 158 158 156

166 161 159 155

161 155 160 160

Rm N/mm-

291 293 294 293

298 296 296 296

298 297 297 297 301 301 300 301

297 298 298 296

302 302 300 303

299 300 298 301

297 301 296 301

298 300 297 299

303 302 301 303

304 304 301 306

305 303 301 303

304 302 300 303

A. % 2.8 3.0 3.2 3.2

2.6 2.6 3.5 2.8

2.0 2.0 3.0 2.0

Ag %

24.6 26.0 24.3 24.4

24.2 25.1 24.9 25.4

23.9 23.9 23.7 24.9 24.1 23.3 23.1 23.0

24.5 23.5 22.1 24.2

23.9 24.5 23.2 23.7

23.6 22.8 22.5 22.5

22.6 24.4 22.6 22.8

23.3 22.6 22.7 24.3

25.2 23.5 23.8 23.8

22.5 22.6 22.2 23.0

22.8 22.8 22.8 22.9

22.7 24.0 22.2 22.8

A8o %

47.4 45.6 45.4 44.9

45.0 47.0 45.0 44.2

46.4 45.7 45.9 46.1

43.2 43.7 43.4 44.3

44.6 44.4 43.5 44.3 44.5 43.7 42.5 42.7

43.9 44.4 43.9 43.5 43.2 44.2 43.9 43.9

43.3 42.8 43.1 43.7

43.7 42.0 44.0 43.4

43.6 43.6 42.9 42.6

44.0 42.6 44.1 45.9

44.2 43.9 43.2 44.5

ni 5-10%

0.291 0.294 0.292 0.295

0.284 0.290 0.281 0.290

0.286 0.290 0.281 0.292

0.259 0.262 0.262 0.262

0.245 0.242 0.248 0.243

0.250 0.249 0.250 0.239

0.249 0.243 0.251 0.241

0.241 0.224 0.243 0.230

0.234 0.225 0.242 0.235

0.255 0.253 0.259 0.253

0.252 0.248 0.252 0.253

0.252 0.241 0.251 0.250

0.243 0.253 0.252 0.244

n2 10-15%

0.255 0.256 0.246 0.261

0.252 0.254 0.245 0.256

0.249 0.250 0.246 0.255 0.232 0.233 0.231 0.234 0.225 0.225 0.223 0.223

0.227 0.228 0.225 0.219

0.228 0.223 0.225 0.223

0.223 0.213 0.224 0.218

0.220 0.214 0.223 0.219

0.230 0.230 0.230 0.231

0.228 0.227 0.227 0.229

0.228 0.224 0.226 0.229

0.223 0.229 0.227 0.226

» 3 15 20%

0.237 0.240 0.233 0.240

0.235 0.237 0.230 0.241

0.235 0.237 0.231 0.238

0.223 0.224 0.218 0.225 0.220 0.219 0.218 0.221

0.221 0.220 0.217 0.217

0.224 0.218 0.218 0.220 0.221 0.213 0.216 0.215

0.218 0.214 0.218 0.218

0.225 0.223 0.219 0.225

0.223 0.222 0.219 0.226

0.222 0.220 0.218 0.223

0.222 0.226 0.221 0.222

ri 5%

1.50 1.64 2.00 1.59

1.69 1.78 1.41 1.72

1.78 1.83 1.74 1.81 2.03 1.92 1.99 2.06 2.01 1.95 2.15 2.20

1.97 2.05 2.07 2.13

2.00 1.98 2.25 1.99 2.02 1.93 2.19 1.98

1.92 1.81 2.10 1.99

2.00 1.94 2.20 2.03

2.40 2.15 2.14 1.99

2.08 1.98 2.02 1.97

1.96 2.01 2.20 2.01

r-i 10%

1.69 1.80 2.02 1.80

1.85 1.87 1.96 1.87

1.97 1.94 1.92 1.95

2.01 1.98 2.01 2.06 2.02 1.97 2.16 2.14

2.00 2.06 2.05 2.09

2.07 1.99 2.12 1.97 2.10 1.91 2.11 1.97

2.00 2.09 2.12 1.94

2.00 2.01 2.08 1.99

2.20 2.13 2.08 2.10

2.03 1.98 2.03 1.99

2.02 2.01 2.16 1.98

r3 15%

1.78 1.86 2.05 1.86

1.85 1.89 1.98 1.93

1.98 1.96 1.97 1.98 2.03 2.00 2.06 2.04

1.98 1.98 2.11 2.08

1.98 2.02 2.07 2.00

2.05 1.97 2.11 1.92

2.03 1.88 2.07 1.97

2.00 1.98 2.04 1.97 2.00 1.95 2.04 1.97

2.13 2.09 2.05 2.04

2.04 1.99 2.05 1.92

1.99 1.98 2.11 1.97

r< 20%

1.83 1.87 2.05 1.87

1.87 1.89 1.99 1.93

1.98 1.98 1.99 1.95 2.00 1.98 2.08 2.00 1.96 1.95 2.10 2.05

1.99 2.00 2.05 2.03

2.03 1.93 2.10 1.97 1.99 1.96 2.04 1.94

1.98 1.93 2.04 1.95

1.98 1.94 2.06 1.95

2.11 2.02 2.07 2.03

2.02 1.96 2.02 1.93

1.99 1.97 2.10 1.97

Page 43: Skin Pass Mill and Tension Levelling -Asasas

TABLE 13

Sample Identity

166371

16637-2

16637-3

16637-4

16637-5

16637-6

16637-7

16637-H

16637-9

16637-K

16637-11

16637 -1!

16637-K

Position in Sheet

i Width O/P Side Centre Centre

J Width Drive/Siil i Width O/P Side

Centre Centre

I Width Drive/Sid

i Width O/P Side Centre Centre

J Width Drive/Sill

i Width O/P Side Centre Centre

] Width Drive/Sid

i Width O/P Side Centre Centre

J Width Drive/Sid

i Width O/P Side Centre Centre

J Width Drive/Sid

t Width O/P Side Centre Centre

J Width Drive/Sid

i Width O/P Side Centre Centre

1 Width Drive/Sid

J Width O/P Side Centre Centre

1 Width I)ri\ e/Sul

i Width O/P Side Centre Centre

1 Width Drive/Ski

i Width O/P Side Cuntre Centre

J Width Drive/Sid

i Width O/P Side Centre Centre

J Width Drive/Sid

i Width O/P Side Centre Centre

1 Width Drive/Sid

Process

C.R. Anneal C.R. Anneal C.H. Anneal CM. Anneal

C.R. Anneal C.R. Anneal C.R. Anneul

: C.R. Anneul

C.R. Anneul C.R. Anneul C.R. Anneal

! O.K. Anneal 0.4% S.P. 0.4% S.P. 0.4% S.P. 0.4% S.P.

0.8% S.P. 0.8% S.P. 0 8% S.P.

s 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P.

s 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5% T.l. 0.8% S.P. + 0.5% T.l. 0.8% S.P. + 0.5% T.l.

J 0.8% S.P. + 0.5% T.I. 0.8% S.P. + 0.5% T.l. 0.8% S.P. + 0.5% T.l. 0.8% S P. + 0.5%T.l.

• 0.8% S.P. + 0.5% T.l.

0.4%S.P. + 0.3% T.l. 0.4% S.P. + 0.3% T.l. 0.4% S.P. + 0.3% T.l.

s 0.4% S.P. + 0.3% T.l.

0.4% S.P. + 0.3% T.l. 0.4% S.P. + 0.3% T.l. 0.4% S.P. + 0.3% T.l.

s 0.4%S.P. + 0.3%T.I.

0.4% S.P. + 0.5% T.L 0.4% S.P. + 0.5% T.I. 0.4% S.P. + 0.5% T.I.

s 0.4% S.P. + 0.5% T.L

0.4% S.P. + 0.5% T.L 0.4% S.P. + 0.5% T.L 0.4% S.P. + 0.5% T.L

: 0.4% S.P. + 0.5% T.l.

Direction

L L T L

L L T L

L 1. T 1. L L T L

L L T L

L L T L

L L T L

L L T L L L T

L 1, T L

L L T L

L L T L

L L T L

MECHANICAL PROPERTIES

Gauge mm

0.844 0.849 0.851 0.843

0.839 0.848 0.841 0.841

0.873 0.872 0.870 0.872

0.860 0.859 0.861 0.859

0.844 0.858 0.843 0.847

0.831 0.826 0.829 0.828

0.844 0.849 0.841 0.839

0.833 0.842 0.846 0.835

0.839 0.848 0.847 0.841

0.835 0.847 0.839 0.831

0.847 0.842 0.843 0.845

0.842 0.849 0.846 0.842

0.848 0.846 0.834 0.848

ReL N/mni-

168 168 177

170 169 178 167

157 157 163 158

N/inm-

141 140 144 137

149 149 154 149

144 144 148 142

142 140 147 140

155 155 160 155

158 155 161 157

143 144 149 145

142 145 150 146

146 148 154 149

148 149 154 148

Rm N/rnni2

274 276 273

278 277 276 276

279 277 275 277

282 279 279 280

282 277 279 279

285 283 280 281

284 282 279 282

284 283 280 284

286 284 282 285

283 285 282 285

285 286 284 288

285 286 283 287

286 287 283 286

-TENSILE TEST RESULTS FOR COIL

A„ %

3.2 4.0 4.4

3.6 3.0 4.4 3.4

2.0 1.8 3.2 2.4

Ats %

25.0 24.8 24.5

26.2 26.8 24.6 26.5

26.1 25.2 24.4 26.2

25.6 25.1 24.2 25.4

23.B 24.3 24.0 25.0

26.0 23.4 22.2 25.2

24.8 26.0 22.6 25.5

24.6 24.8 24.6 24.4

24.6 23.4 22.6 25.3

26.1 25.0 24.8 24.1

24.5 25.4 23.5 24.4

24.3 24 1 23.4 23.2

23.4 24.1 23.0 24.2

ABO %

47.8 45.2 43.9

48.2 47.7 45.5 46.9

50.9 46.9 47.1 45.6

47.2 47.3 41.5 47.9

46.1 46.1 45.2 45.8

45.1 46.3 43.0 44.0

46.5 48.8 43.6 45.0

45.2 45.7 44.1 47.0

45.7 45.9 44.6 45.3

47.3 47.1 48.7 44.7

44.6 45.7 42.9 45.7

46.7 45.4 42.9 45.7

43.7 43.5 43.9 43.5

5-10%

0.299 0.290 0.291 Test

0.295 0.289 0.287 0.297

0.298 0.291 0.282 0.300

0.267 0.265 0.259 0.268

0.241 0.236 0.239 0.238

0.256 0.252 0.249 0.254

0.255 0.256 0.248 0.257

0.236 0.235 0.234 0.235

0.234 0.238 0.236 0.234

0.261 0.258 0.253 0.257

0.261 0.256 0.254 0.258

0.254 0.252 0.247 0.250

0.251 0.249 0.249 0.251

.16637

n-> 10-15%

0.261 0.247 0.248

not

0.263 0.265 0.247 0.270

0.261 0.257 0.253 0.261

0.242 0.238 0.232 0.244

0.224 0.223 0.222 0.223

0.235 0.234 0.228 0.236

0.235 0.236 0.225 0.235

0.225 0.222 0.220 0.223 0.221 0.223 0.222 0.225

0.240 0.238 0.231 0.235

0.238 0.236 0.230 0.236

0.236 0.233 0.226 0.232

0.233 0.232 0.226 0.229

"3 15-20%

0.245 0.246 0.234

complete!

0.247 0.248 0.237 0.248

0.243 0.243 0.234 0.247

0.234 0.233 0.223 0.234

0.219 0.220 0.215 0.223

0.229 0.228 0.223 0.232

0.229 0.232 0.218 0.228

0.220 0.221 0.217 0.223

0.216 0.221 0.217 0.220

0.233 0.231 0.222 0.230

0.231 0.226 0.222 0.229

0.232 0.224 0.218 0.225

0.225 0.232 0.221 0.225

5%

1.90 1.68 1.77

1.73 1.64 1.73 1.68

1.87 1.75 1.70 1.99

1.94 1.90 1.90 1.86

2.07 2.10 2.24 2.08

2.09 2.18 2.24 2.09

2.01 2.09 2.23 2.31

2.04 1.91 2.11 2.00

1.89 1.92 2.21 1.94

1.98 1.95 2.27 2.15 2.01 2.01 2.17 2.18

1.97 2.07 2.24 2.13

2.07 2.14 2.19 2.14

T2 10%

1.96 1.88 2.06

1.89 1.79 1.93 1.84

1.91 1.93 1.97 2.02

1.93 2.02 1.98 1.93

2.04 2.09 2.25 2.08

2.15 2.18 2.24 2.11

2.09 2.09 2.28 2.22

2.09 1.95 2.13 1.94 1.94 1.95 2.15 1.95

2.01 2.02 2.31 2.19

2.01 2.06 2.21 2.07

2.01 2.08 2.24 2.12

2.03 2.15 2.22 2.07

f3 15%

2.01 1.93 2.14

1.89 1.84 1.98 1.87

1.96 2.00 2.02 2.06

1.98 1.98 2.07 1.90

2.00 2.06 2.27 2.02

2.12 2.15 2.25 2.12

2.05 2.05 2.35 2.16

2 08 1.98 2.14 1.94

1.99 1.92 2.15 1.94

2.01 2.06 2.29 2.17

1.97 1.98 2.21 2.08

1.98 2.08 2.22 2.13

1.97 2.09 2.20 2.06

f4 20%

2.04 1.94 2.15

1.89 1.85 2.03 1.87

1.97 1.98 2.02 2.02

1.93 1.95 2.04 1.89

2.00 1.99 2.27 2.00

2.09 2.18 2.25 2.07

2.00 2.03 2.33 2.13

2.04 1.94 2.15 1.91

1.95 1.88 2.15 1.92

1.98 2.03 2.26 2.14

1.96 2.00 2.21 2.04

1.95 2.05 2.21 2.07

1.96 2.06 2.20 2.04

Page 44: Skin Pass Mill and Tension Levelling -Asasas

TABLE 14

MECHANICAL PROPERTIES -TENSILE TEST RESULTS FPU CPU. 17430 Sample Identity

17430-1

1 7 4 3 0 2

17430-3

1 7 4 3 0 4

17430-5

17430-6

17430-7

17430-8

17430-9

17430-10

17430-11

17430-12

17430-13

i Width O/P Side Centre Centre

1 Width Drive/Sidt

i Width O/P Side Centre Centre

i Width Drive/Sid.

i Width O/P Side Centre Centre

i Width Drive/Sidij

i Width O/P Side Centre Centre

J Width Drive/Suit

i Width O/P Side Centre Centre

J Width Drive/Sidi

i Width O/P Side Centre Centre

i Width Drive/Suit

i Width O/P Side Centre Centre

i Width Drive/Sidi

i Width O/P Side Centre Centre

1 Width Drive/Sidi

i Width O/P Side Centre Centre

J Width Drive/Sidi

i Width O/P Side Centre Centre

i Width Drive/Sidi

i Width O/P Side Centre Centre

J Width Drive/Sidi

i Width O/P Side Centre Centre

J Width Drive/Sid.

i Width O/P Side Centre Centre

J Width Drive/Siik

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

C.R. Anneal C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. 0.4% S.P. 0.4% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5%T.L. 0.8% S.P. + 0.5%T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L.

0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0 . 5 % T.L. 0.8% S.P. + 0.5% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.4% S.P. + 0.5% T.L. 0.4% S . P . + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

L L T L

I. I, T L

L L T L

L L T L

Gauge mm

0.695 0.699 0.694 0.689

0.690 0.692 0.691 0.689

0.685 0.685 0.688 0.689

0.692 0.693 0.698 0.692

0.691 0.697 0.683 0.694

0.694 0.688 0.686 0.695

0.682 0.690 0.692 0.682

0.705 0.703 0.712 0.708

0.696 0.702 0.688 0.692

0.691 0.699 0.697 0.691

0.696 0.698 0.692 0.692

0.698 0 .700 0.701 0.699

0.691 0.693 0.701 0.691

ReL N/min '

166 153 170 163

162 164 170 178

154 139 137 139

RPo.2 N/mm*

145 141 143 135

153 163 151 149

150 147 152 143

148 147 149 143

166 157 161 157

160 158 157 155

144 143 145 143

150 147 148 147

151 152 151 150

151 154 150 151

Rm N/mm-

279 278 281 280

281 282 279 282

278 278 278 273

288 285 279 284

283 284 277 283

285 285 279 282

285 284 278 281

284 283 276 279

282 281 273 280

280 281 274 281

285 284 278 287

285 285 279 288

284 285 279 286

A„

% 2.8 2.6 3.4 3.0

3.0 2.2 3.6 3.6

1.4 1.2 1.4 1.6

Ag %

24.6 23.6 23.8 24.8

25.0 24.3 23.0 24.7

24.7 24.2 23.6 26.0

25.2 25.1 21.4 26.8

23.5 23.1 22.5 24.6

24.3 25.5 22.6 24.5

25.2 24.7 23.0 24.1

22.2 23.6 21.2 23.0

23.0 22.4 21.5 23.7

24.8 23.5 22.6 24.1

23.2 22.7 22.0 23.3

23.6 22.0 23.0 23.2

24.7 23.2 22.6 23.0

Ago %

45.5 43.9 42.0 42.4

45.7 46.1 45.9 46.8

44.4 46.1 46.2 46.2

44.6 44.2 43.3 45.8

45.8 43.9 42.7 46.6

45.2 44.5 43.8 45.4

44.7 45.8 49.5 45.1

41.7 45.0 42.4 44.5

44.8 42.4 43.1 43.1

45.7 44.7 44.7 46.0

46 .5 42.7 42.8 45.1

45.6 44.0 42.7 46.2

43.9 43.2 43.0 43.5

" l 5 10%

0.283 0.289 0.276 0.297

0.289 0.287 0.288 0.295

0.291 0.297 0.301 0.307

0.248 0.255 0.248 0.264

0.229 0.232 0.234 0.238

0.239 0.245 0.239 0.251

0.241 0.246 0.241 0.247

0.217 0.233 0.229 0.229

0.226 0.231 0.233 0.234

0.250 0.252 0.251 0.265

0.244 0.246 0.248 0.250

0.242 0.239 0.245 0.247

0.242 0.238 0.246 0.245

n 2

10-15%

0.256 0.257 0.240 0.259

0.264 0.259 0.248 0.262

0.262 0.262 0.258 0.271

0.232 0.236 0.229 0.242

0.225 0.222 0.217 0.226

0.225 0.232 0.223 0.235

0.227 0.230 0.223 0.236

0.212 0.222 0.214 0.221

0.217 0.218 0.217 0.225

0.235 0.235 0.226 0.233

0.229 0.230 0.223 0.230

0.226 0.228 0.224 0.230

0.228 0.227 0.224 0.232

t>3 15-20%

0.240 0.234 0.221 0.238

0.245 0.242 0.237 0.246

0.245 0.242 0.234 0.250

0.224 0.230 0.219 0.234

0.218 0.220 0.209 0.221

0.225 0.227 0.216 0.229

0.224 0.226 0.218 0.226

0.216 0.224 0.212 0.221

0.217 0.221 0.211 0.221

0.227 0.227 0.220 0.231

0.223 0.223 0.216 0.227

0.223 0.223 0.212 0.223

0.224 0.220 0.218 0.223

n 5%

2.02 1.84 2.57 2.06

1.96 1.83 2.08 1.88

1.24 1.42 1.84 1.34

2.28 2.26 2.44 2.34

2.17 2.34 2.94 2.27

2.22 2.30 2.42 2.05

2.42 2.45 2.60 2.23

2.33 2.20 2.55 2.13

2.38 2.17 2.56 2.32

2.21 2.28 2.63 2.18

2.24 2.40 2.42 2.35

2.35 2.21 2.62 2.23

2.13 2.26 2.48 2.26

r-2 10%

2.03 1.94 2.64 2.11

2.08 1.99 2.27 2.06

1.32 1.44 1.84 1.38

2.28 2.18 2.49 2.26

2.16 2.28 2.85 2.30

2.26 2.30 2.49 2.14

2.39 2.39 2.55 2.23

2.21 2.21 2.56 2.14

2.40 2.19 2.62 2.22

2.16 2.19 2.53 2.17

2.20 2.37 2.53 2.36

2.24 2.27 2.57 2.23

2.09 2.23 2.50 2.22

T3 15%

2.07 1.95 2.71 2.12

2.01 1.99 2.34 2.11

1.34 1.41 1.85 1.38

2.28 2.16 2.48 2.20

2.12 2.22 2.79 2.27

2.26 2.22 2.41 2.14

2.37 2.34 2.56 2.18

2.25 2.18 2.56 2.08

2.31 2.13 2.55 2.19

2.07 2.15 2.48 2.12

2.20 2.30 2.47 2.32

2.21 2.22 2.54 2.22

2.06 2.22 2.52 2.21

"M 20%

2.00 1.95 2.74 2.12

1.99 1.96 2.35 2.11

1.32 1.38 1.83 1.35

2.21 2.10 2.49 2.12

2.09 2.18 2.72 2.22

2.21 2.19 2.42 2.08

2.30 2.27 2.49 2.14

2.24 2.14 2.53 2.06

2.29 2.09 2.54 2.13

2.06 2.09 2.45 2.10

2.14 2.23 2.48 2.29

2.16 2.19 2.48 2.18

2.03 2.19 2.49 2.17

Page 45: Skin Pass Mill and Tension Levelling -Asasas

TABLE 15

MODIFIED STRETCH DRAW RESULTS FOR COIL 82076 AND 82078; LUBRICATED CONDITION

Sample Identity

82076- 1 82076- 2 82076- 3 82076- 4 82076- 5 82076- 6 82076- 7 82076- 8 82076- 9 82076-10 82076-11

82078- 1 82078- 2 82078- 3 82078- 4 82078- 5 82078- 6 82078- 7 82078- 8 82078- 9 82078-10 82078-11

Process Condition

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

Fracture Height mm

OP

Drew 43.2 41.2 40.3 45.0 42.5 44.3 42.3 45.1 45.1 42.8

48.9 Drew 47.4 46.8 47.6 47.6 47.4 47.8 48.6 50.8

D

44.2 42.4 44.1 42.6 46.1 43.4 44.4 44.9 42.5 43.6 46.9

Sample Drew 50.8 48.0 46.4 48.3 48.8 48.8 48.2 48.6 50.9

C

Drew 47.3 56.8 38.8 46.7 43.8 45.7 46.3 43.5 41.2 53.8

too 54.3 47.9 47.6 47.9 48.6 48.1 48.4 47.8 49.5 50.4

Av.

44.2 44.3 47.4 40.6 45.9 43.2 44.8 44.5 43.7 45.5 47.8

rusty (51.6) (49.4) 47.7 47.0 48.2 48.2 48.2 47.9 48.9 50.7

]

OP

62.0 63.0 62.0 62.0 66.5 66.5 65.0 63.8 66.0 65.5 65.0

-58.5 64.0 57.7 58.5 59.0 60.0 60.0 60.4 62.0 62.6

5unch Load, k!N

D

62.0 62.5 65.0 65.0 66.0 68.0 65.5 65.0 65.5 65.4 67.3

-60.1 63.5 59.3 59.5 60.0 63.0 61.0 61.0 62.6 63.0

C

63.5 64.5 66.5 63.0 66.5 68.5 66.0 66.0 66.0 65.0 67.0

-59.5 61.5 59.4 59.4 60.0 60.5 60.5 61.1 62.7 62.2

[

Av.

62.5 63.3 64.5 63.3 66.3 67.7 65.5 64.9 65.8 65.3 66.4

-59.4 63.0 59.8 59.1 59.7 61.2 60.5 60.8 62.4 62.6

25

Page 46: Skin Pass Mill and Tension Levelling -Asasas

TABLE 16

MODIFIED STRETCH DRAW RESULTS FOR COIL 82076 AND 82078; DRY CONDITION

Sample Identity

82076- 1 82076- 2 82076- 3 82076- 4 82076- 5 82076- 6 82076- 7 82076- 8 82076- 9 82076-10 82076-11

82078- 1 82078- 2 82078- 3 82078- 4 82078- 5 82078- 6 82078- 7 82078- 8 82078- 9 82078-10 82078-11

Process Condition

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5%T.L. 0.4% S.P. + 0.3%T.L. 0.4% S.P. + 0.3%T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L.

0.8% S.P. 0.8% S.P. 0.8% S.P.

Fracture Height mm

OP

33.3 29.7

29.0 31.6 30.4 30.1 28.7 30.8 31.1 31.4

27.9 29.4 29.4 28.4 29.4 28.4 27.4 27.4 28.4 28.9

D

31.3 31.5

30.7 31.8 31.0 30.6 28.3 28.3 31.4 30.7

29.4 28.4 30.4 27.4 27.4 28.9 27.4 26.9 29.4 28.9

C

29.9 31.5

Sample 29.8 30.8 30.0 31.2 30.4 30.6 29.3 30.1

Sample 28.4 29.4 30.4 26.9 27.9 28.4 28.9 27.9 29.4 28.9

Av.

31.5 30.4 too

29.8 31.4 30.5 30.6 29.1 29.9 30.6 30.7

too 28.6 29.1 30.1 27.6 28.2 28.6 27.9 27.4 29.1 28.9

OP

67.0 64.0

rusty 62.0 67.5 66.5 64.5 60.0 64.5 64.5 65.6

rusty 64.0 69.5 67.5 62.5 60.5 59.5 59.5 61.5 63.5 65.0

Punch Load, kN

D

65.0 64.0

64.5 66.0 66.5 65.0 58.5 58.5 65.0 65.0

67.0 67.5 69.0 62.0 59.0 63.5 60.0 61.0 66.0 65.0

C

60.5 63.0

60.5 64.0 62.0 63.0 61.0 62.5 60.0 63.5

65.0 68.5 68.8 60.5 59.5 61.5 62.0 63.0 65.0 63.5

Av.

64.2 63.7

62.3 65.8 65.0 64.2 59.8 61.8 63.2 64.7

65.3 68.5 68.4 61.7 59.7 61.5 60.5 61.8 64.8 64.5

26

Page 47: Skin Pass Mill and Tension Levelling -Asasas

TABLE 17

MODIFIED STRETCH DRAW RESULTS FOR COILS 16528.16637 AND 17430: DRY CONDITION

Sample Identity

16528- 1 16528- 2 16528- 3 16528- 4 16528- 5 16528- 6 16528- 7 16528- 8 16528- 9 16528-10 16528-11 16528-12 16528-13

16637- 1 16637- 2 16637- 3 16637- 4 16637- 5 16637- 6 16637- 7 16637- 8 16637- 9 16637-10 16637-11 16637-12 16637-13

17430 -1 17430 -2 17430 -3 17430 -4 17430 -5 17430 -6 17430 -7 17430 -8 17430 -9 17430-10 17430-11 17430-12 17430-13

Process Condition

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5%T.L. 0.8% S.P. + 0.5%T.L. 0.4% S.P. + 0.3%T.L. 0.4% S.P. + 0.3%T.L. 0.4% S.P. + 0.5%T.L. 0.4% S.P. + 0.5%T.L.

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8%S.P.+ 0.5%T.L. 0.8%S.P.+ 0.5%T.L. 0.4%S.P.+ 0.3%T.L. 0.4% S.P. + 0.3%T.L. 0.4% S.P. + 0.5%T.L. 0.4%S.P. + 0.5%T.L.

C.R. Anneal C.R. Anneal C.R. Anneal

0.4% S.P. 0.8% S.P. 0.8% S.P. 0.8% S.P.

0.8% S.P. + 0.5% T.L. 0.8% S.P. + 0.5% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.3% T.L. 0.4% S.P. + 0.5% T.L. 0.4% S.P. + 0.5% T.L.

Fracture Height mm

OP

28.4 26.4 26.8 25.0 23.8 24.5 25.6 24.3 24.9 25.2 26.2 24.2 25.6

41.0 38.1 38.5 36.3 38.8 39.9 42.0 38.6 36.8 36.9 38.5 35.2 37.8

44.4 36.4 28.9 28.8 29.3 31.4 25.0 25.6 26.8 26.5 27.3 28.0 27.1

D

28.6 27.8 26.8 26.2 26.6 24.9 25.4 26.4 24.2 26.2 25.2 27.5 26.8

30.3 34.1 33.4 34.7 33.3 36.1 35.0 34.3 31.7 36.5 35.4 37.2 38.5

36.9 35.0 25.6 31.9 32.7 29.5 28.4 27.4 27.6 26.6 26.3 25.7 27.2

C

31.4 31.2 29.9 25.2 28.1 26

26.6 27.6 25.9 28.3 25.7 25.0 27.9

37.0 34.4 36.1 43.4 33.7 36.1 36.9 34.2 33.6 36.4 34.9 36.2 35.4

39.0 30.1 24.0 29.4 23.8 26.8 27.1 26.9 26.4 24.8 24.8 24.7 25.9

Av.

29.5 28.5 27.8 25.5 26.2 25.1 25.9 26.1 25.0 26.6 25.7 25.6 26.8

36.1 35.5 36.0 38.1 35.3 37.4 38.0 35.7 34.0 36.6 36.3 36.2 37.2

40.1 33.8 26.2 30.0 28.6 29.2 26.8 26.6 26.9 26.0 26.1 26.1 26.7

OP

48.5 47.5 50.0 44.0 43.5 44.0 46.0 43.0 44.0 46.0 47.0 43.0 46.0

50.5 49.5 51.5 49.0 49.0 49.0 52.0 49.5 48.0 48.5 49.0 47.5 49.5

43.0 42.0 31.0 35.0 37.0 38.0 30.0 31.0 33.5 33.5 34.5 35.0 33.5

Punch Load, kN

D

50.5 50.5 50.5 46.0 48.5 44.0 45.5 47.0 42.5 47.5 45.0 48.0 48.0

43.5 46.5 48.0 48.5 45.5 47.0 48.5 46.5 44.5 48.0 47.5 48.0 49.0

40.0 42.0 27.0 39.5 40.5 36.5 35.5 34.0 34.5 33.5 33.5 32.0 34.0

C

57.0 57.0 58.0 47.0 51.0 47.5 50.0 50.0 47.5 52.0 47.0 46.5 51.0

50.0 49.0 51.5 52.5 49.5 49.0 51.0 48.5 47.5 49.5 48.5 49.5 49.5

43.0 49.0 27.0 37.5 30.0 34.0 34.5 35.0 34.5 32.0 32.5 32.0 33.0

Av.

52.0 51.7 52.8 45.7 47.7 45.2 47.2 46.7 44.7 48.5 46.3 45.8 48.3

48.0 48.3 50.3 50.0 48.0 48.3 50.5 48.2 46.7 48.7 48.3 48.3 49.3

42.0 44.3 28.3 37.3 35.8 36.2 33.3 33.3 34.2 33.0 33.5 33.0 33.5

27

Page 48: Skin Pass Mill and Tension Levelling -Asasas

FLATNESS STRESS IhUEX

(N/rrf > ( I U n i t * >

40 » 20

20

, Sonplt 1 . H«od End.

0 0

20 10

40 20

60 [ 30 JO/Sld.

( l a )

O/S ld t

40 .

20 ,

0.

20

40

60

20 t

10

0

10

20

30

, S o n p l t 2 . Sonpl t 2a .

Hid C o l l .

( l b )

O / S l d .

40 .

20

0

20 ,

40

60

20 f

10

0

to

20

30

. Sonpl * 3.

. Sonpl t 3a. Toll End.

( l c )

O/Sldt

200 400 600 800 1000 1200 1400 1600

Location oP Measurements (.rm)

OFF-LINE SHAPE MEASUREMENTS ON THE COIL USED FOR THE FINAL ACCEPTANCE TRIAL OF THE TENSION LEVELLER

(SKIN PASS ONLY)

FIG.l

28

Page 49: Skin Pass Mill and Tension Levelling -Asasas

FLATNESS STRESS INDEX

CN/iv*' ) ( I U n l t i )

40 + 20 t

20. 10

20. 10

40 20

60 J. 30 iO/Sldt

0.57. T e n s i o n L e v e l l i n g . ( 2 a )

O/Sld.

20

0

20

40

60

10

0

10

20

3 0 . O/Sldt

1.07. ' 1 .07 T e n s i o n L e v e l l i n g . <2b>

O/Sld*

40 „ 20

20

40

10

0 0

20 10

?^X

20

60. 30 O/Sld.

1 .57 T e n s i o n L e v e l l i n g . <2c>

D/SId*

200 400 600 800 1000 1200 1400 1600

Locat ion oP Measurements (.r\r\">

OFF-LINE SHAPE MEASUREMENTS ON THE COIL USED FOR THE FINAL ACCEPTANCE TRIAL OF THE TENSION LEVELLER

(SKIN PASS -I- TENSION LEVELLING ONLY)

FIG.2

29

Page 50: Skin Pass Mill and Tension Levelling -Asasas

4 &

E i

0">

^ T

2

10..

4o T! ?o 35 4*o So §o ?o 3o §o i<5o F la tness I n d e » ( I U n i t s )

RELATIONSHIP BETWEEN FLATNESS INDEX AND TOTAL WAVE HEIGHT FIG.3 FOR A 2m SAMPLE

42

- -40

3S.

35

34

32

30

Before Tendon l e v e l l i n g . RFter Tension L e v e l l i n g .

""" • - .6—-" ' * 1.5V. E longot ion '.

O/Slde

ROCKWELL B HARDNESS VALUES ACROSS THE WIDTH OF THE TENSION LEVELLER FINAL ACCEPTANCE TRIAL COIL SAMPLES

FIG.4

30

Page 51: Skin Pass Mill and Tension Levelling -Asasas

TRANSVERSE GAUGE PROFILES OF THE TENSION LEVELLER FINAL ACCEPTANCE TRIAL COIL SAMPLES

FIG.5

31

Page 52: Skin Pass Mill and Tension Levelling -Asasas

Head End

After C.R.ond Anneoling

Processing Directmn Toil End

x !

Por t l Port 2 ■

Mid Coil

Mid Coil

l ' i ix

After Temper Rolling Processing Direction^

Toil End H«nd E n ;

Port 2 O i ' / o S F -1 r- Pon 1 0-8% S.? ■

IP

Port 1 0.8% S.P

7 6 x x

Part 2 CU%SP

I 0-3% Elong

" i d Col

After Temper Rolling After Tension Levelling Processing Direction

I Hesrt End Mid Coil Toil E-id

■0-5%Elono

(a)

Head End

Mid Coll

•lid Coll

P3 x

Portl

After C.R. ond Annealing

Processing Direction

1 !

After Temper Rolling Processing Olrectior(r

Head End Toll End

■ Port 2 •

Parti 0-8V.SJ? - - I I - Part2 0-4% SJ?-

After Tension Levelling Pfocessiog Oirection r

12 « X x

Toll End

Part 2 0.4%SP

- = - 0 5 % Elong 0-3% Elong

Tall End

Mid Coil

u

HeadEnd

X

Mid Coll

1 x & _ _ , f Q

f* ' " 0-5% Elong

WO/« J"

(b)

DESCRIPTION OF ORIGINAL (6a) AND MODIFIED (6b) PROCESSING ROUTES AND SAMPLING POSITIONS FOR THE PLANT TRIAL COILS

FIG.6

32

Page 53: Skin Pass Mill and Tension Levelling -Asasas

8 0 t

70.

60..

3 - 50.

1 40.,

Z 30. c

^ 20.

10.

Q.

-K

-2<

C.F.. Rnneoled

C o i l 8 2 0 7 6 <7a)

10 n

0.47. 0.87.

Tenper Ro l led

— Process —

8 0.37. I 0.57. Tension Level 1ed

CTenper Rolled 0.47.)

C

w

> c

c o u.

8 01

70,

?Q

50.

4Q

30.

20.

10.

Q

-K

-2C

1

2

I i

i

3

C.F.. flnnecled

4

0.47. ^ S

0.87. S

Tenper Rol 1 ed

— Process —

11

P.

C o i l 82078 ( 7 b )

7 8 5 6

1 0.37. 1 0.5*/. Tension Leve l led

1 (Tenper Rol led 0.47.)

HISTOGRAMS OF DEGREE OF FLATNESS AFTER EACH PROCESS FOR COILS 72086 AND 72088

FIG.7

33

Page 54: Skin Pass Mill and Tension Levelling -Asasas

20

10

0

5 0 .

' 2 4

9

S 7

C o i l 1G528 • l0

9 II

12 13

40

SO

to

10

01

1

2

4 S e

7

C o i l 16637 10

■ • i . »

1 12 13

9 9 ♦

40

30

20

10

C.R. Annealed

0.4X. 0.8X Temper Rol led

PROCESS

COIL 17430

. to I I 12 13

0.5% 0.3'/. 0.5'/. Tension Leve l l ed

0.8Z | 0.47. Temper Rol led

HISTOGRAMS OF DEGREE OF FLATNESS AFTER EACH PROCESS FOR COILS 16528,16637 AND 17430

FIG.8

34

Page 55: Skin Pass Mill and Tension Levelling -Asasas

Rjmcss STKESS IMEX <M/wmf> CI U l l l l )

CO . 30

H/E Col l Sample 1 Mid Col l Sonple 2 T/E Coi l Sonple 3

AS ANNEALED

90

FLATICSS STXEtS IICEX (H/ff> <1 Unlta) 40 , e o .

C o i l 8207G

10

0 . 0

» l

Sonple 9 Sonple 10 Sonple I I

0.8% S.P. ONLY

Coi l 82076

(9a)

(9b)

FUIWSS tnctt iwex <H/~t> (I IMIlt)

t o . 10

0 0

eo t to

eo I 10

0.4% S.P. + 0.3% T . L .

<9d) Coi l 82076-7

0.4% S.P. + 0.3% T . L .

Coil 82076-8 ( 9 e )

0.4% S . P . ONLY

( 9 c )

too 400 too too IOOO itoo

Location of Meaturenents <nn>

eo t 1 0 ,

eo 1 IO

0.4% S.P. + 0.5% T . L .

Coi l 82076-5 (9P)

0.4% S.P. + 0.5% T . L .

Coi l 82076-6 O/Slde

(9g)

0/Sld«

0 200 400 coo too 1000 ItM

Location of Meoturtnentt inn)

OFF-LINE SHAPE MEASUREMENTS FOR COIL 82076, AT VARIOUS PROCESSING STAGES

FIG.9

35

Page 56: Skin Pass Mill and Tension Levelling -Asasas

FLHTW3S STUCSf ItCCX IH/rtti <) U n l t l )

60 . 30

Futncss iT«m m i <H/rrf> <l Unlt>>

40 . 10

<10a>

C o i l 82078

Sample 9 Sample 10 Sample 11

0.87. S.P. ONLY

C o i l 82078

<10b)

Fumcss snot iwex <H/—t> <1 U n i t . )

t o . 10

0 . 0

0.4% S.P . + 0.37. T . L .

C o i l 82078-7 <10d>

0.4% S.P . + 0.3% T . L .

<10e> C o i l 82078-8

(0

40

to

0

to

40

(0

to

100

r M

to

10

0

10

to

w

40

90 o/*n.

0.4% S.P. ONLY

C o i l 82078. ( l O c )

0 tOO 400 (00 MO 1000 I t

Location of M«otur«ment« Crm)

to 1 10

0.4% S .P . + 0.5% T . L .

<10P) C o i l 82078-5

0.4% S .P . + 0.5% T . L .

C o i l 82078-6 O/Sldt

<10g>

D/Sidc

0 200 400 GOO MO 10M 1200

Location of Meajurementj irm)

OFF-LINE SHAPE MEASUREMENTS FOR COIL 82078, AT VARIOUS PROCESSING STAGES

FIG. 10

36

Page 57: Skin Pass Mill and Tension Levelling -Asasas

AS ANNEALED FLATNESS

STttH INDEX

OUnt> ( ) U n i t ! )

40 M

CO 10

H/E Coil SflnpW I Mid Coll Sonplt 2 T/E Col l Sonplc 3

Coll 16528.

(11a)

FLATNESS STTSS* INDEX < N W > < I M I D

M 10

0

to

40

0

10

20

0.4% S.P. ONLY

Coll 16528-4.

( l i e

40

10 /

»

_ _ _ ^ _ Sonplt 5 Sonpl . 6

— _ _ Sonplt 7

0 . 8 / : S.P. ONLY

Col l 16528.

( l i b )

M 10

40 tO

to 10

to 10

0.4% S.P. + 0.37. T . L .

Coll 16528-10.

0.4% S.P. + 0.3% T . L .

\(11F

Coll 16528-11. 119

O/Sldc

0.8% S.P. + 0 . 5 T . L .

l i e )

0.8% S.P. + 0.5% T . L .

Coll 16528-9. ( l i d )

O/Sld* 100 400 (00 SOO 1000 1200 1400 1100

Locat ion of Meaturencntt <m>

o o

to 10

4 0 1 to

t o . 10

o o

to 10

O/Side

0.4% S.P. + 0.5% T . L .

Coll 16528-12.

0.4% S.P. + 0.5% T . L .

( l l h )

Coll 16528-13. ( i n :

O/Std* tOO 400 MO SOO 1000 IMS 1400 ISOO

Location of M«osur«n«ntt (rm>

OFF-LINE SHAPE MEASUREMENTS FOR COIL N0.16528,1620 x 1.0mm AT VARIOUS PROCESSING STAGES

FIG. 11

37

Page 58: Skin Pass Mill and Tension Levelling -Asasas

AS ANNEALED H/E Coll Sonpl* I Mid Call Sonpl« 2 T/E Cal l Sonplc 3

Coil 16637.

<12a>

Futncss tract* iwex CH/Mf/> CI Un l t t )

40 f CO f

0 0

0.47. S .P . ONLY

o i l 16637-4.

<12e)

Sonpl • S Sonpl* 6

_ _ __Scnpl* 7

0 .8 / : S .P . ONLY

ttoll 16637.

<12b>

to 1 10

0.4'/. S.P. + 0.3% T . L .

Coll 16637-10.

0.47. S.P. + 0.3'/. T . L .

Coll 16637-11,

C12F>

< i2g>

to .

0

to

10

s

10

0.8/C S.P. + 0 .5 ' / T . L .

Coll 16637-8. (12c )

to

0

to

10

0

10

0.4 / : S .P. + 0.57. T . L .

Coil 16637-12. <12h)

to

0

to

10

0

10

0.87. S.P. + 0 .5 / : T . L .

Coil 16637-9. O/Slde

<12d)

O / S l d o

o too «oo too ooo looo itoo i«oo

L o c a t i o n o f M * a » u r « n « n t » <nn>

t o . 10

to I 10

0.47. S.P. + 0.57. T . L .

O/Sldt Coll 16637-13.

< 121)

D/Sld« 0 tOO 400 000 000 1000 IMO 1400 I I

Location oF Mcasurcncntt <m>

OFF-LINE SHAPE MEASUREMENTS FOR COIL NO. 16637,1250 x 0.85mm AT VARIOUS PROCESSING STAGES

FIG. 12

38

Page 59: Skin Pass Mill and Tension Levelling -Asasas

Fumcss trans IMXX «■/>*/> t l IMItO

<13o)

Fmncss Ernst iwcx

40 10 0.4'/. S.P. ONLY

Coll 17430-4.

(13e

40

M

0

to

40

£0

10

0

10

»

Sawpl« 5 Sonplt 6

_ _ _Sonpl« 7

0.8% S.P. ONLY

Coll 17430.

<13b>

M , 10 ,

0 0

10

0.4*/. S.P. + 0.3'/. T . L .

0 0

0.4% S.P. + 0.3% T . L .

Coll 17430-11.

<13F

<13g.

CO

o

to

10

o

10

0.8% S.P. + 0.5% T . L .

7~~

Coll 17430-8. C13c>

to I 10

0.4% S.P. + 0.5% T . L .

Coll 17430-13. <13h

0 _

10

0.8% S.P. + 0.5% T . L .

Coll 17430-9. O/Sldc

<13d)

0/Sld« COS 400 tOO S90 1000 1100 1400 I*

Locat ion of M«atur«n*nts <rm>

CO .

0

to

10

0

10 O/Sidc

0.4% S.P. + 0.5% T . L .

Coll 17430-13

0 tOO 400 000 SCO 1000 ItO* 1400 If

Location of Measurcntntt (rm>

OFF-LINE SHAPE MEASUREMENTS FOR COIL NO. 17430,1250 x 0.70mm AT VARIOUS PROCESSING STAGES

FIG. 13

39

Page 60: Skin Pass Mill and Tension Levelling -Asasas

Coil 82076

TRANSVERSE GAUGE PROFILE FOR TRIAL COILS 82076 AND 82078 AT VARIOUS PROCESSING STAGES

FIG. 14

40

Page 61: Skin Pass Mill and Tension Levelling -Asasas

Coil 16528

O/Side 860u J*|l

860u jdlr y*"" / ' —■•""

D/Slde

k — ^ * S w l 1

jffr , 0 u ^ ^ _ 850u f * ^ « * ^ t

^ T u 3 . o -̂ V -• * 3

»_ »V 1 -TJ

J 1

0/Slo>

-Width .

D/Sld*

5W - - o • 3

S -7

0

To

Coil 16637 Coil 17430

TRANSVERSE GAUGE PROFILE FOR TRIAL COILS 16528,16637 AND 17430 AT VARIOUS PROCESSING STAGES

FIG. 15

41

Page 62: Skin Pass Mill and Tension Levelling -Asasas

Residual Stress Measurements Magn 20: Depth 0.2mm: Airgap 0.2mm

100

a. 2

£

100

W « M ■ t l i k I

400 600 BOO 1000 1200 Position across strip width (mm)

1600 -100

WthkUl kal |

200 400 600 800 1000 1200 Position across strip widtrt (mm)

1400 1600

100

a. S

-100

lATaofcataal WaMiLaks

400 600 600 1000 1200 Position across strip width (mm)

1400 1600

&

100J

-40-

-60-

100-

I

^ .••'

4 "7

1 i 1 i I ' ! y^7

O; \/ i t

\ \ 1

1 1 1 1

| Coll Na 16S28

i

M 0

200 400 600 800 1000 1200 1400 1600 Position across strip width (mm)

C 2

100-

•fiO-

100-

I

i 1

1

i 1 1

1 A - . - ■ "

^y/ ..■■'-•J

~~ j 1 "1

•w J

k T

CoB Na 16328

i i

V £-*%

2

I

WtfakLak*

200 400 600 800 1000 1200 Position across strip width (mm)

1400 1600

100-

-40-

■60-

100-

~7 7

// . , ■ '

^ / 7*

:'" ! |

: i i , 1

/ ' \

^ — I XT-l^ r

CoH No. 16828

L̂ / ^<7^

' I I

\ V«

\ 1 3

1 I t 1

i l l 200 400 600 800 1000 1200

Position across strip width (mm) 1400 1600

RESIDUAL SURFACE STRESS DIFFERENCES FOR COIL 16528 AT VARIOUS PROCESSING STAGES

FIG. 16

42

Page 63: Skin Pass Mill and Tension Levelling -Asasas

Residual Stress Measurements Magn 20 : Depth 0.2mm : Airgap 0.2mm

-100

BAJackiieaJ WlUUkl

200 400 600 800 1000 Position across strip width (mm)

1200

60-

fc" 20-

5 *° •T o-3

u 1 -20-§ -2°

-60-

-80-

-100-

! ! ! 1 I

- r j -

—-f^___i 1 ! '

0 2C

■L&TntolMl | VMakUhs 1

1 1

1 !

i

i i

- f "

! / - - ~ * 4

CoUNa 16637 i

"" ™ i -r - ^ ' O 400 600 800 10

Position across strip width (mm) 00 12C

$

100-

60-

20-

0-

-40-

-60-

100-

\ I X /C^\ L^^J-*

-fr^p.,'''^

^

£** *S

C o U N a 16637

I

" '; i

\ r-*"-

6 ■ ^ • 5 S ' l

100

U T a c k a M WatokUk*

200 400 600 800 1000 Position across strip width (mm)

1200 BLS.Tntilo.1 I WakikUk* I

200 400 600 800 1000 Position across strip width (mm)

1200

100-

60-

40-

1 »■ •> 0-

1 £ -20-8 **

-80-

-100-

i I ■ !

i

\

. ...

x7

/ r^ T

--* '

CoUNa 16637

"****• * „•—»•* - ^ ^ ^ — i

"' n i

. - - ' • ^ 6

BJLTaokakal I • M U l i I

200 400 600 800 1000 Position across strip width (mm)

100-

C 90-2 2° 2 ° 8 -

20"

-BO-

-100-

_/-••'' 'jf

CoUNa 16637

j ~

.-j^S^iSr-l

12

Er" V 13

1200 a i T M k i l w l

200 400 600 800 1000 Position across strip width (mm)

1200

RESIDUAL SURFACE STRESS DIFFERENCES FOR COIL 16637 AT VARIOUS PROCESSING STAGES

FIG. 17

43

Page 64: Skin Pass Mill and Tension Levelling -Asasas

Residual Stress Measurements Magn 20: Depth 0.2mm : Airgap 02mm

100

Q.

2

-100

luteal | Lake I

200 400 600 800 1000 Position across strip width (mm)

1200

100-

| 2°' S °' 5 90-& -20

-80--100-

I i i

i !

r - ^ - y ' \ i ^--+ i \ 1 1 ! •

1 : CoU No. 17430 1

! ! I

^ 4

j

BJ.TI Weba •ft Lata I

200 400 Position

600 BOO strip width (mm)

1000 1200

Q. 2

CO

100

-100

BATacaaleal WetoaLak*

400 600 800 Position across strip width (mm)

1000 1200

a. S

£

-100 200 400 600 800 1000

Position across strip width (mm) 1200

100

2

£

aS.T*caalaat WetekLaka

400 600 600 Position across strip width (mm)

1200

s

§

UTeeaekaU

100-

fiQ-

20-

-40-

100-

>-=;

1

1

i ^'1

! I

,*——

Cod Ma 17430 —

i

^V^-13

200 400 600 800 Position across strip width (mm)

1000 1200

RESIDUAL SURFACE STRESS DIFFERENCES FOR COIL 17430 AT VARIOUS PROCESSING STAGES

FIG. 18

44

Page 65: Skin Pass Mill and Tension Levelling -Asasas

Max. surface stress

(N/mm2)

10 -

300

Maximum surface stress

R = Radius of curvature y = i strip thickness E = Youngs Modulus

= j E R

400 500 600

Blank radius of curvature (mm)

Double reduced

Yield stress oy = 650N/mm2

0.17 mm gauge

0.14 mm gauge

700

(RMF/TR/F3) EQUIVALENT SURFACE STRESS TO CAUSE CURVATURE IN D.R. TINPLATE FIG. 19

Page 66: Skin Pass Mill and Tension Levelling -Asasas

Outer surface bends 1 & 3

+ Y

RESIDUAL LONGITUDINAL STRESS IN STRAIGHT STRIP AFTER FOUR BENDS FIG.20 OF DECREASING CURVATURE

46

Page 67: Skin Pass Mill and Tension Levelling -Asasas

Penetration (mm)

8 -

I I

Roll leveller 68 mm dia. at 70 mm centres

50 100 150 Effective radius of curvature (mm)

200 250

(RMF/TR/F5) RELATIONSHIP BETWEEN ROLL PENETRATION AND EFFECTIVE RADIUS OF CURVATURE FIG. 21

Page 68: Skin Pass Mill and Tension Levelling -Asasas

Radius of curvature under rollers

(mm) 250

200

150

100

50 -

Non linear reduction t in curvature

Present "wedge" setting (exaggerated")

Penetration setting of rollers

(mm)

6

Roller No.

10 12

PRESENT SETTING OF ROLLER LEVELLERS ("WEDGE") FIG.22

48

Page 69: Skin Pass Mill and Tension Levelling -Asasas

Radius of curvature under rollers

(mm) 250

200

150

100

50 -

Top frame split

I 1 3©<g®

Penetration 2 setting of rollers

(mm)

10 12

Roller No.

Roller No.

MODIFIED SETTING OF ROLLER LEVELLERS FIG.23

49

Page 70: Skin Pass Mill and Tension Levelling -Asasas

Imposed lap angle (Degrees)

60 0.17mm D. R.

0.20mm S. R.

—... ^Residual lap angle

Imposed lap angle

10 20 30

Actual lap angle minus springback (Degreess) 40 50

EFFECTS OF SPRINGBACK IN D. R. AND S. R. TINPLATE DURING TENSION LEVELLING FIG. 24

Page 71: Skin Pass Mill and Tension Levelling -Asasas

Drive motor

Load cell

0

Lap angle / mesh adjustment

•'Of \ \ ° / v__^ \ •

25mm-100mm Bending rolls

Load cell

Variable speed -p(^ carriage actuator

2>

Adjustable tension cylinder

(RMF/TR/Fl) PILOT TENSION LEVELLER RIG FIG. 25

Page 72: Skin Pass Mill and Tension Levelling -Asasas

2500

2250

2000

7 1750..

01 c 3

> L. 3 u

en 3

e

1500..

1250.:

1000

750

500..

250

25 30 35 40 45 50 55 60 65

Tension Stress CN/nm )

RELATIONSHIPS BETWEEN TENSION STRESS, PENETRATION AND RADIUS FIG.26 OF CURVATURE OF 3.1mm HOT DIPPED GALVANISED MATERIAL FOR A

45mm DIAMETER BENDING ROLL

52

Page 73: Skin Pass Mill and Tension Levelling -Asasas

APPENDIX I

OFF-LINE SHAPE ASSESSMENT

Off-line shape measurements were carried out on all the samples using the contour following technique. This uses a precision LVDT type transducer which traverses lightly over the surface contour of each sample in the rolling direction. Each traverse was carried out at 50mm increments either side of the sample width centre line including its extreme edge. The vertical displacement during traverse is logged at equal time intervals and the number of loggings per traverse (~400) is constant for each measured sample. At the end of each traverse, the displacement signal is used to calculate the shape value in I Units as follows:-

c = Traverse Increment Length (Constant) d = Vertical Displacement L2 = Surface Contour: Increment Length LI = Surface Contour: Total Length L = Length of Traverse (Constant)

L2 = V(d2+C2) LI = 2L2 L = Sc

Length Differential = LI - L L

I Units = (LI - L) x 1Q5 L

The collective results for each sample are computed eliminating any camber that may be present.

53

Page 74: Skin Pass Mill and Tension Levelling -Asasas
Page 75: Skin Pass Mill and Tension Levelling -Asasas

APPENDIX II

DETAILS OF TENSILE TESTING

Tensile tests were carried out according to Standard EN 10 002 Part 1 on 80mm gauge length samples on a Zwick 1474 machine at an initial crosshead speed of 2.5mm/min increasing to 25mm/min after determination of proof stress.

Four tests were carried out on each sample sheet, three in the longitudinal direction at ± width O/S, centre and i width D/S and 1 in the transverse direction at centre position.

Parameters measured:-

ReL = Lower yield strength Rpo.2 = 0.2% proof stress Rm = Tensile strength Ae = Yield point elongation Ag = Uniform elongation Ago = Total elongation on 80mm ni, n2, n3 = Work hardening coefficient at 5-10%, 10-15% and 15-20% strain range levels ri , r2, r3, r4 = Normal anisotropy ratio at the 5%, 10%, 15% and 20% strain levels

Mechanical Properties Specifications as set out in Standard EN 10130; 1991.

Steel Grade

FeP04

FeP05

RP0.2 N/mm2 max.

210

180

Rm N/mm2

270/350

270/330

Ago %min

38

40

r90/20 min

1.6

1.9

n90/20 min

.180

.200

55

Page 76: Skin Pass Mill and Tension Levelling -Asasas
Page 77: Skin Pass Mill and Tension Levelling -Asasas

APPENDIX HI

DETAILS OF MODIFIED STRETCH DRAW TEST

The modified stretch draw test involves deforming a 117mm diameter blank with a 50mm diameter hemispherical punch at 1 mm/sec using, in this case, a 50 kN blankholder load. The end point of the test is fracture of the sample. At the end point of the test the fracture height and punch load are both recorded. The test is shown schematically below:-

XX^^MKttKKSKKKKgKK^^

\ Failure site

Deforming area

57

Page 78: Skin Pass Mill and Tension Levelling -Asasas
Page 79: Skin Pass Mill and Tension Levelling -Asasas

f The Communities research and development

information service C O R D I S

A vital part of your programme's dissemination strategy

CORDIS is the information service set up under the VALUE programme to give quick and easy access to information on European Community research programmes. It is available free-of-charge online via the European Commission host organization (ECHO), and now also on a newly released CD-ROM.

CORDIS offers the European R&D community:

— a comprehensive up-to-date view of EC R&TD activities, through a set of databases and related services,

— quick and easy access to infq'rrnation on EC research programmes and results, — a continuously evolving Commission service tailored to the needs of the research community and

industry, — full user support, including documentation, training and the CORDIS help desk.

The CORDIS Databases are:

R&TD-programmes - R&TD-projects - R&TD-partners - R&TD-resutts R&TD-publications - R&TD-comdocuments- R&TD-acronyms - R&TD-news

Make sure your programme gains the maximum benefit from CORDIS

— Inform the CORDIS unit of your programme Initiatives, — contribute information regularly to CORDIS databases such as R&TD-news, R&TD-publications and

R&TD-programmes, — use CORDIS databases, such as R&TD-partners, in the implementation of your programme, — consult CORDIS for up-to-date information on other programmes relevant to your activities, — inform your programme participants about CORDIS and the importance of their contribution to the

service as well as the benefits which they will derive from it, — contribute to the evolution of CORDIS by sending your comments on the service to the CORDIS

Unit

For more information about contributing to CORDIS, contact the DG XIII CORDISUnit

Brussels Luxembourg Ms 1. Vounakis M. B. Niessen

Tel. +(32) 2 299 0464 Tel. +(352) 4301 33638 Fax +(32) 2 299 0467 Fax +(352) 4301 34989

To register for online access to CORDIS, contact:

ECHO Customer Service BP 2373

L-1023 Luxembourg Tel. +<352) 3498 1240 Fax +(352) 3498 1248

If you are already an ECHO user, please mention your customer number. J

Page 80: Skin Pass Mill and Tension Levelling -Asasas
Page 81: Skin Pass Mill and Tension Levelling -Asasas

European Commission

EUR 15849 — Mechanical working (Rolling mills) The mechanical and metallurgical effects of skin passing and tension levelling

T. de la Rue

Luxembourg: Office for Official Publications of the European Communities

1996 — XVIII, 57 pp. — 21.0 x 29.7 cm

Technical steel research series

ISBN 92-827-7123-7

Price (excluding VAT) in Luxembourg: ECU 8.50

An exercise has been carried out to investigate the mechanical and metallurgical effects of skin passing and tension levelling. The investigation was hampered by a lack of suitable cut sheet orders, nevertheless five coils were processed using different levels of skin passing and tension levelling. Full width x 2 m length samples were taken at each processing stage for measurement of shape, gauge profile, surface texture, tensile mechanical properties and formability properties.

The investigation showed that for EDD steel qualities low levels of tension levelling gave a significant improvement in strip shape, but that levels as low as 0.5% increased strip hardness and the 0.2% proof stress and reduced the work hardening coefficient n1 such that the material may be rendered unsuitable for its intended use.

Page 82: Skin Pass Mill and Tension Levelling -Asasas
Page 83: Skin Pass Mill and Tension Levelling -Asasas

Venta • Safg • Verkauf • Πωλήσεις • Sales • Vente • Vendita • Verkoop • Venda • Myynti • Forsaljning

BELGIQUE/BELGIE ITALIA

Monlteur belge/Belgisch Staatsblad Rue de Louvain 40-42/ Leuvenseweg 40-42 B-1000 Bruxelles/Brussel Tel. (32-2) 552 22 11 Fax (32-2) 511 01 84

Jean De Lannoy Avenue du Roi 202/ Koningslaan 202 B-1060 Bruxelles/Brussel Tel. (32-2) 538 51 69 Fax (32-2) 538 08 41 e-mail: [email protected]

Libralrle europeenne/ Europese Boekhandel Rue de la Lol 244/ Wetstraat 244 B-1040 Bruxelles/Brussel Tel. (32-2) 295 26 39 Fax (32-2) 735 08 60

DANMARK

J. H. Schultz Information A/S Herstedvang 10-12 DK-2620 Albertslund Tlf. (45) 43 63 23 00 Fax (45) 43 63 19 69 e-mail: [email protected]

DEUTSCHLAND

Bundesanzeiger Verlag Breite Straße 78-80 Postfach10 05 34 D-50667 Kölln Tel. (49-221)20 29-0 Fax (49-221) 20 29 278

GREECE/ELLADA

G.C. Eleftheroudakis SA International Bookstore Panepistimiou 17 GR-105 64 Athens Tel. (30-1)331 41 82 Fax (30-1 323 98 21

ESPANA

Mundl Prensa Libras, SA Castelló, 37 E-28001 Madrid Tel. (34-1) 431 33 99/431 32 22/435 36 37 Fax (34-1) 575 39 98 e-mail: [email protected]

Boletin Oficial del Estado Trafalgar 27-29 E-28010 Madrid Tel. (34-1) 538 22 95/538 22 97 Fax (34-1) 538 22 67

Sucursal:

Mundi Prensa Barcelona Consell de Cent, 391 E-08009 Barcelona Tel. (34-3) 488 34 92 Fax (34-3) 487 76 59

Libreria de la Generalitat de Catalunya Rambla dels Estudis, 118 Palau Moia E-08002 Barcelona Tel. (34-3) 302 68 35/302 64 62 Fax (34-3) 302 12 99

FRANCE

Journal official Service des publications des CE 26, rue Desaix F-75727 Paris Cedex 15 Tel. (33-1)40 58 77 01/31 Fax (33-1) 40 58 77 00

IRELAND

Government Supplies Agency Publications Section 4-5 Harcourt Road Dublin 2 Tel. (353-1)661 31 11 Fax (353-1) 475 27 60

NORGE TURKIYE Licosa SpA Via Duca di Calabria 1/1 Casella postale 552 1-50125 Firenze Tel. (39-55)64 54 15 Fax (39-55) 64 12 57 e-mail: [email protected]

GRAND-DUCHE DE LUXEMBOURG Messageries du livre Sari 5, rue Raiffeisen L-2411 Luxembourg Tel. (352)40 10 20 Fax (352) 490 661 e-mail: [email protected]

Abonnements: Messageries Paul Kraus 11, rue Christophe Plantin L-2339 Luxembourg Tel. (352) 499 88 88 Fax (352) 499 888 444 e-mail: [email protected]

NEDERLAND SDU Uitgeverijen Externe Fondsen Christoffel Plantijnstraat 2 Postbus 20014 2500 EA 's-Gravenhage Tel. (31-70)378 98 80 Fax (31-70) 378 97 83

OSTERREICH Manz'sche Verlags-und Universitatsbuchhandlung Gmbh Siebenbrunnengasse 21 Postfach 1 A-1050Wien Tel. (43-1) 53 161 (334 Oder 340) Fax (43-1) 53 161 (339) e-mail: [email protected]

PORTUGAL Imprensa Naclonal-Casa da Moeda, EP Rua Marquês de Sa da Bandeira, 16 A P-1050 Lisboa Codex Tel. (351-1)353 03 99 Fax (351 -1) 353 02 94/384 01 32 Distrlbuldora de Livros Bertrand Ld.* Grupo Bertrand, SA Rua das Terras dos Vales, 4-A Apartado 60037 P-2700 Amadora Codex Tel. (351-1) 495 90 50/495 87 87 Fax (351-1) 496 02 55

SUOM l/FINLAND Akateeminen Kirjakauppa / Akademiska Bokhandeln Pohjoisesplanadi 39/ Norra esplanaden 39 PUPB128 FIN-00101 Helsinki/Helsingfors Tel. (358)121 41 Fax (358) 121 44 35 e-mail: [email protected]

SVERIGE BTJAB Traktorvägen 11 PO Box 200 S-221 00 LUND Tel. (46)18 00 00 Fax(46)1801 25

UNITED KINGDOM HMSO Books (Agency Section) HMSO Publications Centre 51, Nine Elms Lane London SW8 5DR Tel. (44-171)873 9090 Fax (44-171) 873 8463

ICELAND Bokabud Larusar Blöndal Sk6lavördustig, 2 IS-101 Reykjavik Tel. (354)55 15 650 Fax (354) 55 25 560

NIC Info A/S Bertrand Narvesens vei 2 Boks6512 Etterstad N-0606 Oslo Tel. (47-22) 57 33 34 Fax (47-22) 68 19 01

SCHWEIZ/SUISSE/SVIZZERA

OSEC Stampfenbachstraße 85 CH-8035 Zurich Tel. (41-1)365 54 54 Fax (41-1)365 54 11 e-mail: [email protected]

BǍLGARIJA

Europress Klassica Bk Ltd 76, Gurko Street BG-1463 Sofia Tel. (359-2) 81 64 73 Fax (359-2) 81 64 73

CESKA REPUBLIKA

NIS CR - prodejna Konviktská 5 CZ-113 57Praha1 Tel. (42-2) 24 22 94 33/24 23 09 07 Fax (42-2) 24 22 94 33 e-mail: [email protected]

HRVATSKA

Mediatrade Ltd Pavla Hatza 1 HR-4100 Zagreb Tel. (38-1)43 03 92 Fax (38-1) 44 40 59

MAGYARORSZAG

Euro Info Service Eurdpa Haz Margitsziget H-1138 Budapest Tel. (36-1)11 16 061/11 16 216 Fax (36-1) 302 50 35

POLSKA

Business Foundation ul. Krucza 38/42 PL-00-512Warszawa Tel. (48-22) 621 99 93/628 28 82 Fax (48-22) 621 97 61- Free line (0-39) 12 00 77

ROMANIA

Euromedia Str. G-ral Berthelot Nr 41 RO-70749 Bucuresti Tel. (41) 210 44 01/614 06 64 Fax (41) 210 44 01

RUSSIA

CCEC 9.60-letiya Oktyabrya Av. 117312 Moscow Tel. (095) 135 52 27 Fax (095 135 52 27

SLOVAKIA

Slovenska Technicka Kniznica Namestie slobody 19 SLO-81223 Bratislava 1 Tel. (42-7)53 18 364 Fax (42-7) 53 18 364 e-mail: [email protected]

MALTA Miller Distributors Ltd Malta International Airport PO Box 25 LQA 05 Malta Tel. (356) 66 44 88 Fax (356) 67 67 99

Dunya Infotel A.S. Istiklal Caddesi No 469 TR-80050 Tünel-lstanbul Tel. (90-212) 251 91 96 / 427 02 10 Fax (90-212) 251 91 97

ISRAEL R.O.Y. International 17, Shimon Hatarssi Street PO Box 13056 61130 Tel Aviv Tel. (972-3) 546 14 23 Fax (972-3) 546 14 42 e-mail: [email protected]

Sub-agent for the Palestinian Authority: Index Information Services PO Box 19502 Jerusalem Tel. (972-2) 27 16 34 Fax (972-2) 27 12 19

EGYPT The Middle East Observer 41, Sherif Street Cairo Tel. (20-2)39 26 919 Fax (20-2) 39 39 732

UNITED STATES OF AMERICA Unlpub 4611 -F Assembly Drive MD20706 Lanham Tel. (800) 274-4888 (toll free telephone) Fax (800 865-3450 (toll free fax)

CANADA Uniquement abonnements/ Subscriptions only: Renouf Publishing Co. Ltd 1294 Algoma Road K1B 3W8 Ottawa, Ontario Tel. (1-613)741 73 33 Fax (1-613) 741 54 39 e-mail: [email protected] For monographs see: Unipub

AUSTRALIA Hunter Publications PO Box 404 3167 Abbotsford, Victoria Tel. (3)9417 53 61 Fax (3) 9419 71 54

JAPAN PSI-Japan Kyoku Dome, Tokyo Kojimachi P.O. Tokyo 102 Tel. (81-3)3234 69 21 Fax (81-3) 3234 69 15 e-mail: [email protected] URL: www.psi-japan.com

SOUTH AND EAST ASIA Legal Library Services Limited Orchard PO Box 0523 912318 Singapore Tel. (65) 243 24 98 Fax (65) 243 24 79 e-mail: [email protected]

SOUTH AFRICA Satto 5th Floor Export House, CNR Maude & West Streets PO Box 782 706 2146Sandton Tel. (27-11)883 37 37 Fax (27-11)883 65 69

ANDERE LANDER OTHER COUNTRIES AUTRES PAYS Bitte wenden Sle sich an eln Buro Ihrer Wahl Please, address yourself to the sales office of your choice Veuillez vous adresser au bureau de vente de votre choix

Page 84: Skin Pass Mill and Tension Levelling -Asasas

NOTICE TO THE READER

All scientific and technical reports published by the European Commission are announced in the monthly periodical 'euro abstracts'. For subscription (1 year: ECU 63) please write to the address below. o

D

00 J*. co

O

Price (excluding VAT) in Luxembourg: ECU 8.50 ISBN T2-AE7-7153-7

• * • OFFICE FOR OFFICIAL PUBLICATIONS * -ggf * OF THE EUROPEAN COMMUNITIES

• ^ • L-2985 Luxembourg