Sizing methods Size and Shape Characterization of...

11
1 Size Size and and Shape Shape Characterization of Characterization of Oblate Oblate Particles Particles W. PABST, 1 E. GREGOROVÁ, 1 C. BERTHOLD, 2 et al. 1 Department of Glass and Ceramics, Institute of Chemical Technology, Prague, Czech Republic 2 Institut für Geowissenschaften, Universität Tübingen, Germany EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN CPPS-Lecture ad Units 5-7 Introduction 1 – Sizing methods The most important sizing methods used routinely for ceramic raw materials characterization are: Laser diffraction (Mie / Fraunhofer approximation) – D L Sedimentation analysis (Stokes equation) – D S Microscopic image analysis D M All these methods are based on different physical principles and thus measure different equivalent diameters. Only for spherical particles the sizing results coincide (calibration standards). PABST, GREGOROVÁ, BERTHOLD et al. ICT Prague (Czech Republic) & Universität Tübingen (Germany) EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN Introduction 2 – Oblate Particles EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN 10 μm Kaolinit Quarz-Aggregate 10 μm Kaolinit Quarz-Aggregate kaolin SiC platelets boron nitride … pyrophyllite, talc, mica, tabular alumina … 2 µm quartz aggregates kaolinite PABST, GREGOROVÁ, BERTHOLD et al. ICT Prague (Czech Republic) & Universität Tübingen (Germany) Introduction 3 – Oblate particles EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN Low degree of anisometry (example pyrophyllite) High degree of anisometry (example kaolin) Particle size distributions measured via sedimentation analysis (Micromeritics Sedigraph 5100) and laser diffraction (Fritsch Analysette 22) 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 Equivalent diameter [microns] Cumulative volume [%] 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 Equivalent diameter [microns] Cumulative volume [%] PABST, GREGOROVÁ, BERTHOLD et al. ICT Prague (Czech Republic) & Universität Tübingen (Germany) Introduction 4 – Oblate particles EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN Kaolin type Kaolinite Quartz Feldspar Other clay and mica minerals Sedlec Ia 91 ± 3 2 ± 1 7 ± 2 Imperial / Premier 89 ± 4 3 ± 2 8 ± 3 Sp-EX 84 13 1 2 KDG 77 ± 4 13 ± 3 1 ± 1 9 ± 3 KD50 69 ± 4 23 ± 3 1 ± 1 7 ± 3 Kaolin type S D50 [µm] L D50 [µm] Median LS shape factor Sedlec Ia 1.3 5.9 48.4 Imperial / Premier 1.5 5.5 30.1 Sp-EX 2.9 8.0 17.9 KDG 2.4 5.0 10.3 KD50 7.7 11.8 5.6 Correlation of average particle shape and mineralogical phase composition in 5 commercial kaolin types from three different deposits (Czech Republic) PABST et al.: Brit. Ceram. Trans. 100, 106 (2001) PABST, GREGOROVÁ, BERTHOLD et al. ICT Prague (Czech Republic) & Universität Tübingen (Germany) Introduction 5 – Oblate particles EBERHARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS UNIVERSITÄT TÜBINGEN Different average shape and quantitative phase composition in different size fractions of kaolins LEHMANN et al.: Key Eng. Mater. 264-268, 1387 (2004) 2 μm 5 μm 10 μm 10 μm fraction < 2 µm fraction 6.3 – 20 µm fraction 2 – 6.3 µm fraction 20 – 63 µm PABST, GREGOROVÁ, BERTHOLD et al. ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Transcript of Sizing methods Size and Shape Characterization of...

Page 1: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

1

SizeSize and and ShapeShape Characterization of Characterization of OblateOblate ParticlesParticles

W. PABST,1 E. GREGOROVÁ,1 C. BERTHOLD,2 et al.

1 Department of Glass and Ceramics, Institute of Chemical Technology, Prague, Czech Republic

2 Institut für Geowissenschaften, Universität Tübingen, Germany

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

CPPS-Lecturead Units 5-7

Introduction 1 – Sizing methodsThe most important sizing methods used routinely for

ceramic raw materials characterization are:

Laser diffraction (Mie / Fraunhofer approximation) – DL Sedimentation analysis (Stokes equation) – DS

Microscopic image analysis – DM

All these methods are based on different physical principles and thus measure different equivalent

diameters. Only for spherical particles the sizing results coincide (calibration standards).

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Introduction 2 – Oblate Particles

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

10 µm

Kaolinit

Quarz-Aggregate

10 µm

Kaolinit

Quarz-Aggregate

kaolin

SiC platelets

boron nitride

… pyrophyllite, talc, mica, tabular alumina …2 µm

quartz aggregates

kaolinite

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Introduction 3 – Oblate particles

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Low degree of anisometry(example pyrophyllite)

High degree of anisometry(example kaolin)

Particle size distributions measured via sedimentation analysis(Micromeritics Sedigraph 5100) and laser diffraction (Fritsch Analysette 22)

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Introduction 4 – Oblate particles

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Kaolin type Kaolinite Quartz Feldspar Other clay and

mica minerals Sedlec Ia 91 ± 3 2 ± 1 − 7 ± 2 Imperial / Premier 89 ± 4 3 ± 2 − 8 ± 3 Sp-EX 84 13 1 2 KDG 77 ± 4 13 ± 3 1 ± 1 9 ± 3 KD50 69 ± 4 23 ± 3 1 ± 1 7 ± 3

Kaolin type SD50 [µm] LD50 [µm] Median LS

shape factor Sedlec Ia 1.3 5.9 48.4 Imperial / Premier 1.5 5.5 30.1 Sp-EX 2.9 8.0 17.9 KDG 2.4 5.0 10.3 KD50 7.7 11.8 5.6

Correlation of average particle shape and mineralogical phase composition in 5 commercial kaolin types from three different deposits (Czech Republic)

PABST et al.: Brit. Ceram. Trans. 100, 106 (2001)

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Introduction 5 – Oblate particles

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Different average shape and quantitative phase composition in different size fractions of kaolins

LEHMANN et al.: Key Eng. Mater. 264-268, 1387 (2004)

2 µm 5 µm

10 µm 10 µm

fraction< 2 µm

fraction6.3 – 20 µm

fraction2 – 6.3 µm

fraction20 – 63 µm

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 2: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

2

• Although most real anisometric particles have an irregular shape, many of them can approximatelybe considered as rotationally symmetric.

• The most convenient model shapes for platelets are circular disks and oblate spheroids.

• In this case shape can be characterized by a single number, the aspect ratio:

(maximum and minimum extension DM – “diameter” and H – “height”)

Introduction 6 – Oblate particles

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

HD

R M≡

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 1 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 2 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 3 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 4 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 5 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Rel

ativ

e vo

lum

e [%

/ m

icro

n]

Dirac distribution Heaviside step function

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 3: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

3

Theory 6 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 7 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

spheres

DM=DL=DS

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 8 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

circular disks (aspect ratio 10)

DM

DS

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 9 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

circular disks (aspect ratio 30)

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 10 – Size distributions

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [microns]

Cum

ulat

ive

volu

me

[%]

circular disks (aspect ratio 10)

perpendicularorientation

randomorientation

in-planeorientation

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 11 – Stokes equation

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Classical Stokes equation for sedimentation analyses:

(dynamic shear viscosity η, steady-state settling velocity V, density of solid particles ρS and liquid ρL, gravitational acceleration g,

equivalent sphere diameter / Stokes diameter DS )

Derivation of the Stokes equation via force equilibrium:

0=+−=∑ RGB FFFF

gDF LSB ρπ 3

6= gDF SSG ρπ 3

6= SR DVF ηπ3=

lift force (buoyancy) gravitational force resistance force

gVD

LSS )(

18ρρη−

=

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 4: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

4

Theory 12 – Stokes equation

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Modified Stokes equation for circular disks:

(dynamic shear viscosity η, steady-state settling velocity V, density of solid particles ρS and liquid ρL, gravitational acceleration g,

(equivalent) disk diameter DM and aspect ratio R )

Derivation of the Stokes equation via force equilibrium:

0=+−=∑ RGB FFFF

lift force (buoyancy) gravitational force resistance force

MrandomR DVF η6≈

gRVDLS

M )(24

ρρπη−

=

gR

DF L

MB ρπ 3

4⋅= g

RDF S

MG ρπ 3

4⋅=

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 13 – Stokes equation

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Modified Stokes equation for oblate spheroids:

(dynamic shear viscosity η, steady-state settling velocity V, density of solid particles ρS and liquid ρL, gravitational acceleration g,(equivalent) spheroid diameter DM and aspect ratio R )

Derivation of the Stokes equation via force equilibrium:

0=+−=∑ RGB FFFF

lift force (buoyancy) gravitational force resistance force

MrandomR DVF η6≈gR

DF L

MB ρπ 3

6⋅= g

RDF S

MG ρπ 3

6⋅=

gRVDLS

M )(36

ρρπη−

=

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 14 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

• for circular disks:

(PABST et al.: Brit. Ceram. Trans. 2001, LEHMANN: M.Sc. Thesis (kaolins), Tübingen / Germany 2003, LOBATO: Ph.D. Thesis (on talc), Blacksburg / USA 2005)

• for oblate spheroids:

DS is the ordinary Stokes diameter (equivalent sphere diameter), DM can be measured by image analysis.

gRVDLS

M )(36

ρρπη−

=

2

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

M

DDR π

2

43

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

M

DDR π

gVD

LSS )(

18ρρη−

=

gVD

LSS )(

18ρρη−

=

gRVDLS

M )(24

ρρπη−

=

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 15 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

In practice, these formulae are applied to compare sedimentation results with laser diffraction results (with the laser diffraction equivalent diameter DL instead of

the true disk or spheroid diameter DM).

Problem: The shape factor (degree of anisometry) thus calculated can be called an aspect ratio only when the particles are oriented with their planes perpendicular to

the laser beam direction.

Solution: When the particle orientation in the laser beam is random, Cauchy’s stereological theorem has to

be invoked to obtain the correct aspect ratio formula.

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

In the case of circular disks and oblate spheroids with large aspect ratio the surface area is approximately:

Cauchy’s stereological theorem says, that the average projected area of randomly oriented,

monodisperse convex particles is just one quarter of the surface area of these particles.

⇔ laser diffraction:

⇒ for large aspect ratios (approximately):

Theory 16 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

2

4 Lprojection DA ⋅=π

2

2 MDS ⋅≈π

2

84 Mprojection DSA ⋅≈=π

LM DD ⋅≈ 2

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 17 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

2

43

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

M

DDR π

2

23

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

L

DDR π

2

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

L

DDR π

2

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

M

DDR π

disks spheroids

oriented oriented

randomrandom

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 5: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

5

Theory 18 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Our simple aspect ratio formula for spheroids in randomorientation,

can be considered as an approximation of the exactsolution given by Jennings and Parslow (1988),

JENNINGS & PARSLOW: Proc. Roy. Soc. London 419, 137 (1988)

because for large aspect ratios we have

( )( ) ( )[ ]1ln1

1arctan222

2

−++−

−=

RRRR

RRDD

L

S

∞→R

( ) RR ≈−12

RRRR

DD

L

S

2lnarctan2

2 += 2arctan π≈R22ln RR <<

2

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

L

DD

R π

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 19 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

DL/DS [1]

Aspe

ct ra

tio [1

]

our formula (approximation)

Jennings-Parslowsolution (exact)

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 20 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

DL/DS [1]

Aspe

ct ra

tio [1

]

our formula (approximation)

Jennings-Parslowsolution (exact)

0

1

2

3

4

5

6

7

8

9

10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

DL/DS [1]

Aspe

ct ra

tio [1

]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Theory 21 – Aspect ratio formulae

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

DL/DS [1]

Aspe

ct ra

tio [1

]

our formula (approximation)

Jennings-Parslowsolution (exact)

0

1

2

3

4

5

6

7

8

9

10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

DL/DS [1]

Aspe

ct ra

tio [1

]

SL DD / Jennings & Parslow

Our formula Relative error [%]

1 1 3.140 214 % 1.1 2.301 3.799 65 % 1.2 3.195 4.522 42 % 1.3 4.088 5.307 30 % 1.4 5.013 6.154 23 % 1.5 5.984 7.065 18 % 1.6 7.005 8.038 15 % 1.7 8.081 9.075 12 % 1.8 9.213 10.174 10 % 1.9 10.403 11.335 9 % 2.0 11.652 12.560 8 % 2.2 14.331 15.198 6 % 2.4 17.251 18.086 5 % 2.6 20.418 21.226 4 % 2.8 23.831 24.618 3 % 3.0 27.492 28.260 3 %

(same graph,zoomed)

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 1 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

In practice, aspect ratio formulae are usually applied to sedimentation and laser diffraction results (DS and DL).

Key question: Are the particles randomly orientedduring the laser diffraction experiment ?

Methodological approach to find the answer:Perform a microscopic image analysis and find out

whether coincidence with laser diffraction data can beachieved with or without the Cauchy theorem.

⇒ if coincidence is achieved only with Cauchy then the particle orientation in the laser beam is random !

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 2 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Optical micrograph of SiC platelets lying flatside on the object slide.

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 6: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

6

Experimental 3 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Cumulative size distribution of SiC platelets measured by laser diffraction.

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [µm]

Cum

ulat

ive

perc

enta

ge [%

]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 4 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

50

100

150

200

250

300

350

27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5

Projected area diameter [µm]

Rel

ativ

e nu

mbe

r [1]

Number-weighted size distribution (frequency histogram of DM).

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 5 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Frequency histogram of the aspect ratio.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Aspect ratio [1]

Freq

uenc

y [1

] y = 0.3905x - 1.3141

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

Projected area diameter [µm]

Asp

ect r

atio

[1]

In order to transform the number-weighted (q0) distribution to a volume-weighted distribution (q3) via the equation

the size dependence of the aspect ratio must be known.

iiii qDRq 03

3 ⋅⋅=

Size dependence of the aspect ratio.

3.14.0 −⋅= MDR

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 6 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Frequency histogram of the aspect ratio.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Aspect ratio [1]

Freq

uenc

y [1

] y = 0.3905x - 1.3141

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

Projected area diameter [µm]

Asp

ect r

atio

[1]

In order to transform the number-weighted (q0) distribution to a volume-weighted distribution (q3) via the equation

the size dependence of the aspect ratio must be known.

iiii qDRq 03

3 ⋅⋅=

Size dependence of the aspect ratio.

3.14.0 −⋅= MDR

Measured by focusing on the upper and lower basal plane of SiC platelets !

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 7 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Volume-weighted size distribution obtained by transformation.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5

Projected area diameter [µm]

Rel

ativ

e vo

lum

e [1

]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 8 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Cumulative size distribution of SiC platelets measured by image analysis.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Equivalent diameter [µm]

Cum

ulat

ive

perc

enta

ge [%

]

dotted: measured Q0 distributiondashed: Q3 calculated with constant R (22)full: Q3 calculated with size-dependent R

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 7: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

7

Experimental 9 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Size distribution of SiC platelets after applying the Cauchy theorem.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Equivalent diameter [µm]

Cum

ulat

ive

perc

enta

ge [%

]

dotted: measured Q0 distributiondashed: Q3 calculated with constant R (22)full: Q3 calculated with size-dependent Rgreen: Q3 after application of the Cauchy theorem

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Experimental 10 – SiC platelets

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Comparison of size distributions of SiC platelets.

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

Equivalent diameter [µm]

Cum

ulat

ive

perc

enta

ge [%

]

Laser diff. Q0 Q3 (const. R) Q3 (var. R) Q3 (Cauchy)

blue dotted: measured Q0 distribution, blue full: Q3 calculated with size-dependent R,green: Q3 after application of the Cauchy theorem, red: Q3 measured by laser diffraction

DM (Q3 without Cauchy) = 49.5–51.3 µmDM (Q3 with Cauchy) = 36.9–39.9 µmDL = 38.3 µm

median values

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Summary and Conclusion – 1• New simple formulae have been proposed to

calculate the average aspect ratio of oblate particleswhen the size distribution is known fromsedimentation analysis (DS). and either microscopicimage analysis (DM) or laser diffraction (DL). All ofthese approximate formulae are of the general form:

where the prefactor C (shape factor) is 3/2 for disksand 1 for spheroids and the prefactor K (orientationfactor) is π/2 for perpendicular orientation (typically DM) and π for random orientation (typically DL).

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

2

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅=

S

L

DD

KCR2

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅=

S

M

DDKCR

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Summary and Conclusion – 2• Our formula for randomly oriented spheroids,

is an approximation to the Parslow-Jennings solution,

for the case of large aspect ratios.

In practice, the error is < 10 % for aspect ratios > 10.

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

( )( ) ( )[ ]1ln1

1arctan222

2

−++−

−=

RRRR

RRDD

L

S

2

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

S

L

DDR π

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Summary and Conclusion – 3• For SiC platelets it has been shown that after

application of Cauchy’s sterological theorem the size distribution measured by image analysis coincides well with the laser diffraction result:

– median value of DL: 38 µm,– median value of DM without Cauchy: 49-51 µm,– median value of DM with Cauchy: 37-40 µm.

⇒ SiC platelets are randomly oriented in the measuring cell of the laser diffraction instrument; this situation is typical for laser diffraction, unless special conditions are chosen / special equipment is used to enforce particle orientation.

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 1

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Inte

nsitä

t (o.

E.)

2 7 12 17 22 2 7 32 37 4 2 4 7

2 Theta

( )011

( )001

( )131

( )131( )020

( )002

( )003( )200( )113

( )120( )011 ( )031

Illit/Muskovit

Quarz

Inte

nsitä

t (o.

E.)

2 7 12 17 22 2 7 32 37 4 2 4 7

2 Theta

( )011

( )001

( )131

( )131( )020

( )002

( )003( )200( )113

( )120( )011 ( )031

Illit/Muskovit

Quarz

X-ray reflexes of kaolinite (example: kaolin Imperial, Czech Republic); note that the quartz main reflex (101) is at 26.41 ° 2θ, the illite / muscovite (001) and

(002) reflexes are at 8.57 and 17.47 ° 2θ, respectively [Lehmann 2003].

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 8: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

8

X-ray and SEM studies of kaolins – 2

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Influence of orientation texture on X-ray diffractograms (examples: kaolinsKDK / Podbořany and Sedlec Ia, Karlovy Vary, Czech Republic): due to a higher

degree of orientation some reflexes are suppressed in KDK [Lehmann 2003].

2 12 22 32 42 52 62

2 Theta

Inte

nsitä

t (o.

E.)

Kaolin KDK (0-2µm)

Kaolin Sedlec 1a (6,3-20µm)

2 12 22 32 42 52 62

2 Theta

Inte

nsitä

t (o.

E.)

Kaolin KDK (0-2µm)

Kaolin Sedlec 1a (6,3-20µm)

Very low intensities due to orientation texture

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 3

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

SEM micrographs of the coarse fraction of a kaolin (size fraction 20-63 µm ofkaolin KD 50, Podbořany / Czech Republic) [Lehmann 2003].

50 µmKaolinit-Stapel

Quarz-Aggregat

alterierterFeldspat

50 µmKaolinit-Stapel

50 µmKaolinit-Stapel

Quarz-Aggregat

alterierterFeldspat

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 4

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

SEM micrographs of different size fractions (< 2 µm, 2–6.3 µm and 6.3–20 µm) of kaolin KD 50 (Podbořany / Czech Republic) [Lehmann 2003].

10 µm

Kaolinit-Plättchen

10 µm

Kaolinit-Plättchen

10 µm

Kaolinit

Quarz-Aggregate

10 µm

Kaolinit

Quarz-Aggregate

20 µmQuarz-Aggregate

Kaolinit-Stapel

20 µmQuarz-Aggregate

Kaolinit-Stapel

< 2 µm 2 – 6.3 µm 6.3 – 20 µm

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 5

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

SEM micrographs of the different size fractions of kaolin KDK(Podbořany / Czech Republic) [Lehmann 2003].

2 µm2 µmKaolinit-Plättchen

Quarz

Smektit. Komponente?

2 µm2 µmKaolinit-Plättchen

Quarz

Smektit. Komponente?

Quarz-Aggregate

Kaolinit-Plättchen

6 µmQuarz-Aggregate

Kaolinit-Plättchen

6 µm

10 µmKaolinit-Stapel

Quarz-Aggregate

10 µmKaolinit-Stapel

Quarz-Aggregate

10 µm

Kaolinit-Stapel

10 µm

Kaolinit-Stapel

< 2 µm

6.3–20 µm 20–63 µm

2–6.3 µm

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 6

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

X-ray diffractograms of kaolin KDK (Podbořany, Czech Republic), total sample, textured sample and individual size fractions [Lehmann 2003].

2 1 2 2 2 3 2 4 2 5 2 6 2

2 Theta

Inte

nsitä

t (o.

E.)

Gesamtprobe

Texturpräparat (Gesamtprobe)

0 –2µm

6,3 –20µm

2 –6,3µm

Kaolinit

Kaolinit

Quarz

FeldspatIllit

Mont-morillonit

MixedLayer

2 1 2 2 2 3 2 4 2 5 2 6 2

2 Theta

Inte

nsitä

t (o.

E.)

Gesamtprobe

Texturpräparat (Gesamtprobe)

0 –2µm

6,3 –20µm

2 –6,3µm

Kaolinit

Kaolinit

Quarz

FeldspatIllit

Mont-morillonit

MixedLayer

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 7

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

X-ray diffractogram of the fine size fraction (< 2 µm) of kaolin KDK (Podbořany, Czech Republic) after swelling in glycol (in order to emphasize

the smectite and mixed layer minerals) [Lehmann 2003].

2 12 22 32 42 52 622 Theta

Inte

nsitä

t (o.

E.)

Illit

Kaolinit

KaolinitMont-morillonit

Quarz

MixedLayer

2 12 22 32 42 52 622 Theta

Inte

nsitä

t (o.

E.)

Illit

Kaolinit

KaolinitMont-morillonit

Quarz

MixedLayer

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 9: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

9

X-ray and SEM studies of kaolins – 8

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Particle size distributions of kaolin KDK (Podbořany, Czech Republic); comparison of sedimentation and laser diffraction results [Lehmann 2003].

Äquivalentdurchmesser [µm]

Kum

ulat

ive

Mas

se [%

]

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 , 1 1 1 0 1 0 0

M a l v e r n

A n a l y s e t t e

S e d i g r a p h

Äquivalentdurchmesser [µm]

Kum

ulat

ive

Mas

se [%

]

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 , 1 1 1 0 1 0 0

M a l v e r n

A n a l y s e t t e

S e d i g r a p h

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 9

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

SEM micrographs of the different size fractions of kaolin Imperial(Karlovy Vary / Czech Republic) [Lehmann 2003].

< 2 µm

6.3–20 µm 20–63 µm

2–6.3 µm

2 µm

Kaolinit-Plättchen

Kaolinit-Stapel

2 µm

Kaolinit-Plättchen

Kaolinit-Stapel

10 µmKaolinit-Stapel Illit/Muskovit ?

Kaolinit-Plättchen

10 µmKaolinit-Stapel Illit/Muskovit ?

Kaolinit-Plättchen

20 µm

Kaolinit-Stapel

AlterierterGlimmer

20 µm

Kaolinit-Stapel

AlterierterGlimmer

20 µm

Kaolinit-Stapel

alterierter Glimmeroder umgewandelterFeldspat 20 µm

Kaolinit-Stapel

alterierter Glimmeroder umgewandelterFeldspat

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 10

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

SEM and chemical analysis by EDX of single grains; note that the K-containing mineral could be mica or feldspar, cleavage suggests mica [Lehmann 2003].

< 2 µm

6.3–20 µm 20–63 µm

2–6.3 µm

2 µm

Kaolinit-Plättchen

Kaolinit-Stapel

2 µm

Kaolinit-Plättchen

Kaolinit-Stapel

10 µmKaolinit-Stapel Illit/Muskovit ?

Kaolinit-Plättchen

10 µmKaolinit-Stapel Illit/Muskovit ?

Kaolinit-Plättchen

20 µm

Kaolinit-Stapel

AlterierterGlimmer

20 µm

Kaolinit-Stapel

AlterierterGlimmer

20 µm

Kaolinit-Stapel

alterierter Glimmeroder umgewandelterFeldspat 20 µm

Kaolinit-Stapel

alterierter Glimmeroder umgewandelterFeldspat

PTPT

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 11

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

X-ray diffractograms of kaolin Imperial (Karlovy Vary, Czech Republic), total sample and individual size fractions [Lehmann 2003].

2 12 22 32 42 52 62

Inte

nsitä

t (o.

E.)

0 – 2µm

Gesamtprobe

2 – 6,3µm

6,3 – 20µm

2 Theta

Illit/Muscovit

Kaolinit

Kaolinit

Quarz

2 12 22 32 42 52 62

Inte

nsitä

t (o.

E.)

0 – 2µm

Gesamtprobe

2 – 6,3µm

6,3 – 20µm

2 Theta

Illit/Muscovit

Kaolinit

Kaolinit

Quarz

Inte

nsitä

t (o.

E.)

0 – 2µm

Gesamtprobe

2 – 6,3µm

6,3 – 20µm

2 Theta

Illit/Muscovit

Kaolinit

Kaolinit

Quarz

0 – 2µm

Gesamtprobe

2 – 6,3µm

6,3 – 20µm

2 Theta

Illit/Muscovit

Kaolinit

Kaolinit

Quarz

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 12

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Particle size distributions of kaolin Imperial (Karlovy Vary, Czech Republic); comparison of sedimentation and laser diffraction results [Lehmann 2003].

0

10

20

30

40

50

60

70

80

90

100

0,1 1 10 100

Malvern AnalysetteSedigraph

Äquivalentdurchmesser [µm]

Kum

ulat

ive

Mas

se [%

]

0

10

20

30

40

50

60

70

80

90

100

0,1 1 10 100

Malvern AnalysetteSedigraph

Äquivalentdurchmesser [µm]

Kum

ulat

ive

Mas

se [%

]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 13

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Typical particle size distributions of kaolin; (left h.s.: sedimentation, right h.s.: laser diffraction) [Lehmann et al. 2003].

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

Equivalent diameter [µm]

Cum

ulat

ive

mas

s[%

]

Sedimentation

Laser scattering×8

×3

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 10: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

10

X-ray and SEM studies of kaolins – 14

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

• Use of three different types of Czech kaolins:Imperial®, KDK® and Sedlec 1a®.

• Particle size analysis using laser diffraction(Malvern Mastersizer µ) and sedimentation(Micromeritics Sedigraph 5100).

• Separation of size fractions < 2µm, 2 – 6.3 µm, 6.3 – 20 µm and > 20 µm by sedimentation with Atterberg cylinders.

• Quantitative phase analysis (determination of mineral content) of whole sample as well asindividual size fractions with XRD using the Rietveld-based software SIROQUANT®.

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 15

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0.1 1 10 100

Kaolin KDKKaolin Sedlec 1aKaolin Imperial

LSsh

ape

fact

or

Stokes diameter [µm]

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 16

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

°2 Theta2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

Inte

nsity

(a.u

.)

°2 Theta2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

Inte

nsity

(a.u

.)

95-7Feldspar

-2113Smectite/ML

6.3 – 20 µm

2 – 6.3 µm

0 – 2 µm

Bulk sample

Mineral

3142Illite

2726818Quartz

61667770Kaolinite

Weight%

95-7Feldspar

-2113Smectite/ML

6.3 – 20 µm

2 – 6.3 µm

0 – 2 µm

Bulk sample

Mineral

3142Illite

2726818Quartz

61667770Kaolinite

Weight%

• High amounts of smectite / mixed-layer silicates in the fraction < 2 µm.

• Increasing quartz content with increasing grain size.

KDK (Podbořany, CZ)

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 17

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

• Increasing quartz contentand decrasing kaolinitecontent with increasing grain size.

°2 Theta2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

Inte

nsity

(a.u

.)

°2 Theta2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

Inte

nsity

(a.u

.)

Sedlec Ia (Karlovy Vary, CZ)6.3 – 20

µm2 – 6.3

µm0 – 2 µm

Bulk sample

Mineral

6533Illite

12322Quartz

82929595Kaolinite

Weight%

6.3 – 20 µm

2 – 6.3 µm

0 – 2 µm

Bulk sample

Mineral

6533Illite

12322Quartz

82929595Kaolinite

Weight%

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 18

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

• Increasing quartz content with increasing grain size

• Increased mica (illite) content in the fraction 6.3– 20 µm.

°2Theta

Inte

nsity

(a.u

.)

2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

°2Theta

Inte

nsity

(a.u

.)

2 7 12 17 22 27

<2µm

2-6.3µm

6.3-20µm

Imperial (Karlovy Vary, CZ)

-Detectionlimit

11Smectite

6.3 – 20 µm

2 – 6.3 µm

0 – 2 µm

Bulk sample

Mineral

9458Illite

10525Quartz

81919286Kaolinite

Weight%

-Detectionlimit

11Smectite

6.3 – 20 µm

2 – 6.3 µm

0 – 2 µm

Bulk sample

Mineral

9458Illite

10525Quartz

81919286Kaolinite

Weight%

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

X-ray and SEM studies of kaolins – 19

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

0

20

40

60

80

100

120

140

160

180

0.1 1 10

Kaolin KDKKaolin Sedlec 1aKaolin Imperial

LS-s

hape

fact

or

Stokes diameter [µm]

Extermely high shape factors (average aspect ratios) in KDK due to high smectite / ML content

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Page 11: Sizing methods Size and Shape Characterization of …old.vscht.cz/sil/keramika/Characterization_of_particles/...1 Size and Shape Characterization of Oblate Particles W. PABST, 1E.GREGOROVÁ,

11

Acknowledgement

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Bilateral Czech-German cooperation project D2-CZ21/06-07 “Characterization of AnisometricParticles and the Microstructure of Heterogeneous Materials”, DAAD (Germany) and Academy of Sciences of the Czech Republic, and research programme “Preparation and Research of Functional Materials and Material Technologies using Micro- and Nanoscopic Methods”, Czech Ministry of Education, Youth and Sports (Grant MSM 6046137302) and project “Tvorba předmětu Charakterizace částic a částicových soustav“, Czech Ministry of Education, Youth and Sports (Grant FRVŠ F1b 674).

The support is gratefully acknowledged.Special thanks to M. Lehmann for his careful investigation of Czech kaolins,

T. Török for the creation of 3D figures,J. Hostaša for calculating the statistic exercise problems

and many of our students for performing time-consuming measurements.

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)

Acknowledgement

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

EBERHARD KARLS

UNIVERSITÄTTÜBINGEN

Selected references:[1] Pabst W., Kuneš K., Havrda J., Gregorová E.: J. Eur. Ceram. Soc. 20 (2000), 1429.[2] Pabst W., Kuneš K., Gregorová E., Havrda J.: Brit. Ceram. Trans. 100 (2001), 106. [3] Pabst W., Kuneš K., Gregorová E., Havrda J.: Key Eng. Mater. 206-213 (2002), 743.[4] Lehmann M.: Korngrössen- und Kornformcharakterisierung an Kaolinen (Grain size and shape characterization of kaolins, in German). M.Sc. Thesis, Universität Tübingen 2003.[5] Lehmann M., Berthold C., Pabst W., Nickel K.G.: Key Eng. Mater. 264-268 (2004), 1387.[6] Nováková M.: Velikostní a tvarová charakterizace destičkovitých částic (Size and shape characterization of oblate particles, in Czech). M.Sc. Thesis, ICT Prague 2007.[7] Pabst W., Berthold C., Gregorová E.: J. Eur. Ceram. Soc. 27 (2007), 1759.[8] Pabst W., Berthold C.: Part. Part. Syst. Charact. 24 (2007), 458.

PABST, GREGOROVÁ, BERTHOLD et al.ICT Prague (Czech Republic) & Universität Tübingen (Germany)