Sizes

21
Sizes

description

Sizes. Gross Properties of Nuclei. Nuclear Deformations and Electrostatic Moments. z. e. |e|Z. q. Coulomb Fields of Finite Charge Distributions. arbitrary nuclear charge distribution with normalization. Coulomb interaction. Expansion of. for |x|«1:. «1. z. e. |e|Z. q. - PowerPoint PPT Presentation

Transcript of Sizes

Sizes

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 2

Coulomb Fields of Finite Charge Distributions

|e|Z

e

z

r

r

r r r

r arbitrary nuclear charge distribution

with normalization 3 1d r r

Coulomb interaction

3( )e r

V r e dZ rr r

Expansion of 1

r r for r r

1 / 2 1 / 21 2 2 2

1 2

2 cos

11 ( 2cos )

r r r r r r rr

r rr r r

1 2 2

3

1 1 31 1

2 2 41 3 5

.....2 4 6

x x x

x

«1

for |x|«1:

221

0

1 11 cos 3cos 1 ...

21

(cos )r r r

r r Pr rr r r

20 1 1

11, cos cos , cos 3cos 1

2Legendre Polynomials P P P

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 3

Multipole Expansion of Coulomb Interaction

|e|Z

e

z

r

r

r r r

3

2 2

2 23

3

3

3

2

3

2

2

1

cos

13

( )

...

c

.

o2

.

s 1

.

er r

e r d

e r

r r

er

V r e d rr r

e e Z

e e Z

e e Z

Z

Zd r r

Zd r r

Zd r r Q

r r

Monopoleℓ = 0

Dipole ℓ = 1 Quadrupole ℓ =2

Point Charges

Nuclear distribution

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 4

A Quantal Symmetry

symmetric nuclear shape symmetric

invariance of Hamiltonian against space inversion

r

( ) (

1,

)

, 0

1E E E E

E

H r H r Parity Operator r r

H simultaneous eigen functions

evenH E

odd

3

:

( ) ( )(cos ) (cos )n nn n nel

Electrostatic multipole moments of r

M dr P r Pr r r

both even or odd

n even = +1n odd = -1

0elnM for n odd

If strong nuclear interactions parity conserving

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 5

Restrictions on Nuclear Field

Expt: No nucleus with non-zero electrostatic dipole moment

Consequences for nuclear Hamiltonian (assume some average mean field Ui for each nucleon i):

2

11

2 22 2 2 2

2 2

11

1 11

ˆˆ ( ,...., ; ...)2

ˆ ˆ, 0

ˆˆ ˆ , 0( )

ˆ( ,...., ; ...), 0

( ,...., ; ...) ( , ....,

Ai

i Ai i

i i

A

i Ai

A

i A ii

pH U r r parity conserving

m

H

Since p px x

and U r r

U r r U r

1

11

; ...)

(| | , ....,| | ; ...)

A

Ai

A

i Ai

r

U r r

Average mean field for nucleons conserves inversion invariant, e.g., central potential

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 6

Neutron Electric Dipole Moment

- + B 2

22

2n

n

n

n

n

nIntera

d

Bction d

B E

EB

E

d

qn =0, possible small dn ≠0. CP and P violation could explain matter/antimatter asymmetry

Measure NMR HF splitting for E B

Transition energies=4dnE

s

nd

B

E

B=0.1mG, tune with Bosc B. E = 1MV/m = 30Hz spin-flipof ultra-cold (kT~mK)EEkinkin=10=10-7-7eV, eV, =670Å =670Åneutrons in mgn.bottleguided in reflecting Ni tubes

PNPI (1996): dn < (2.6 ± 4.0 ±1.6)·10-26 e·cm

ILL-Sussex-RAL (1999): dn < (-1.0 ± 3.6)·10-26 e·cm

dn experimental sensitivity

From size of neutron (r0≈ 1.2fm): dn 10-15 e·m.So far, only upper limits for dn

Experimental Results for dn

W. Udo Schröder, 2007

7

Nu

clear

Defo

rmati

on

s

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 8

Intrinsic Quadrupole Moment

Consider axially symmetric nuclei (for simplicity), body-fixed system (’), z =z’ symmetry axis

z

r 3 2 2

0

2 20

( ) 3cos

3

1

cos Q

Q eZ d r

z

r

r r

r

z

Sphere: 2 2 2 2 2

0

3

0sph

r x y z z

Q

Q0 measures deviation from spherical shape.

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 9

Collective and s.p. Deformations

Q0>0 “prolate” Q0<0 “oblate”

collectivedeformation

cigarsingle hole around core

zz z z

collectivedeformation

discsingle particle around core

z

b a

Planar single-particle orbit: 20 3spQ eZ z 2 2r eZ r

Ellipsoidprincipal axes a, b

2 2 20

; ; :2

2 45 5

coll

a b RR R b a

R

Q eZ b a eZ R

Deformation parameter

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

0

Spectroscopic Quadrupole Moment

zbody-fixed {x’, y’, z’}, Lab {x, y, z}Symmetry axis z defined by the experiment

2 20 3Q eZ z r intrinsic

What is measured in Lab system?

2

0 2

2 20

13 ....... 3cos 1

cos( )

2

z

zQ eZ z r Q e

Q

Z

Q P

finite rotation through

Measured Q depends on orientation of deformed nucleus w/r to Lab symmetry axis. define Qz as the largest Q measurable.

How to control or determine orientation of nuclear Q?

Nuclear spin to symmetry axis, no quantal rotation about z’

z’

x’

y’

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

1

Angular Momentum and Q

Qz =maximum measurable maximum spin (I) alignment

2 2 2 2

32

ˆˆ ˆ ˆ ˆ3 3

( ) (cos ) ( ) . .

z m II I I

I I I

I IQ eZ z r z r Q

m I m I

d r r P r nucl wave funct

Legendre polyn. complete

basis set

2

0( , ) ( , ) (cos )

I

I Id P

23 32 2

0( ) (cos ) ( ) (cos ) (cos )

I

z I IQ d r r P r d r P P

2

0

0 2 2 0, 1 2zQ for I I

for any Q

Spins too small to effect alignment of Q in the lab.

z I

I

I couples with I to L =2

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

2

Vector Coupling of Spins

mI=I

z

1I I

I 2

01ˆ 3cos 12z

I I

I IQ Q Q

m I m I

I≠0:

1 cos cos1

II

m I I II I

0 (2 1

20 ,1 2)

10z for I

IQ Q

I

23 ( 1)

( )2 1

Iz I z I

m I IQ m Q m I

I I

Any orientation

quadratic dependence of Qz on mI

“The” quadrupole moment

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

3

Electric Multipole Interactions

z

E+E

E

F+F

F

Inhomogeneous external electric field exerts a torque on deformed nucleus. orientation-dependent energy WQ

Examples: crystal lattice, fly-by of heavy ions

E U

Taylor expansion of scalar potential U:

2 2 2

2 2 20 2 2 20

0 0 0

1( ) ...

2U U U

U r U r U x y zx y z

0r center of nucleus

2 2

2, ,ij i

i j

U Ux x y z

x x x

Axial symmetry of field assumed:

3

2 2 22 2 2

0 2 2 200 0 0

( ) ( )

...2

W eZ d r r U r

eZ U U UeZU eZ U r x y z

x y z

monopole WIS

dipole

0 quadrupole WQ

no mixed dervs.

WIS: isomer shift, WQ: quadrupole hyper-fine splitting

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

4

Electric Quadrupole Interactions

2 22 2 2

2 20 0

2QeZ U U

W x y zx z

Maxwell equs. 4 (0) 0U

2 2

2 20

2

200

12

U U U

zx y

2 2 2

2 2 20

U U U

x y z

No external charge

22 2 2

20

22 2 2

20

24

24

QeZ U

W x y zz

eZ Ur z z

z

2

20

4( )Q z I

eZ UmW Q

z

Field gradient x spectroscopic quadrupole moment mI

2

axial symm=Uzz

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

5

Quadrupole Hyper-Fine Splitting

Use external electrostatic field, align Q by aligning nuclear spin I,Measure interaction energies WQ (I >1/2 ) Quadrupole hyper-fine splitting of nuclear or atomic energy levels

Slight “hf” splitting of nuclear and atomic levels in Uzz≠0

splitting of emission/absorption lines

dN/dE

E

Uzz=0

Estimates: atomic energies ~ eVatomic size ~ 10-8cmpotential gradient Uz ~ 108V/cmfield gradient Uzz ~ 1016V/cm2

Q0 ~ 10-24 e cm2

WQ ~ 10-8 eVsmall !

mI=±2

mI=±1

I=0

I=2

mI=0

mI=0E2

ground stateUzz=0 Uzz≠0

excitedstate

isomer shift

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

6

Experimental Methods for Quadrupole Moments

Small “hf” splitting WQ of nuclear and atomic levels in Uzz≠0

splitting of X-ray/ emission/absorption lines

Measurable for atomic transitions with laser excitations

nuclear transitions with Mössbauer spectroscopy

muonic atoms:

107 times larger hf splittings WQ with X-ray and spectroscopy

scattering experiments Uzz(t)

Nuclear spectroscopy of collective rotations model for moment of inertia 2

0

2

1

2

(10 20)2

I

I IE

Q

keV

I=0I=2I=4

I=6

I=8

. .

. .

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

7

Collective Rotations

20 0

4( , ) 1 ( , )

3 5R

R R YR

z

b a : deformation parameter

20

2

0

20

20

31 0.16

5

12

. . :

21 0.31

5:

98

I

rig

irr

eZR

Rotational and inversion

symmetry even I

E I I

rigid body mom o inertia

MR

hydro dynamical

MR

Q

Nuclei with large Q0 consistent w. collective rotations lanthanides, actinides

Wood et al.,Heyde

2

15 182

keV

;2

a bR R a b

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

8

Systematics of Electric Quadrupole Moments

2

Q R

RZR

odd-Nodd-Z

Q(167Er) =30R2

Prolate

Oblate

8 20 28 50 82 126

Q<0 : e.g., extra particle around spherical core. pattern recognizable

1729 5163 123

8209

8 3, , ,O Cu Sb Bi

Q>0 : e.g., hole in spherical core pattern not obvious. If such nuclei exist, weak effect of hole for Q

27 55 115 176 16713 25 49 71 68, , , ,Al Mn In Lu Er

Tightly bound nuclei are spherical: “Magic” N or Z = 8, 20, 28, 50, 82, 126, …

Tightly bound nuclei are spherical: “Magic” N or Z = 8, 20, 28, 50, 82, 126, …

Mostly prolate (Q>0) heavy nuclei

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 1

9

Q0 Systematics

Møller, Nix, Myers, Swiatecki, LBL 1993

Q0 large between magic N, Z numbersQ0≈0 close to magic numbers

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 2

0

W. Udo Schröder, 2007

Nu

clear

Defo

rmati

on

s 2

1