Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

15
Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM

Transcript of Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

Page 1: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

Sixty+ Years of Solar Microwave Flux

Leif Svalgaard

Stanford University

SHINE 2010, Santa Fe, NM

Page 2: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

Observations and Observatories• 1947.2-1991.5 Ottawa 2800 MHz (10.7 cm)• 1991.5-2010.5 Penticton 2800 MHz• 1951.8-1994.3 Toyokawa 3750 MHz (8 cm)• 1994.4-2010.5 Nobeyama 3750 MHz• 1957.4-1994.1 Toyokawa 2000 MHz (15 cm)• 1994.4-2010.5 Nobeyama 2000 MHz• 1957.2-1994.4 Toyokawa 1000 MHz (30 cm)• 1994.4-2010.5 Nobeyama 1000 MHz• 1956.3-1994.1 Toyokawa 9400 MHz (3.2 cm)• 1994.4-2010.5 Nobeyama 9400 MHz

Page 3: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

All observations are highly correlated, especially the ones [2000, 3750] flanking 2800 MHZ

F2800 = 1.5707 F1000 - 0.9825

R2 = 0.9742

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

F2800

F1000

1957-2010

F2800 = 1.177 F2000 + 6.6574

R2 = 0.9933

0

50

100

150

200

250

300

0 50 100 150 200 250

F2800

F2000

1957-2010

F2800 = 1.1728 F3750 - 20.78

R2 = 0.9949

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

F2800

F3750

1951-2010

F2800 = 1.4215 F9400 - 294.89

R2 = 0.9584

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

2800

F9400

1956-2010

Monthly Averages

Page 4: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

This allows us to scale all observations to 2800 MHz

0

50

100

150

200

250

300

350

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

F9400

F3750

F2000

F2800

F1000

Micro Wave Fluxes Scaled to 2800 MHz Flux

The scaled values match each other very well, except 9400 MHz where the solar activity component is rather noisy.

Page 5: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

If the calibrations of the data have not changed over time, the ratios between the scaled fluxes and

the 2800 MHz flux should be constant = 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

TYKW NBYM

OTWA PENT

Ratio between Scaled Japanese Flux and Canadian 2800 MHz Flux

Within the scatter, the ratios appear to be lower than 1 before 1991 and higher thereafter. We interpret that as a 2% downward jump in Pentiction compared to Ottawa. We therefore reduce the Ottawa 2800 MHz flux by 2%.

Same color associations as on previous Figure

Page 6: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

After the correction, we rescale 2000 and 3750 MHz again to 2800 MHz, and construct a composite

F2800 = 4.56239E-06x3 - 7.93355E-04x2 + 1.13869E+00x + 1.10179E+01

R2 = 0.9939

0

50

100

150

200

250

300

0 50 100 150 200 250 300

F2800*

F2000

1957-2010

F2800 = -8.49042E-06x3 + 3.71190E-03x2 + 6.45618E-01x + 1.50641E+00

R2 = 0.9955

0

50

100

150

200

250

300

0 50 100 150 200 250 300

F3750

F2800* 1951-2010

0

50

100

150

200

250

300

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Composite F2800 MHz Solar Microwave Flux

Note how the minimum values do not vary with time (within green box)

Page 7: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

0

50

100

150

200

250

300

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

Cycle 18

0

50

100

150

200

250

300

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

Cycle 19

Individual cycles

Page 8: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

0

50

100

150

200

250

300

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Cycle 20

0

50

100

150

200

250

300

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Cycle 21

Page 9: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

0

50

100

150

200

250

300

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Cycle 22

0

50

100

150

200

250

300

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Cycle 23

Cycle 24

Page 10: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

There is a well-known, strong [slightly non-linear] relationship between the solar flux and the sunspot number (black diamonds). This relationship seems to have changed in solar cycle 23 (red circles).

y = 9.9392E-12x6 - 7.1116E-09x5 + 1.6776E-06x4 - 8.2748E-05x3 - 2.4487E-02x2 + 4.8162E+00x - 2.0983E+02

R2 = 0.97391

0

50

100

150

200

250

300

0 50 100 150 200 250 300

1947-1990

1996-2010

Same conclusion reached by others, e.g. Tapping (2010)

Tapping, SORCE 2010

Page 11: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

Plotting the reconstructed Sunspot Number (pink) from the composite 2800 MHz flux using the 1947-1990

relation shows the increasing discrepancy with the SIDC ‘official’ sunspot number (blue) the past ~15 years:

0

50

100

150

200

250

300

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Sunspot Number Observed and Reconstructed from Composite Flux Series

SSN Observed

SSN From 2800 Flux

As the Japanese and Canadian microwave data support each other so well, we must ask: how sure are we of the calibration and stability of the sunspot number?

Page 12: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

Some other organizations that have kept a keen eye on the Sun, making

their own sunspot number series:ht t p: / / www. vds- sonne. de/ gem/ r es/ r esul t s. ht mlSIDC: Solar Influences Data Analysis Center, Brussels (International sunspot numbers)SONNE prov.: SONNE network, provisional sunspot numbers SONNE def. : SONNE network, definitive sunspot numbersAAVSO: American Association of Variable Star Observers - Solar DivisionAKS: Arbeitskreis Sonne des Kulturbundes e.V., GermanyBAA: The British Astronomical Association - Solar Section, UKGFOES: G.F.O.E.S. Commission "Nombre de Wolf", FranceGSRSI: GruppoSole Ricerce Solari Italia, ItalyOAA: The Oriental Astronomical Association - Solar Division, JapanRWG: Rudolf Wolf Gesellschaft - Solar Obs. Group of Swiss Astron. SocietyTOS: Towarzystwo Obserwatorow Slonca - Solar Observers Society, PolandVVS: Vereniging voor Sterrenkunde, Werkgroep Zon, Belgium

Page 13: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

All these series can be successfully scaled to SIDC before August 2001

0

20

40

60

80

100

120

140

160

180

200

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

SIDC

RSONNE AAVSO AKS BAA GFOES GSRSI OAA RWG TOS VVS

But the same scaling relation yields a sunspot number after that time that is systematically 12% higher than SIDC’s. Did all these organizations somehow change their procedures and/or or observer cadre? Or did SIDC?

Page 14: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

It seems that we increasingly see ‘fewer spots’ for the same amount of microwave flux. We can quantify that by the

ratio between observed spots and expected spots from the pre-1991 relationship:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

?

Ratio of Observed Sunspot Number to Simulated SSN

Zurich SIDC

+12% correction

Monthly means when R>4

Adding 12% [assuming that SIDC has a problem in August 2001] does not materially alter this conclusion (red crosses).

Page 15: Sixty+ Years of Solar Microwave Flux Leif Svalgaard Stanford University SHINE 2010, Santa Fe, NM.

1500

2000

2500

3000

3500

4000

1990 1995 2000 2005 2010 2015 2020

0

0.2

0.4

0.6

0.8

1B Gauss Intensity

Year

Livingston & Penn Umbral Data Measurements

1000

1500

2000

2500

3000

3500

4000

1990 1995 2000 2005 2010 2015 2020

B Gauss

Year

Livingston & Penn Umbral Magnetic Field Measurements

Are there other indications of lesser visibility of sunspots?

Livingston and Penn report a decrease of magnetic field strength and hence decrease in contrast (less dark) with the surrounding photosphere.

Is this discrepancy another one?