sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we...

9
!"# %" #& ’(()* +"+&,-.+ /",0&12’3",4 56 7&/8%& #98/9 ":;&/-0 ’1& 8,/).%&% 8, -9& 0*0-&+6 <6 =&)’32& -" -9& 0*0-&+> 8%&,3?* -9& 8,-&1,’) ’,% &@-&1,’) ?"1/&06 A6 B&18?* -9’- -9& 0*0-&+ 80 80")’-&%6 C6 D&- -9& E,’) +"+&,-.+ "? -9& 0*0-&+ &F.’) -" 8-0 8,83’) +"+&,-.+6 =&+&+:&1 -9’- +"+&,-.+ 80 ’ 2&/-"1> 86&6> 8? ’ /’1 +’G&0 ’ HI -.1, -9&, -1’2&) #8-9 0’+& 0(&&% ’0 -9’- (18"1 -" -.1,8,J> -9& +"+&,-.+ 80 ,"- -9& 0’+&6 !"!#$%&! (#)%"*+ K !,-./01- 23/ 4. 3/3567.8 46 19:/; <.20,=9 K %>. -,-./01- ,? 3 23= 322:8./0 :9 .@135 0, 0>. <.20,= 91- ,? 0>. -,-./01- ,? .32> 23= A B C 4.?,=. 0>. 2,55:9:,/D A C L",0&12’3", "? +"+&,-.+ L",0&12’3", "? +"+&,-.+ ?"1 8,%828%.’) /"+(",&,-0 M@> *> NO

Transcript of sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we...

Page 1: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

!"#$%"$#&$'(()*$+"+&,-.+$/",0&12'3",4$

56! 7&/8%&$#98/9$":;&/-0$'1&$8,/).%&%$8,$-9&$

0*0-&+6$

<6! =&)'32&$-"$-9&$0*0-&+>$8%&,3?*$-9&$8,-&1,')$

',%$&@-&1,')$?"1/&06$

A6! B&18?*$-9'-$-9&$0*0-&+$80$80")'-&%6$

C6! D&-$-9&$E,')$+"+&,-.+$"?$-9&$0*0-&+$&F.')$

-"$8-0$8,83')$+"+&,-.+6$=&+&+:&1$-9'-$

+"+&,-.+$80$'$2&/-"1>$86&6>$8?$'$/'1$+'G&0$'$HI

-.1,$-9&,$-1'2&)$#8-9$0'+&$0(&&%$'0$-9'-$(18"1$-"$

-.1,8,J>$-9&$+"+&,-.+$80$,"-$-9&$0'+&6$$

!"!#$%&!''(#)%"*+'

K! !,-./01-'23/'4.'3/3567.8'46'19:/;'<.20,=9'

K! %>.'-,-./01-',?'3'23='322:8./0':9'.@135'0,'0>.'<.20,='91-'

,?'0>.'-,-./01-',?'.32>'23='A'B'C'4.?,=.'0>.'2,55:9:,/D'

A'

C'

L",0&12'3",$"?$+"+&,-.+$

L",0&12'3",$"?$+"+&,-.+$

?"1$8,%828%.')$$/"+(",&,-0$

M@>$*>$NO$

Page 2: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

P)'03/$',%$Q,&)'03/$L"))808",0$$

Collisions are classified as elastic or inelastic based on whether the kinetic energy is conserved, meaning whether it is the same before and after the collision.!

R$/"))808",$8,$#98/9$-9&$-"-')$G8,&3/$&,&1J*$',%$+"+&,-.+$

'1&$.,/9',J&%$:&?"1&$',%$'S&1$-9&$/"))808",6$$$

Momentum is conserved in any collisions as long as external forces are negligible.

Elastic Collision!

Two types of inelastic collision: Perfectly inelastic and inelastic

E.=?.2056'F/.539G2H'T#"$":;&/-0$03/G$-"J&-9&1$'S&1$-9&$/"))808",>$+"28,J$

-"J&-9&1$'-$'$/&1-'8,$2&)"/8-*6'

F/.539G2H'L"))8%8,J$":;&/-0$%"$,"-$03/G$-"J&-9&1$'S&1$-9&$/"))808",$:.-$0"+&$G8,&3/$

&,&1J*$80$)"0-6'

Inelatic Collision!

R$/"))808",$8,$#98/9$-9&$-"-')$G8,&3/$&,&1J*$80$,"-$-9&$0'+&$

:&?"1&$',%$'S&1$-9&$/"))808",>$:.-$+"+&,-.+$806$

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.

K! #IA+%F)'')"IIF+F"$+'

K! F$#IA+%F)'')"IIF+F"$+'

)"IIF+F"$+'

!"#$%&'#(&)*%+,$)(,)"#("%$((

-./$0&(&"(*%"&1$)(2(((

F9'3'$.J0,/K9'2=385.'5:L.'0>.',/.''

E:201=.8'>.=.M'3/'.N3-O5.',?'3/''

.539G2',=':/.539G2'2,55:9:,/P'.539G2'

Page 3: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

56$P)'03/$/"))808", $ $I $$$$$$$U$V$/",0-',-$

<6$Q,&)'03/$/"))808",$ $ $I $U?$W$U8$

A6$L"+()&-&)*$8,&)'03/$/"))808",$!$":;&/-0$03/G$-"J&-9&1X$$

$ $ $86&6$25?V2<?$

C6$P@()"082&$ $ $ $U?$Y$U8$ M3+&$1&2&10')$"?$

',$8,&)'03/$/"))808",O$

I1/2>',?'3'23Q:9>'M(&1?&/-)*$8,&)'03/O$

K! /.0'-,-./01-'4.?,=.''R''/.0'-,-./01-'3S.=''''

K! ''''''''''''''''''''T/.0'!"#4.?,=.''R''T/.0'!"U3S.='''''

K! TV'L;UTW'-X9.2U'Y'TZ'L;UT[DZ'-X9.2U''R''TV'L;'Y'Z'L;UT"3S.=U'''

K! ''''''''''''''''''''''''VD\'L;D-X9.2''R''T]'L;UT"3S.=U'''

K! ''''''''''''''''''''''''''''''''''''"3?=VD\'X]X']'L;'''''''''''''''''''

$"3S.='R''[D]''-X9.2'

$"3S.=R'$

A'V'L;'^9>'9J:--:/;'30'W'-X9.2'9J355,J9'3'Z'L;'^9>'0>30':9'30'[DZ'-X

9D''_:/8'0>.'<.5,2:06',?'0>.'^9>':--.8:30.56'3S.='`51/2>aD''

The mass of the block of wood is 2.50-kg and the mass of the bullet is 0.0100-kg. The block swings to a maximum height of 0.650 m above the initial position. Find the initial speed of the bullet.!

P@6$R$Z'))803/$[&,%.).+$

What kind of collision?

No net external force ! momentum conserved

Perfectly inelastic

Solve for V01

What do we not know? The final speed!!

How can we get it? Using the mechanical

energy conservation!

Page 4: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

Using the solution obtained previously, we obtain

Now using the mechanical energy conservation

Solve for Vf

Continued: A Ballistic Pendulum!

['13/)&$5X$

['13/)&$<X$

['13/)&$AX$

['13/)&$CX$$

['13/)&$\X$$

Momentum Conservation (N-particles)!

D.++8,J$'))$"?$-9&$&F.'3",0X$$

Q?$,"$&@-&1,')$?"1/&0$'/-$",$-9&$

0*0-&+$M86&6$8-$80$80")'-&%O$-9&,X$

\&#-",$QQQ$

L",06$"?$

+"+&,-.+$

F/0.=/35'?,=2.9'91-'0,'7.=,':/'3'

25,9.8'9690.-D'

#NH''R$9"/G&*$(./G$Z$1&0-0$",$'$0+""-9$8/&$

0.1?'/&$',%$80$0-1./G$:*$'$0&/",%$(./G$R>$#98/9$

#'0$"18J8,'))*$-1'2&)8,J$'-$C]6]$+^0$',%$#98/9$80$

%&_&/-&%$A]6]`$?1"+$8-0$"18J8,')$%81&/3",6$$[./G$

Z$'/F.81&0$'$2&)"/8-*$'-$'$Ca6]`$',J)&$-"$-9&$

"18J8,')$%81&/3",$"?$R$'0$09"#,6$$T9&$(./G0$9'2&$

-9&$0'+&$+'006$$3U''),-O10.'0>.'9O..8',?'.32>'O12L'

3S.='0>.'2,55:9:,/D''''''4U''b>30'?=32G,/',?'0>.',=:;:/35'

L:/.G2'./.=;6',?'O12L'A'8:99:O30.9'81=:/;'0>.'2,55:9:,/P'

Page 5: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

D").3",X$M'O$T9&$@$',%$*$/"+(",&,-0$"?$-9&$+"+&,-.+$'1&$

0&('1'-&)*$/",0&12&%6$$=8J9-V("0832&$@>$H(V("0832&$*6$$D-'1-$#8-9$@$

%81&/3",$M0.:0/18(-$b5c$1&(1&0&,-0$Z&?"1&>b<c$1&(1&0&,-0$RS&1$

/"))808",O>$$'p1x = p2x!

!

m1vA1

= m1vA 2cos30 + m

2vB 2cos45

d'00$/',/&)$08,/&$:"-9$(./G0$9'2&$-9&$0'+&$+'00>$$$

!

vA1

= vA 2cos30 + v

B 2cos45

\"#$8,$-9&$*$%81&/3",>$$$5$

p1y = p2y!

!

0 = mvA 2 sin30 "m v

B 2 sin45 (2nd term is negative)

!

0 = vA 2sin30 " v

B 2sin45

!

vA 2

= 2 "2

2vB 2

= 2vB 2

<$

D.:03-.-&$PF6$<$8,-"$PF6$5X$

!

vA1

= 23

2vB 2

+ vB 2

2

2=1.93v

B 2

!

vB 2

= 20.70 m/s

!

vA 2

= 20.7 " 2 = 29.27 m/s

['1-$M:OX$$MG8,&3/$&,&1J*O$RJ'8,>$.0&$0.:0/18(-$b5c$?"1$Z&?"1&>b<c$?"1$RS&1$/"))808",O>$$'

\"#$#&$0")2&%$-9&$0(&&%$"?$&'/9$(./G$:&?"1&$',%$'S&1$

/"))808",$8,$('1-$M'OX$

!

K1

=1

2mv

A1

2

!

K2

=1

2mv

A 2

2

+1

2mv

B 2

2

!

K2

K1

=1

2mv

A 2

2

+1

2mv

B 2

2"

# $

%

& ' ÷

1

2mv

A1

2"

# $

%

& '

!

=vA 2

2

+ vB 2

2

vA1

2

!

K2

K1

=vA 2

2

+ vB 2

2

vA1

2

!

=29.27

2+ 20.70

2

402

!

=29.27

2+ 20.70

2

402

!

= 0.80\"#$-9&$/9',J&$8,$-9&$

G8,&3/$&,&1J*X$

!

"K

K1

=K2#K

1

K1

= 0.8 #1= #0.2

3"&$4((5$%0$($%$)67(8"++(9(:;<2((=")(&1>+(?*)&@(A(B>B%C&(0*)$(*."'&(&1$(*%68$+(",(&1$(D$8"0>&7(

D$0&")+(+>%0$(>%(E>%$F0($%$)67(G+0*8*)H@("%87(&1$(+?$$B+(#*I$)2((

Page 6: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

#J(

#:(

DJ(

DKJ( DK

:(

D:( Z&?"1&$

RS&1$

!!A'19.?15'/.J'-.391=.',?'3'2,55:9:,/'2355.8'0>.'2,.c2:./0',?'=.9G01G,/'"! %>.'2,.c2:./0',?'=.9G01G,/':9'8.^/.8'39'0>.'=3G,',?'0>.'=.53G<.'9O..8',?'3OO=,32>'4.?,=.'0>.'2,55:9:,/'0,'0>.'=.53G<.'9O..8',?'9.O3=3G,/'3S.='0>.'2,55:9:,/'

L"&e/8&,-$"?$=&03-.3",$!!L",0&12'3",$"?$+"+&,-.+$:*$8-0&)?$80$0"+&3+&0$,"-$

0.e/8&,-$-"$0")2&$'))$-9&$%&-'8)0$"?$'$/"))808",$

!

Coefficient of Restitution : e =v

2'-v

1'

v1

- v2

_,='0>.';./.=35'239.'9>,J/'34,<.H$

E.=?.2056'F/.539G2'),55:9:,/9'

!!F/.539G2'2,55:9:,/9'3=.',/.9'J>.=.'0>.'2,.c2:./0',?'=.9G01G,/':9'7.=,'"! :D.D'

"! )5.3=56'0>:9'=.@1:=.9'0>.'^/35'<.5,2:G.9',?'0>.'0J,',4d.209'0,'4.'.@135'9,'0>.'0J,',4d.209'-,<.',e'0,;.0>.='39',/.'3S.='0>.'2,55:9:,/'

!

Coefficient of Restitution : e =v

2'-v

1'

v1

- v2

= 0

E.=?.2056'#539G2'),55:9:,/9'

!

Coefficient of Restitution : e =v

2'-v

1'

v1

- v2

=1

"! =.@1:=.9'0>.'^/35'<.5,2:G.9',?'0>.'9.2,/8',4d.20'0,'-,<.',e'J:0>'0>.'93-.'<.5,2:06'39'0>.'^=90',4d.20M'J>:5.'0>.'^=90',4d.20'03L.9',/'0>.':/:G35'<.5,2:06',?'0>.'9.2,/8',4d.20'3S.='2,55:9:,/D'

Page 7: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

P@'+()&X$$Z".,/8,J$Z'))$+1OO,9.'3'4355':9'8=,OO.8'?=,-'3'>.:;>0'>'3/8'4,1/2.9',/'0>.';=,1/8D''+1OO,9.'3S.='0>.'4,1/2.'0>.'4355'=.32>.9'3'>.:;>0',?'>KD''_:/8'3'=.53G,/9>:O'4.0J../'2,.c2:./0',?'=.9G01G,/'J:0>'0>.9.'0J,'>.:;>09D'

+,51G,/H'

!

Coefficient of Restitution : e =v

2'-v

1'

v1- v

2

=v

1'

v1

=v'

v

!

Before bouncing : v 2 = v0

2- 2g(-h)

%>.'3991-OG,/':9'0>30';=,1/8':9'903G,/3=6'0>=,1;>,10D'

+:/2.'0>.'9O..8',?':-O320'4.?,=.'3/8'3S.='3=.'=.530.8'0,'2,/903/0'322.5.=3G,/'T;=3<:06UM'J.'2,158'J=:0.'L:/.-3G2'.@13G,/9M'

!

v = 2gh

!

after bouncing : 0 = v '2 -2gh'

!

v' = 2gh'

!

e =v

1'

v1

=2gh'

2gh=

h'

h:D.DM'?=,-'0>.'>.:;>0',?'4,1/2.'J.'

L/,J'0>.'2,55:9:,/'06O.'

d"3",$"?$-9&$L&,-&1$"?$d'00$

!&1&X$

bf9&,$'$:"%*$"1$'$/"))&/3",$"?$('13/)&0$80$'/-&%$

",$:*$&@-&1,')$?"1/&0>$-9&$/&,-&1$"?$+'00$+"2&0$

;.0-$'0$-9".J9$'))$-9&$+'00$#&1&$/",/&,-1'-&%$'-$

-9'-$("8,-$',%$8-$#&1&$'/-&%$",$:*$'$,&-$?"1/&$

&F.')$-"$-9&$0.+$"?$&@-&1,')$?"1/&0$",$-9&$

0*0-&+6c$

A%(,*0&(&1>+(>+(&1$(.*+>0(*++'#?F"%(L$CD$(.$$%('+>%6(&1)"'61"'&(&1$(0"')+$M((N1>+(>+(

?)$0>+$87(L1*&((1*+(*88"L$B('+(&"(&)$*&("./$0&+(*+(?">%&(?*)F08$+2(

Diver performs a simple dive.

The motion of the center of mass follows a parabola since it is a projectile motion.

Diver performs a complicated dive.

The motion of the center of mass still follows the same parabola since it still is a projectile motion.

Page 8: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

Motion of the Center of Mass!T"$0&&$-9&$08J,8E/',/&$"?$-9&$/&,-&1$"?$+'00$M/6"6+6O$%8g&1&,3'-&$

-9&$1&)'3",0$#8-9$1&0(&/-$-"$3+&$-"$0&&$#9'-$9'((&,0$#9&,$-9&$

('13/)&0$+"2&X$

78g&1&,3'3,J$'J'8,$#&$J&-X$

f98/9$#&$/',$1&I#18-&$'0X$bT9&$-"-')$+'00$"?$-9&$0*0-&+$+.)3()8&%$:*$

-9&$2&)"/8-*$"?$-9&$/&,-&1$"?$+'00$80$&F.')$

-"$-9&$-"-')$+"+&,-.+$"?$-9&$0*0-&+6c$

T9&$18J9-$9',%$08%&>$:*$\&#-",$QQ>$80$&F.')$-"$-9&$0.+$"?$Rhh$"?$-9&$

?"1/&0$",$Rhh$"?$-9&$('13/)&0$8,$-9&$0*0-&+6$$R0$:&?"1&>$/)'008?*$

-9&0&$'0$&8-9&1$8,-&1,')$"1$&@-&1,')$-"$-9&$0*0-&+6$$Z.-$'0$#&$0'#$

\&#-",$QQQ$8+()8&0$$$$

P@'+()&$?"1$L&,-&1$"?$d'00$Thee people of roughly equivalent mass M on a lightweight (air-filled) banana boat sit along

the x axis at positions x1=1.0m, x2=5.0m, and x3=6.0m. Find the position of CM.

Using the formula for

CM

Page 9: sites.ualberta.caygu/courses/phys144/notes/momentum2.pdfUsing the solution obtained previously, we obtain Now using the mechanical energy conservation Solve for V f Continued: A Ballistic

Starting from rest, two skaters push off against each other on ice where friction is negligible. One is a 54-kg woman and one is a 88-kg man. The woman moves away with a speed of +2.5 m/s, the male skater moves with a velocity of -1.5 m/s. What is final v for center of mass?!

Q/&$DG'-&1$[1":)&+$