Sistemas de Massa Variavel v8

117
THE DYNAMICS OF VARIABLE MASS SYSTEMS MECÂNICA B PME 2200 11.06.2013 Prof. Dr. Celso P. Pesce Escola Politécnica F g Oscillating water column in the moon- pool of a mono- column platform The falling chain of Cayley Vertical collapse of buildings

description

masa varivel

Transcript of Sistemas de Massa Variavel v8

Page 1: Sistemas de Massa Variavel v8

THE DYNAMICS OF VARIABLE MASS SYSTEMS

MECÂNICA B PME 2200

11.06.2013

Prof. Dr. Celso P. PesceEscola Politécnica

F

gOscillating water column in the moon-pool of a mono-column platform

The falling chain of Cayley

Vertical collapse of buildings

Page 2: Sistemas de Massa Variavel v8

Summary

The subject has not always been deeply discussed in Engineering Mechanics Education and, even worse, not always properly included in many modern Engineering Courses curricula, at both undergraduate and graduate levels.

The purpose of the present talk is to re-address such an important matter, aiming at contributing to Engineering Mechanics Education, by discussing under a historical perspective some theoretical aspects involved in variable mass systems dynamics which are usually hidden behind many derivations.

Page 3: Sistemas de Massa Variavel v8

Motivation

Variable mass systems have been the focus of a large number of problems in classical mechanics. However, despite the classic nature and importance of variable mass systems dynamics, many misinterpretations were done on the correct application of Newton’s second law, even in a not so distant past. Such misinterpretations sometimes give rise to apparent paradoxes in Classical Mechanics.

For instance, motivated by the rocket problem, a long debate on the correct application of Newton’s law took place during the 1960’s, among American scholars and educators.

Even subtler may be the proper application and interpretation of the Lagrangian formalism to systems presenting mass dependence on time, position (and velocity).

Page 4: Sistemas de Massa Variavel v8

Facts on Newton’s law application 1960’s American scholars debate

“…this basic law of mechanics is currently

being seriously misinterpreted. This

misinterpretation appears under conditions

where the mass of a body is a function of

time.”

Meriam J.L. 1960 J. Eng. Ed. 51 243

Page 5: Sistemas de Massa Variavel v8

Facts on Newton’s law application 1960’s American scholars debate

“There exists considerable confusion and

disagreement among professional physicists

concerning the correct classical equations of

motion for systems of changing mass…”

Tiersten M.S. 1969 Am. J. Phys. 40 183

Page 6: Sistemas de Massa Variavel v8

Plastino, A.R. & Muzzio, J.C. 1992

Facts on Newton’s law application 1990’s

Page 7: Sistemas de Massa Variavel v8

Brief history

(1687)

Sir Isaac Newton(1689, by Godfrey Kneller)

* January 4th 1643, in Woolsthorpe; † March 31st 1727 in London

Page 8: Sistemas de Massa Variavel v8

Newton’s Laws

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Lex II: Mutationem motis proportionalem esse vi motrici impressae, etfieri secundum lineam rectam qua vis illa imprimitur.

Lex III: Actioni contrariam semper et aequalem esse reactionem: sine corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

Page 9: Sistemas de Massa Variavel v8

“Law I – Every body perseveres in its state of rest or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon”;

“Law II - The alteration of [the quantity] of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed”;

“Law III - To every action there is always opposed an equal reaction – or the mutual actions of the two bodies upon each other are always equal, and directed to contrary parts”;

Dugas, page 206.

Dugas, R., 1955, A History of Mechanics, Dover ed.,1988, 662 pp.

Newton’s Laws

Law of inertia; establishes inertial frames of reference

Law of acceleration

Action-reaction Principle

Page 10: Sistemas de Massa Variavel v8

Newton’s Definition of mass

The term ‘law of motion’ was introduced in the 17th century by Descartes. After stating the law of inertia in an essentially modern form, Descartes stated a law of conservation of momentum with respect to its magnitude only, and not to direction, and continued with a list of ‘laws of impact’ which involved the impact between solid bodies.

At the beginning of his famous Philosophiae Naturalis Principia Mathematica, Newton asserted the so-called ‘laws of motion’, which is more than a result of an appreciation of previous works.

“Rather than dealing with relations between initial and final conditions in an interacting system, as done by Descartes, Newton dealt directly with the effect of the forces acting on individual bodies…”

Arons and Bork (1964)

Page 11: Sistemas de Massa Variavel v8

Newton’s Definition of massWhen Newton discussed the motion of bodies, the trajectories were conic sections and not straight lines or other paths, and the forces considered by him were central forces.

Apparently, he showed no interest in the mechanical problems usually found in today textbooks, particularly the variable mass ones.

Paradoxically, according to Dugas (1951), “Newton introduced the notion of mass into Mechanics(*)”, even though “this notion had appeared in Huyghen’s work, but only in an impermanent form”.

(*) “Definition I – The Quantity of Matter is the measure of the same, arising from its density and bulk conjunctly”; Dugas (1951), page 201.

Page 12: Sistemas de Massa Variavel v8

Variable mass problems

Early 19th Century

According to Šíma and Podolský (2005), the Czech scientist and inventor von Buquoy “was the first to investigate systems with a varying mass”.

Georg Franz August de Longueval, Baron von Vaux, Graf von Buquoy (* Brussel, September 7th 1781; † Prag, April 19th 1851)

“In 1812 von Buquoy explicitly formulated the correct dynamical equation of motion for the case when the mass of a moving object is changing”.

von Buquoy, G., 1812, “Analytische Bestimmung des Gesetzes der Virtuellen Geschwindigkeiten in Mechanischer und

Statischer Hinsicht”, Leipzig: Breitkopf und Hartel.

Page 13: Sistemas de Massa Variavel v8

Early 19th Century

von Buquoy’s work was presented in 1815, at the Paris Academy of Sciences. “Apart from a single short article by Poisson (1819), his ideas did not attract attention, and they gradually become forgotten.”

Šíma and Podolský (2005).

Poisson, S.D., 1819, “Sur le Mouvement d’un Système de Corps, en supposant le Masses Variables”, Bull. Sci. Soc. Philomat. Paris, avril, pp. 60-62

Siméon Denis Poisson * Pithviers, June 21st 1781; † Paris, April 25th 1840

Variable mass problems

Page 14: Sistemas de Massa Variavel v8

Variable mass problems

19th Century

“Buquoys’s general equation of motion and other explicit examples were later formulated independently by various authors;

to be mentioned, Tait and Steele (1856) and Meshchersky (1897),”

Šíma and Podolský (2005).

Peter Guthrie Tait, 1831-1901;

Scottish, topology and mathematical physics

Page 15: Sistemas de Massa Variavel v8

Variable mass problemsMid 19th Century

1857, Cayley: suspending chain coiled up at a table– Cayley, A., 1857, "On a Class of Dynamical Problems". Proceedings of Royal

Society of London, Vol VIII, pp 506-511.

Falling chain: still a very intriguing problem…

– Davis, Am. J. Phys., 1952– Prato & Gleiser, Am. J. Phys, 1982– Calkin & March, Am. J. Phys., 1989– Vrbik, Am. J. Phys., 1993– Keiffer, Am. J. Phys., 2001– Tomaszewski & Pieranski, Am. J. Phys., 2006– Wong & Yasui, Am. J. Phys., 2006– Wong, Youn & Yasui, Eur. J Phys, 2007– Casetta, Doctoral Thesis, EPUSP, 2008– Grewal, Johnson & Ruina, Am. J. Phys., 2011

Arthur Cayley, 1821-1895British mathematician

Page 16: Sistemas de Massa Variavel v8

Variable mass problemsLate 19th Century

Ivan Vsevolodovich Meshchersky, 1859 - 1935 Meshchersky (1897) Master Thesis, and his subsequent work written in 1904, have been ever since recognized - in the Russian technical literature - as the limestone in the study of variable mass systems in the context of Classical Mechanics; see, e.g., Targ (1976), page 394 or Starjinski (1980), page 498.

Meshchersky, I.V., 1897, Dinamika tochki Peremnoj Massy, St Petesburg, Akademia Nauk, Peterburskij Universitet.

Meshchersky, I.V, 1904, “Equations of Motion of a Variable Mass Point in the General Case” (in Russian), St. Petersburg Polytechnic University News, Vol.1, pp. 77-118.

Page 17: Sistemas de Massa Variavel v8

Ivan Vsevolodovich Meshchersky1859 – 1935

(http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

Meshchersky taught in St Petersburg for 58 years. Obtained a Master's Degree in applied mathematics in 1889 and was appointed as a dozent at the university in 1890.

Meshchersky is best known for his work on the motion of bodies of variable mass which he described in January 1893 at a meeting of the St Petersburg Mathematical Society.

He continued to develop his work on this topic for his dissertation entitled The dynamics of a point of variable mass, submitted in 1897.

Meshcheysky’s examples:

the increase of the mass of the earth caused by falling meteorites;

the increase of the mass of a freezing iceberg and the decrease of a thawing one;

the increase of the mass of the sun gathering of cosmic dust and its decrease with radiation;

the decrease of the mass of a rocket as its fuel is consumed.

Page 18: Sistemas de Massa Variavel v8

Ivan Vsevolodovich Meshchersky1859 – 1935

(http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

He applied his theory to comets being the first to study the inverse problem of determining the loss of mass from a knowledge of the orbit and the acting forces.

His work on the motion of particles of variable mass formed the basis for rocket technology developed after 1945.

Even before his dissertation Meshchersky had shown another major interest in his life: teaching.

He published The teaching of mechanics in certain institutions of higher education in Italy, France, Switzerland and Germany in 1895.

This played a major role in raising the standards of the teaching of mechanics in Russia. The St Petersburg Polytechnic Institute was being set up at this time and Meshchersky played a major role in developing the curriculum. He was appointed as Head of Applied Mathematics at the Polytechnic Institute in 1902.

Meshchersky’s Mechanics course became famous, leading in 1914 to a textbook “A collection of problems of mechanics”.

This famous book had reached its 26th Russian edition by 1960, translated into English by Pergamon Press in 1965.

Curiously, at the time of the American Scholars

Debate

Even before that, in 1903, the Russian scientist Tsiolkovski - who had invented a kind of rocket-aircraft around 1883 - applied Meshchersky’s Equation to solve the rocket problem in two

versions: (i) gravity-free and (ii) non-gravity-free. Those two problems are sometimes referred to

as the first and the second problems of Tsiolkovski.

Page 19: Sistemas de Massa Variavel v8

Other worth mentioning studies

Early 20th Century

1928; Levi-Civita: two bodies, variable mass problem "Sul Moto di un Corpo de Massa Variabile". Rendiconti delle Sedute della Reale Accademia Nazionale dei Lincei. Vol VIII, pp 329-333, Aggiunta alla nota, pp 621-622.“Ancora sul Moto di um Corpo de Massa Variabile”, Rendiconti delle Sedute della Reale Accademia dei Lincei, Vol.11, pp. 626-632.

1936; Agostinelli: dynamic systems with variable mass"Sui Sistemi Dinamici di Masse Variabili". Atti della Reale Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matemat. Naturali, 71, I, pp. 254-272.

1940-50’s; several authors: rockets and satellite problems.Leitmann, G., 1957, “On the Equation of Rocket Motion”, Journal of the British Interplanetary Society, Vol.16, No. 3, pp. 141-147.

(lost or gained at null velocity)

still lost or gained at null velocity

1873-1941, Italy

Page 20: Sistemas de Massa Variavel v8

American Scholars debate

The 1960’s

1960, Meriam: Engineering Education “Variable-Mass Dynamics”, Journal of Engineering Education, Vol.51, No. 3, pp. 240-243.

1962, Thorpe: Engineering Education“On the Momentum Theorem for a Continuous System of Variable Mass”, American Journal of Physics, Vol.30, No. 9, pp. 637-640.

....

1969, Tiersten: Engineering Education“Force, Momentum Change and Motion”, American Journal of Physics, Vol.37, No. 1, pp. 82-87.

Page 21: Sistemas de Massa Variavel v8

Recent studies on variable mass systemsLate 60’s to 80’s

1968, Weber, H.I.

“Vibração de Vigas com Massa Variavel no Tempo”. MSc Thesis, UFRJ

1973 McIver: general open systems“Hamilton’s Principle for Systems of Changing Mass”, Journal of Engineering Mathematics, Vol.7, No. 3, pp. 249-261.

1975, Mikhailov: history of mechanics. “On the history of variable-mass system dynamics”. Mechanics of Solids, 10(5), 32-40

1982 Copeland work-energy theorem“Work-energy theorem for variable mass systems”, A. J. Phys., 50(7), 599-601.

Key contribution generalizing

Reynolds Transport Theorem

Supervisor: Bevilacqua, L.

Page 22: Sistemas de Massa Variavel v8

Recent studies on variable mass systemsEarly 80’s to 90’s

1982, 84, Ge: non-holonomic variable mass systems

1984, 89, 92, 93, 94, 2001: industrial systems (textile, lifting-crane) (Cveticanin) vibration problems due to variable mass;

1995, 97 (Crellin et al): tethered satellites;

1999, Mušicki: general open systems“General Energy Change Law for Systems with Variable Mass”, European Journal of Mechanics A/Solids, Vol.18, pp. 719-730.

Page 23: Sistemas de Massa Variavel v8

Nowadays studies: 2000-2004

2000, Mušicki: general open systems”Generalization of a New Parametric Formulation of Mechanics for Systems with Variable Mass”, Eur Journal of Mechanics A/Solids, Vol.19, pp. 1059-1076.

2002, Eke & Mao: Engineering Education“On the Dynamics of Variable Mass Systems”, International Journal of Mechanical Engineering Education, Vol.30, No. 2, pp. 123-137.

2003, Pesce: Lagrange Equation and variable mass systems “The Application of Lagrange Equations to Mechanical Systems with Mass Explicitly Dependent on Position”, Journal of Applied Mechanics, Vol. 70, pp. 751-756.

2004, Irschik & Holl: general open systems“The Equations of Lagrange Written for a Non-Material Volume”, Acta Mechanica, Vol.153, pp. 231-248.

2004, Irschik & Holl: general open systems“Mechanics of Variable-Mass Systems – Part 1: Balance of Mass and Linear Momentum”, Applied Mechanics Review, Vol.57, No. 2, pp. 145-160.

Page 24: Sistemas de Massa Variavel v8

2005, Mušicki: general open systems

“Extended Lagrangian Formalism and Main General Principles of Mechanics”, European Journal of Mechanics A/Solids, Vol.24, pp. 227-242

2006, Wong & Yasui: Engineering Education

“Falling chains”. American Journal of Physics, v. 6, 490-496.

2006, Pesce, Casetta, Tannuri: ocean engineering applications

“The Lagrange Equations for Systems with Mass Varying explictly with Position: Some Applications to Offshore Engineering”, JBSMSE, vol. 28, 496-504.

2007, Wong, Youn & Yasui: Engineering Education“The falling chain of Hopkins, Tait, Steele and Cayley”. European Journal of

Physics, v. 28, 385-400.

2007, Bazant & Verdure: mechanics of progressive collapse“Mechanics of progressive collapse: learning from World Trade center and Building Demolitions”, Journal of Engineering Mechanics, ASCE Vol.133 (3), pp. 308-319

2007, Casetta & Pesce: hydrodynamic impact

“Hamilton’s Principle for Dissipative Systems and Wagner’s Problem”, 2nd International Workshop on Water Waves and Floating Bodies 15th–18th April 2007, Plitvice, Croatia.

2005-2007

Page 25: Sistemas de Massa Variavel v8

2008-2010

2008, Seffen: mechanics of progressive collapse

“Progressive Collapse of the World Trace Center: simple analysis”, Journal of Engineering Mechanics, ASCE Vol.134 (2), pp. 125-132

2008, Casetta: mechanics of variable mass systems“Contribuições à Mecânica dos Sistemas de Massa Variável”, EPUSP, Tese de Doutorado, 185 pp

http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05082009-100852/

2009, Cveticanin: multi body dynamics“Dynamics of Body Separation – analytical procedure”, Nonlinear Dynamics, Vol. 55, pp. 269-278

2009, Schwarzbart et al: tethered satellites“Tethered satellite systems: a challenge for mechanics and applied mathematics. GAMM-Mitteilungen, v. 32, n. 1, p. 105-20.

2010, Bažant, Le, Greening, & Benson: mechanics of progressive collapse

“What did and did not cause collapse of World Trade Center twin towers in New York?"”, Journal of Engineering Mechanics, ASCE vol. 134 (10). 892-906

Page 26: Sistemas de Massa Variavel v8

2011

2011, Casetta & Pesce: variational principles in hydrodynamics

“On Seliger and Whitham’s variational principle for hydrodynamic systems from the point of view of fictitious particles”, Acta Mechanica, vol. 219, 181-184.

2011, Le & Bažant: mechanics of progressive collapse

"Why the observed motion history of World Trade Center towers is smooth”. Journal of Engineering Mechanics, ASCE, 137 (1), 82-84.

2011, Casetta, Pesce, Santos : hydrodynamic impact“On the Hydrodynamic Vertical Impact Problem: an Analytical Mechanics Approach”, Marine Systems and Ocean Technology, 6(1), 47-57.

2011, Grewal, Johnson and Ruina: falling chains

“A Chain that speeds up, rather tan slows, due to collisions: how compression can cause tension”, Am. J .Phys., 79(7), 723-729.

2011, Jeltsema & Dòria-Cerezo: systems modeling

“Modeling of systems with position-dependent mass revisited: a Port-Hamiltonian approach”, Journal of Applied Mechanics, Vol. 78 / 061009-1.

Page 27: Sistemas de Massa Variavel v8

2011, Bedoustani et al: robotics, cable-driven manipulators“Lagrangian dynamics of cable-driven parallel manipulators: a variable mass formulation”. Transactions Canadian Soc. Mech. Engineers, 35(4), 529-542.

2011, Holl & Hammelmuller: coiling processes“Analysis of the vibrations due to thermal deflection of the drum in the coiling process. Proc. Appl. Math. Mech. 11, 317-318

2012, Cveticanin: nonlinear oscillators“Oscillator with non-integer order nonlinearity and time variable parameters”. Acta Mechanica, 223 (7):1417-1429.

2012, Cveticanin & Pogany: nonlinear oscillators“Oscillator with a sum of non-integer order non-linearities”. Journal of Applied Mathematics, vol. 2012, art. no. 649050.

2012, Casetta & Pesce: general open systems

“On the generalized canonical equations of Hamilton for a time-dependent mass particle”, Acta Mechanica, vol. 223, 2723-2726.

2012, Irschik: continuous impact and open systems“The Cayley variational principle for continuous-impact problems: a continuum

mechanics based version in the presence of a singular surface”, J of Theoretical and Appl Mech, 50 (3), 717-727.

2011-2012

Page 28: Sistemas de Massa Variavel v8

2013, Cruz y Cruz & Rosa-Ortiz: position dependent mass & Poisson algebra

“Generating Algebras of Mechanical Systems with Position-Dependent Mass”. Symmetry, Integrability and Geometry: Methods and Applications, Special issue.

2013, Cveticanin: nonlinear oscillators“Van der Pol oscillator with time variable parameters”, Acta Mechanica, Vol. 224, pp. 945-955.

2013, Casetta & Pesce: general open systems

“The generalized Hamilton’s principle for a non-material volume”, Acta Mechanica, vol. 224, 919-924.

2013

Generalizes McIver’s Hamiltonian approach to Reynolds transport theorem

…and much more to follow….….

Page 29: Sistemas de Massa Variavel v8

Leading to an Advanced International Course

Dynamics of Mechanical Systems

with Variable Mass

CISM

International Centre for Mechanical Sciences

Udine, Italia

24-28 Sep 2012

http://www.cism.it/courses/C1212

Page 30: Sistemas de Massa Variavel v8
Page 31: Sistemas de Massa Variavel v8
Page 32: Sistemas de Massa Variavel v8

Meshchersky’s equation

relt

m

tm vFΦF

v

d

d

d

d

vwv rel

relmvΦ Meshchersky force

w is the velocity of the accreted or lost mass with respect to the same inertial frame of reference

Page 33: Sistemas de Massa Variavel v8

Particular case

)(d

dvF m

t

It is not generally valid, for a single particle.

It is only valid if mass is gained or lost at null velocity!

More over, it is not invariant with respect to the choice of inertial frames of reference, except when

mass is constant.

Therefore, it does not satisfy the Galilean relativity principle.

Levi-Civita Case

Page 34: Sistemas de Massa Variavel v8

On the other hand, Meshchersky’s Equation

Is generally valid!

It is invariant with respect to the choice of inertial frames of reference.

It does satisfy the Galilean relativity principle.

relt

m

tm vFΦF

v

d

d

d

d

Page 35: Sistemas de Massa Variavel v8

Galilean Invariance

wv

vwvFt

m

tm

t

m

t

mm

t d

d

d

d

d

d

d

d)(

d

d

)'(d

d

d

'd)'(

d

drefref t

m

tm

t

mvw

vvvF

'd

d)'(

d

dwvF

t

mm

t

refvvv

Consider two inertial frames of reference. One of them, for simplicity and no loss of generality, is supposed fixed and the other one moves with a constant velocity vref. Let v and v’ be the velocity of a point with respect to those frames of reference. So,

vv

vv Meshchersky

Form is invariant

Page 36: Sistemas de Massa Variavel v8

On the other hand…the, particular form

vv

)(d

dvF m

t

Depends on the choice of the inertial frame:

refref t

mm

tt

m

tm

t

m

tmm

tvvvv

vv

vvF

d

d)'(

d

d)'(

d

d

d

'd

d

d

d

d)(

d

d

Except when 0d

d

t

m

Page 37: Sistemas de Massa Variavel v8

Despite all these• Even though most text books, either at undergraduate or graduate

level, mention variable mass systems, there are not so many of them presenting comprehensive and properly didactic treatments of Newton’s second law.

• Examples which do give proper treatments are: Inglis (1951), Targ (1976), Starjinski (1986), José and Saletan (1998).

• In many other good undergraduate and graduate texts, either the problem is simply not addressed (some times just mentioned) or is treated only when dealing with the ‘rocket problem’. Meriam and Kraige (1987) or Boresi and Schmidt (1954) are examples of this last approach.

• Worse, there are even some classics that give wrong treatments to the problem, stating Eq. (1) as generally valid for a single varying mass particle, with no further consideration; see, e.g., Goldstein (1950, 1981), chapter 1, Singe and Griffith (1959), chapter 12.

• The reasons for this are not clear, but certainly influenced the surprising debate occurred among American educators in the 1950’s and 60’s.

Page 38: Sistemas de Massa Variavel v8

Example of course in Brazil

POLI

Page 39: Sistemas de Massa Variavel v8

Example of course in Brazil

PUC - RJ

Page 40: Sistemas de Massa Variavel v8

Specific text book

Cveticanin, Livija

Dynamics of Machines with Variable Mass

Gordon and Breach Science Publishers. Series of Books and Monographs in Stability and Control Theory, Methods and Applications, 1998, 236 p.

Page 41: Sistemas de Massa Variavel v8

Kinetic Energy

Much subtler: Lagrange Equation

Recall the usual invariant mass form

jjj

Qq

T

q

T

dt

d

ncj

jj

Qq

L

q

L

dt

d

or

Non-conservativegeneralized forces

Lagrangean

Page 42: Sistemas de Massa Variavel v8

i j

iiiij q

PmQ uF ˆ

Lagrange Equations for Variable Mass Systems

)(tmm ii

Mass with time !

jjj

Qq

T

q

T

d

d

);( tqmm jii

i

ij

i

i j

iiiij q

m

q

PmQ 2

2

1ˆ vuF

);,( tqqmm jjii

i

ij

ii

j

i

i j

iiiij q

m

q

m

dt

d

q

PmQ 22

2

1

2

1ˆ vvuF

Mass with position !!

Mass with velocity !!!

Page 43: Sistemas de Massa Variavel v8

Example: the simplest problemparticle loosing (gaining) mass, at null velocity, but

explicitly with position

)(xm),,( txxF

),,()()( 2 txxFxxmxxm

),,()()(2

1 2 txxFxxmxxm

2)(),,( 2xxmtxxFxTdtxTd

Newton:

Usual Lagrange:

Missing termCorrect:

Correct

Incorrect

Page 44: Sistemas de Massa Variavel v8

Apparently Paradoxal Problems :

Falling chain problems:

Buquoy version;

Cayley version;

‘U’ falling chain;

Vertical collapse of buildings

Page 45: Sistemas de Massa Variavel v8

Classical problemThe falling chain of Cayley

F

g

Page 46: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

• Classic idealized problem treated by Cayley, in 1857, similar to Buquoy’s.

• Ever since, matter of controversies regarding proper formulation if treated under the Lagrangean approach.

• Recent account, see:Grewal, Johnson and Ruina, “A Chain that speeds up, rather than slows, due to collisions: how compression can cause tension”, Am. J. Phys., 79(7), 723-729, 2011.

F

g

y

Page 47: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain• Falling (or suspended part) treatable as a

position dependent variable mass system.

• Classic idealized hypotheses (*):

a. Falling (suspended) part of the chain treated as a continual vertically moving ‘rigid’ body (pure translatory motion);

b. There is no friction force apllied either by the table on slidding links, or by one to each other, or even by the hole internal surface to the leaving link;

c. Existence of a sudden acceleration (velocity jumps from zero) as the links leave the chain pile, being the transfer of any angular momentum to linear momentum disregarded;

d. Decreasing thickness of chain pile ignored.

(*) Discussion on hypotheses (a), (b) and (c) and other points may be encountered in Grewal, Johnson and Ruina, 2011.

F

g

y

Page 48: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

F

g

y

Chain total mass

Falling (suspended) mass

Falling mass time rate

Linear density

Flux of momentum at the pile2q y

y

m

ym

ym

Lm

S

S

S

Page 49: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

Kinetic energy

Potential energy

Lagrangean

F

g

y

22

122

1

2

02

12

02

1 )(

ymyy

dydvTT

S

zy

S

gymgy

dgVV

S

y

S

2

122

1

0

))(()( 2

2

122

1 gyyymgyyy

VTLVTL

S

SSS

Page 50: Sistemas de Massa Variavel v8

22

ˆ

yy

mwmFgmQ

Qy

T

y

T

dt

d

SSSy

ySS

Cayley’s ‘falling’ chain

Extended Lagrange equation

or

In terms of the Lagrangean

Recall: 0w

F

g

y22

ˆ

yy

mwmFQ

Qy

L

y

L

dt

d

SS

ncy

ncy

SS

Page 51: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

Derivatives

Extended Lagrange equation leads to:

Finally:

F

g

y

q2

22

1

yyyyyy

T

dt

d

ymyyy

T

yy

T

S

SS

S

22

122

12 yFygyyyy

y

Fg

y

yy

2

Page 52: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

Nondimensional variables

Get:

F

g

y

mg

F

gL

F

g

yy

gL

yy

Lgtt

L

yy

*

*

*

*

*

*

*1*

2

y

y

yy

Page 53: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

Usual Lagrange equation

or

In terms of the Lagrangean

Recall: 0w

F

g

y

wmFgmQ

Qy

T

y

T

dt

d

SSy

ySS

ˆ

ˆ

wmFQ

Qy

L

y

L

dt

d

Sncy

ncy

SS

ˆ

ˆ

Page 54: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

Get:

Such that:

Or, in nondimensional form:

i.e.:

F

g

y

Fygyyyy 22

12

Fygyyy 22

1

y

y

y

Fgy

2

2

1

*

*

*1*

2

2

1

y

y

yy

Page 55: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

When F=0 ( =0), F both equations

and

Both predict, from initial rest condition, a ‘free-fall’ with initial acceleration equal to gravity.

However acceleration decreases monotonically (so is smaller than gravity) tending to different asymptotic limits.

There is no singularity at y=0+ !!!

From the extended Lagrange equation

From the invariant mass Lagrange equation

OK! Cayley’s result

Not OK!Wong & Yasui (2006)

F

g

y

*

*

*1*

2

2

1

y

y

yy

*

*

*1*

2

y

y

yy

Page 56: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

In this case, the puzzling aspect regarding distinct asymptotic limits, is related to the application of either form of the Lagrange equations, rather than to the validity of the idealized hypotheses.

(*) Wong &Yasui, “Falling chains”. American Journal of Physics, v. 6, 490-496, 2006.

(**) Wong, Youn &Yasui, “The falling chain of Hopkins, Tait, Steele and Cayley”. European Journal of Physics, v. 28, 385-400, 2007.

F

g

y

Cayley’s solution (the proper one) predicts a limit acceleration of g/3.

Wong and Yasui (2006)(*) (the erroneous one) predict a limit acceleration of g/2.

Experimental work by Wong et al (2007)(**) measured the limit as !

Meritorious scientific attitude

gy )0010.03204.0(lim

Page 57: Sistemas de Massa Variavel v8

Cayley’s ‘falling’ chain

F

g

y22

ˆ

yy

mwmFQ

Qy

L

y

L

dt

d

SS

ncy

ncy

SS

323

1

2

1

6

1),(

0

yymyyR

y

R

y

L

y

L

dt

d

S

SS

Cayley’s Lagrange equation, by introducing a special Rayleigh-like function,

is equivalent to

obtained from the general extended Lagrange equation.

Frequently, the work by Cayley has been not appreciated as it should!

Page 58: Sistemas de Massa Variavel v8

A Civil Engineering Application:

The vertically collapsing tower

Page 59: Sistemas de Massa Variavel v8

Purpose

To highlight the discussion about a still open subject on a simple single degree of freedom model (SDOF), addressing a controversial point.

Based on a recently published paper:

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion governing the dynamics of vertically collapsing buildings”, http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

.

Page 60: Sistemas de Massa Variavel v8

Vertical collapse of buildings: WTC twin towers

Moving region

Region at rest

Striking Problem

Page 61: Sistemas de Massa Variavel v8

• Newtonian mechanics

• Lagrangian mechanics

• Generalized Reynolds’ Transport Theorem (McIver, 73, Irschick and Holl, 2004)

• ‘Mass transfer’ wave equation with moving boundaries (Bevilacqua, DINAME2011)

• Other...

Possible approaches

Page 62: Sistemas de Massa Variavel v8

Motivation:

Can a simple SDOF model represent the dynamics of a vertically collapsing tower?

YES!Bažant, Z. P., Verdure, M., 2007, “Mechanics of progressive collapse: learning from World Trade Center and building demolitions”. Journal of Engineering Mechanics, v. 133, n. 3, pp. 308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade Center: simple analysis”. Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.

.

Page 63: Sistemas de Massa Variavel v8

Such model is able to describe the evolution of the avalanche front of vertically collapsing towers.

However:

The equation of motion derived from the usual Lagrange equation formalism differs from that derived from Newton’s law.

An apparent paradox !

Similar to the falling chain problem and likewise controversial.

Motivation:

Neither Bažant & Verdure, or Seffen are conclusive on which one should be the proper equation!

Page 64: Sistemas de Massa Variavel v8

Moving region

Region at rest

The Vertical Collapse

Variable mass with position !!

Page 65: Sistemas de Massa Variavel v8

Simple Model

H

yT

yAyB

non-compacted

compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

snc

sc

snc

snc

Page 66: Sistemas de Massa Variavel v8

Mass dependingexplicitly on position

Mass dependingexplicitly on velocity

);;( tqqmm jjii

ii

j

ii

j

i

i j

iiiij

jjj

q

m

q

m

dt

d

q

PmQ

MjQq

T

q

T

dt

d

22

2

1

2

1

ˆ

,....,1 ; ˆ

vv

wf

Most complete case:

Two new terms

Recall the Extended Lagrange Equations

Mass dependingexplicitly on time

Extendedgeneralized force

Page 67: Sistemas de Massa Variavel v8

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

• The collapsing tower is divided in two distinct regions:– the falling region;– the still region.

• The still (intact) region transfers mass to the falling region:– the mass of the falling region increases;– the mass of the still region decreases.

• The falling region is divided in two parts:– The intact (non compacted) part;– The smashed (compacted) part.

Simple Model

Page 68: Sistemas de Massa Variavel v8

• Three Major Hypotheses:

1. the ‘intact’ upper part of the falling structure is a rigid body, translating vertically and smashing the ‘lower’ part as it falls;

2. there is a density jump through the avalanche front; i.e., the density of the accreted mass jumps from a ‘non compacted’ value to a ‘compacted’ value, in a continuous impacting manner;

3. the whole falling region, composed by the ‘intact’ rigid falling part accreted by the instantaneously compacted part, translates as a rigid material system with mass varying explicitly with position.

Simplest SDOF Model

0 nc

0 c

Velocity jump!

Page 69: Sistemas de Massa Variavel v8

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

• Therefore:

1. both regions are material systems with varying mass;

2. A single generalized coordinate may represent the collapsing dynamics;

3. The varying masses may be expressed as explicit functions of the chosen coordinate.

Simplest SDOF Model

Page 70: Sistemas de Massa Variavel v8

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Simplest SDOF Model

)()(dd ABcTAnc

y

y

c

y

y

ncmov yyyyyymB

A

A

T

Mass of the falling region

Mass of the still region

)(d Bnc

H

y

ncrest yHym

B

Page 71: Sistemas de Massa Variavel v8

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Simplest SDOF ModelConservation of mass of the whole building

Kinematic constrains:

restmovnc mmHM

0)()( ABcBTAnc yyyyy

)( TA yyh

AT yy BA yKy )1(

1/ cncK Compaction

Factor

Bncmov ym

Page 72: Sistemas de Massa Variavel v8

Simplest SDOF Model

Kinetic Energy

2212

212

21

)1( AA

ncABncAmovmov yK

KhyyyymT

2221 )1( BBncmov yyKT

Or

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Page 73: Sistemas de Massa Variavel v8

Simplest SDOF Model

Extended form for mass varying with position

Lagrange equation

221ˆ

ˆ

AA

movmovA

AA

mov

A

mov

yy

mFgmQ

Qy

T

y

T

dt

d

Dissipative term

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Page 74: Sistemas de Massa Variavel v8

Simplest SDOF Model

A Rayleigh-like function could be defined

Actually

Dissipative term

36

126

1 )( ),( AAAAA yymymyyR

22

1 )( AAA

yymy

R

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Page 75: Sistemas de Massa Variavel v8

Simplest SDOF Model

Extended Rayleighian form for mass varying with position

Lagrange equation

FgmQ

Qy

R

y

T

y

T

dt

d

movA

AAA

mov

A

mov

Dissipative term

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Page 76: Sistemas de Massa Variavel v8

Simplest SDOF Model

Kinetic energy derivatives

2212

212

21

)1( AA

ncABncAmovmov yK

KhyyyymT

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

BBncABncA

mov yyKyyy

T

)1(

)()1()( BBncABncA

mov yydt

dKyy

dt

d

y

T

dt

d

BA yKy )1(

221

2

21 )1(

1 BncA

ncA

mov yKK

y

y

T

2212

212

21 )1(

1 BncAnc

AA

mov yKyK

yy

m

which cancels out exactly the position dependent term:

Page 77: Sistemas de Massa Variavel v8

Simplest SDOF Model

H

yT

yAyB

non-compacted

non-compacted

Mov

ing

regi

onN

onm

ovin

gre

gion

Avalanche front

compacted

Bncmov ym

221ˆ

ˆ

AA

movmovA

AA

mov

A

mov

yy

mFgmQ

Qy

T

y

T

dt

d

Recall:Then:

Fgyyydt

dK BncBBnc )()1(

BncB

BB y

F

Ky

y

K

gy

)1(

1

1

2

Page 78: Sistemas de Massa Variavel v8

Usual Lagrange EquationExtended Lagrange Equation

**

2**

)1(

Φ

1

1

yKKy

yy

**

2*

21*

)1(

Φ

1

1

yKKy

yy

PF /Φ

cncK /Compaction

factor

Resistive load

All this leads to

Tower weight

Simplest SDOF Model

H

yy B*

Avalanche front

Tower height

Page 79: Sistemas de Massa Variavel v8

Extended Lagrange Equation

**

2**

)1(

Φ

1

1

yKKy

yy

**

2*

21*

)1(

Φ

1

1

yKKy

yy

Crush down duration (tower 1): 9,8sCrash down duration (tower 1): 11s

Aparent Paradox

Neither Bažant & Verdure, or Seffen were conclusive on which one should be the proper equation!

Proper Eq.! Non -proper Eq.!

Usual Lagrange Equation

Page 80: Sistemas de Massa Variavel v8

F

g

Extended Lagrange Equation

Similarity with falling chains

Proper Eq.! Non -proper Eq.!

Usual Lagrange EquationCayley’s

F=0; K=0

y

y

ygy

2

y

ygy

2

21

Page 81: Sistemas de Massa Variavel v8

Extended Lagrange Equation

Similarity with falling chains

Proper Eq.! Non -proper Eq.!

Usual Lagrange Equation

z

zgz

2

F

g

Buquoy’s

F=0; K=0

z

z

zgz

2

2

1

Page 82: Sistemas de Massa Variavel v8

Simplest SDOF Model

Case Study: the WTC Towers

m407H t/m10770 3ncGN073.3P

21.0/Φ0 PF 2.0/ cncK

Bažant, Z. P., Verdure, M., 2007, “Mechanics of progressive collapse: learning from World Trade Center and building demolitions”. Journal of Engineering Mechanics, v. 133, n. 3, pp. 308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade Center: simple analysis”. Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion governing the dynamics of vertically collapsing buildings”, http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

Page 83: Sistemas de Massa Variavel v8

2.0K

044.0

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

y*

t*

Proper Eq.

Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 1Φ = 0.044

K=0.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

dy*/

dt*

t*

Proper Eq.

Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 1Φ = 0.044

K=0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

d2 y

*/d

t*2

t*

Proper Eq.

Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 1Φ = 0.044

K=0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

WTCTower 1

1364.0)0(* * hy

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

y*

t*

Proper Eq.

Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 2Φ = 0.044

K=0.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

dy*/

dt*

t*

Proper Eq.

Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 2Φ = 0.044

K=0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

d2 y

*/d

t*2

t*

Proper Eq.Non proper Eq.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tower 2Φ = 0.044

K=0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

WTCTower 2

2545.0)0(* * hy

WTC Tower 1

WTC Tower 2

Page 84: Sistemas de Massa Variavel v8

Table 1. ‘Crush-down’ time. WTC: towers 1 and 2. Comparing the results from the proper and non proper ones equations.

K=0.2; =0.044 K=0.2; =0.0

Tower Equation *Ct (s)Ct *

Ct (s)Ct

1 Eq. (102) - proper 1.75 11.3 1.59 10.2

1 Eq. (103) - non-proper 1.55 10.0 1.39 9.0

2 Eq. (102) - proper 1.45 9.3 1.36 8.8

2 Eq. (103) - non-proper 1.32 8.5 1.23 7.9

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion governing the dynamics of vertically collapsing buildings”, http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

Page 85: Sistemas de Massa Variavel v8
Page 86: Sistemas de Massa Variavel v8

0

0,2

0,4

0,6

0,8

1

1,2

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

a*(0

)

Φ

K = 0.0

K = 0.1

K = 0.2

K = 0.3

1.2

1.0

0.8

0.6

0.4

0.2

0.0

tower 1

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

0

0,2

0,4

0,6

0,8

1

1,2

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

a*(0

)

Φ

K = 0.0

K = 0.1

K = 0.2

K = 0.3

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

tower 21.2

1.0

0.8

0.6

0.4

0.2

0.0

WTC Tower 1 WTC Tower 2

Initial acceleration of the avalanche front, as function of the resistive force, F, having as parameter the

compaction factor K.

Page 87: Sistemas de Massa Variavel v8

1,0

1,5

2,0

2,5

3,0

3,5

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

t c*

Φ

K = 0.0

K = 0.1

K = 0.2

K = 0.3

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

3.5

3.0

2.5

2.0

1.5

1.0

tower 1proper

1,0

1,5

2,0

2,5

3,0

3,5

0,00 0,04 0,08 0,12 0,16 0,20 0,24 0,28

t c*

Φ

K = 0.0

K = 0.1

K = 0.2

K = 0.3

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

3.5

3.0

2.5

2.0

1.5

1.0

tower 2proper

1,0

1,5

2,0

2,5

3,0

3,5

0 0,04 0,08 0,12 0,16 0,2 0,24 0,28

t c*

Φ

K = 0.0

K = 0.1

K = 0.2

K = 0.3

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

3.5

3.0

2.5

2.0

1.5

1.0

tower 1non proper

1,0

1,5

2,0

2,5

3,0

3,5

0,00 0,04 0,08 0,12 0,16 0,20 0,24 0,28

t c*

Φ

K = 0.0K = 0.1K = 0.2K = 0.3

0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28

3.5

3.0

2.5

2.0

1.5

1.0

tower2non proper

WTC Tower 1 WTC Tower 2

Non dimensional ‘crush-down’ time, as function of the resistive force, F.

Page 88: Sistemas de Massa Variavel v8

CONCLUSIONS

Problems of variable mass systems in Engineering Mechanics are rather classical and very well explored in the technical literature, since von Buquoy’s work, 1812-1815, Cayley, 1857, and Meshchersky’s, 1897.

However, its subtlety sometimes reserve trappings to students and even to scholars. As a matter of fact, much work is still being carried out on the subject, as testimonies the excellent and recent review by Irschik and Holl (2004).

Sometimes, motivated by nonlinear dynamics applications, aroused from engineering problems, other times by theoretical issues, see, e.g. Mušicki (2005), variable mass system dynamics is still a state-of-the-art matter.

Nevertheless, from time to time, misinterpretations are found on the correct application of Newton’s second law or concerning the Lagrangian Equation to this kind of systems.

Page 89: Sistemas de Massa Variavel v8

“Be extremely careful when dealing with variable mass systems!!”

Thank you!

Acknowledgments:

CNPq

FAPESP

Especial thanks

Dr. Leonardo Casetta

Page 90: Sistemas de Massa Variavel v8

Appendix I

Derivation of the Extended Lagrange Equation for General

Variable Mass Systems

2003, Pesce, C. P.

“The Application of Lagrange Equations to Mechanical Systems with Mass Explicitly Dependent on Position”, Journal of Applied Mechanics, Vol. 70, pp. 751-756.

Page 91: Sistemas de Massa Variavel v8

Velocity ofexpelled (gained) mass

measured in an inertial frame.

Extended Lagrange EquationsDerivation via D’Alembert Principle and PVW

0Fp

i

iii P

dt

d iii hfF

Active forcesif

oiii m vh Reactive forces

0fv

iiii

ii P

dt

dm )(

iiiioiii mm vhvv

Meschersky’s Force

or

Relative velocity ofexpelled (gained) mass

Page 92: Sistemas de Massa Variavel v8

j

jj

ii q

q

PP

Mjtqq jjii ,...,1);;;( vv

j

i

j

i

q

P

dt

d

q

v

j

i

j

i

q

P

q

v

2i

2

2

1

2

1v

vv

jj

i

j

ii

qqdt

d

q

P

dt

d

i j

iii

i j

iij q

P

q

PQ hfF Generalized forces

Kinematic relations

Lagrange Equations: via Principle of Virtual Work

Page 93: Sistemas de Massa Variavel v8

Simplest case: constant mass

j

i

j

ii

jj

ii

j

iii q

T

q

T

dt

dm

qq

m

dt

d

q

P

dt

dm

2i

2

2

1

2

1v

vv

0dt

dmi dt

dm

dt

d ii

i vp

i j

iij q

PQ f

MjQq

T

q

T

dt

dj

jj

,....,1 ;

Page 94: Sistemas de Massa Variavel v8

Case: m(t)

0hfvv

hfp

j ij

j

iiii

iii

iiii

i qq

P

dt

dm

dt

dmP

dt

d )()(PVW:

j

i

i

i

j

i

j

i

ij

iiij

i

j

ii

ijj

ii

j

ii

j

iii

q

T

m

T

qdt

dm

q

T

dt

d

mq

mmqdt

dm

q

m

dt

d

mqqdt

dm

qm

dt

d

q

P

dt

dm

2i

22

2i

22

2

1

2

1

2

1

2

1

2

1

2

1

vvv

vvvvIntegration by

parts, first term:

j

i

j

i

q

P

q

v

i

i

j

i

j

ii

j

ii

i

j

ii

i

m

T

qdt

dm

qdt

dm

qdt

dm

q

P

dt

dm

2

2

1 vvvvsecond

term:

Most general form

Cancel each other

Page 95: Sistemas de Massa Variavel v8

Case: m(t)(continued)

MjQq

T

q

T

dt

dj

jj

,....,1 ;

i j

iii

i j

iij q

P

q

PQ hfF

oiii m vh

Leading to the same usual form

with

where

Page 96: Sistemas de Massa Variavel v8

Most complete case: );;( tqqmm jjii

2i

2

2i

2i

22

2

2i

2i

22

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

vv

vvv

vv

vvvv

v

j

i

j

i

i

i

j

ii

j

i

j

i

j

ii

jj

iii

j

i

j

ii

j

ii

jj

ii

j

ii

j

iii

q

m

q

T

m

T

qdt

dm

q

m

dt

d

q

T

dt

d

q

mm

qqdt

dm

q

m

dt

d

q

m

dt

d

q

mm

qqdt

dm

qm

dt

d

q

P

dt

dm

Integration by parts, first term:

i

i

j

i

j

ii

j

ii

i

j

ii

i

m

T

qdt

dm

qdt

dm

qdt

dm

q

P

dt

dm

2

2

1 vvvv

second term:

Cancel each other, as before

Two new terms

Page 97: Sistemas de Massa Variavel v8

Mass dependingexplicitly on position

Mass dependingexplicitly on velocity

);;( tqqmm jjii

ii

j

ii

j

i

i j

ioiiij

jjj

q

m

q

m

dt

d

q

PmQ

MjQq

T

q

T

dt

d

22

2

1

2

1

ˆ

,....,1 ; ˆ

vv

vf

Most complete case:

Two new terms

Leading to the Extended Form of the Lagrange Equations:

Mass dependingexplicitly on time Extended

generalized force

Page 98: Sistemas de Massa Variavel v8

Appendix II

Ocean Enginering Problems

Page 99: Sistemas de Massa Variavel v8

Ocean Engineering problems

Deployingcable

reel

moon-pool

R

lS()=R

g

Cable Deployment from a Reel

Page 100: Sistemas de Massa Variavel v8

System

Wound cable+reel:

Variable mass

RgR )1()( Hanging traction

2221 ))((21)(21 RLRIIT OR

RmR )( Mass rate

Q

TT

dt

d

11

RRmQ R )()(

0)1(2

1)( 2232 gRRmRIO

INCORRECT

Cable Deployment from a Reel

Page 101: Sistemas de Massa Variavel v8

System

Wound cable+reel:

Variable mass

RgR )1()( Hanging traction

2221 ))((21)(21 RLRIIT OR

RmR )( Mass rate

0)1()( 22 gRmRIO

Q

TT

dt

d ˆ11

22

2

1)()(ˆ

Rd

dmRRmQ R

R

CORRECT

Cable Deployment from a Reel

Page 102: Sistemas de Massa Variavel v8

Cable Deployment from a Reel: typical analysis

0 50 100 150 200 2500

5

10

15

20

Time(s)

d /

dt

Consistent eq.Erroneous eq.

0 50 100 150 200 2500

1

2

3

4x 10

4

Time(s)

(t) 232 21)()(21 DRClRDCF fsff

0(0) m; 10))0(( SlI.C.:

)/)(( sradt

t(s)

Page 103: Sistemas de Massa Variavel v8

Oscillating water column in open pipes

Oscillating water column in the moon-pool of a mono-column platform

(t)

H

SR

SW

SF

z

O

pierpipe

Ocean Engineering problems

Page 104: Sistemas de Massa Variavel v8

(t)

H

SR

SW

SF

z

O

pierpipe

Oscillating water column in open pipes

Page 105: Sistemas de Massa Variavel v8

Oscillating water column in open pipes

FTT

dt

d

02

H

gH

INCORRECT

2)(2

1 HAT

222

2

1

2

1

AAgAAAg

vmFFvmfF oDSo

Page 106: Sistemas de Massa Variavel v8

Oscillating water column in open pipes

02

1 2

H

gH

2)(2

1 HAT

AgAAAAg

mvmFF

mvmfF oDS

ii

io

222

22

2

1

2

1

2

1

2

v

FTT

dt

d ˆ

CORRECT

Page 107: Sistemas de Massa Variavel v8

Oscillating water column in open pipes

0Small oscillations:

Htt )()(

HgNormalizing

1

0112

1 2

Page 108: Sistemas de Massa Variavel v8

Oscillating water column in open pipes

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(t)d

(t)/d

t

(0)=-0.99

(0)=-0.8

(0)=-0.9

(0)=-0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5

(t)

d

(t)/d

t

(0)=-0.99

(0)=-0.9

(0)=-0.8

(0)=-0.5

0)0(;5.0..99.0)0( I.C.:

Phase portraits

CORRECT INCORRECT

Page 109: Sistemas de Massa Variavel v8

Hydrodynamic Impact

C jet

jet root

body

jet

free surface

Jv Jv

W

Added mass dependent on position

t

zzzz

zz

Wdt

MM

WMT

0

2

)(2

1

Buoyancy and Gravitational Forces are neglectable at the very instant of impact

Ocean Engineering problems

Page 110: Sistemas de Massa Variavel v8

Hydrodynamic Impact

Sphere

Page 111: Sistemas de Massa Variavel v8

Hydrodynamic Impact

T

W

T

dt

dFz

Force applied on the body via non-extended form

INCORRECT

dt

dWMW

dt

dMF zz

zzz

2

1

Page 112: Sistemas de Massa Variavel v8

Hydrodynamic Impact

sin22

1 2J

zzBz vmW

d

dMT

W

T

dt

dF

Force applied on the bulk of the liquid

WMdt

dW

d

dM

d

dMWWM

dt

dF zz

zzzzzzz 22

2

1

2

1

CORRECT

2

2

1W

d

dMT

W

T

dt

dF zz

z

Force applied on the body via extended form

Extra term

Second order

Page 113: Sistemas de Massa Variavel v8

Hydrodynamic Impact Sphere of radius R and mass m

RtW0t Dmm

R dt

d

Wd

d 0

1

t

2

2

20

2

2

t dt

d

W

R

d

d

normalizing

Asymptotics, similitude solutions and Non-Extended Lagrange Equations:

033

2

39

2

1

23

221

INCORRECT

Mass ratioNon-dimensional

time

Page 114: Sistemas de Massa Variavel v8

Hydrodynamic Impact Sphere of radius R and mass m

RtW0t Dmm

R dt

d

Wd

d 0

1

t

2

2

20

2

2

t dt

d

W

R

d

d

normalizing

033

2

39

23

221

Asymptotics, similitude solutions and Extended Lagrange Equations:

CORRECT

Page 115: Sistemas de Massa Variavel v8

Hydrodynamic Impact Sphere of radius R and mass m

CORRECT INCORRECT

mass specific :43/ 3Rmmm D

RtW0t RtW0t

-1,80

-1,60

-1,40

-1,20

-1,00

-0,80

-0,60

-0,40

-0,20

0,00

0,00 0,05 0,10 0,15 0,20 0,25 0,30

d2η/

dt2

t

β = 0.1

β = 0.2

β = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-1.8

d2η/

dt2

t

-1,80

-1,60

-1,40

-1,20

-1,00

-0,80

-0,60

-0,40

-0,20

0,00

0,00 0,05 0,10 0,15 0,20 0,25 0,30

t

β = 0.1β = 0.2β = 0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-1.8

d2η/

dt2

t

2

2

20

2

2

t dt

d

W

R

d

d

Page 116: Sistemas de Massa Variavel v8

Hydrodynamic Impact Sphere of radius R and mass m

CORRECT INCORRECT

mass specific :43/ 3Rmmm D

RtW0t RtW0t

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,05 0,10 0,15 0,20 0,25 0,30

β = 0.1β = 0.2β = 0.5

Corretaasymptotic approach

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

dη/d

t

t

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,05 0,10 0,15 0,20 0,25 0,30

β = 0.1β = 0.2β = 0.5

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

Incorretaasymptotic approach

0.00 0.05 0.10 0.15 0.20 0.25 0.30

dη/d

tt

dt

d

Wd

d 0

1

t

Page 117: Sistemas de Massa Variavel v8

Hydrodynamic Impact Sphere of radius R and mass m

CORRECT INCORRECT

mass specific :43/ 3Rmmm D

RtW0t RtW0t

R

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,00 0,05 0,10 0,15 0,20 0,25 0,30

η

t

β = 0.1β = 0.2β = 0.5

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Corretaasymptotic approach

0.00 0.05 0.10 0.15 0.20 0.25 0.30

η

t

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,00 0,05 0,10 0,15 0,20 0,25 0,30

β = 0.1β = 0.2β = 0.5

Incorretaasymptotic approach

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ηt