SIPC Fourier transform, in 1D and in 2D

download SIPC Fourier transform, in 1D and in 2D

of 118

Transcript of SIPC Fourier transform, in 1D and in 2D

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    1/118

    Fourier transform, in 1D and in 2D

    Vclav Hlav

    Czech Technical University in Prague

    Faculty of Electrical Engineering, Department of Cybernetics

    Center for Machine Perceptionhttp://cmp.felk.cvut.cz/hlavac, [email protected]

    Outline of the talk:

    Fourier tx in 1D, computational complexity, FFT.

    Fourier tx in 2D, centering of the spectrum.

    Examples in 2D.

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    2/118

    2/59Initial idea, filtering in frequency domain

    Image processingfiltration of 2D signals.spatialfilter

    frequency

    filter

    inputimage

    direct

    transformation

    inverse

    transformation

    outputimage

    Filtration in the spatial domain. We would say in time domain for 1D signals.It

    is a linear combination of the input image with coefficients of (often local)

    filter. The basic operation is called convolution.Filtration in the frequency domain. Conversion to the frequency domain,

    filtration there, and the conversion back.

    We consider Fourier transform, but there are other linear integral transforms

    serving a similar purpose, e.g., cosine, wavelets.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    3/118

    3/591D Fourier transform, introduction

    Fourier transforme is one of the most commonly

    used techniques in (linear) signal processing andcontrol theory.

    It provides one-to-one transform of signals

    from/to a time-domain representationf(t)

    to/from a frequency domain representationF().

    It allows a frequency content (spectral) analysis of

    a signal.

    FT is suitable for periodic signals.

    If the signal is not periodic then the Windowed FT

    or the linear integral transformation with time

    (spatially in 2D) localized basis function, e.g.,

    wavelets, Gabor filters can be used.

    Joseph Fourier

    1768-1830

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    4/118

    4/59Odd, even and complex conjugate functions

    Even f(t) =f(t)

    (t

    t

    Odd f(t) = f(t)t

    f(t)

    Conjugage

    symmetric f()=f(

    )

    f( 5) = 2 + 3i

    f(5) = 2 3i f denotes a complex conjugate function.

    iis a complex unit.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    5/118

    5/59

    Any function can be decomposed

    as a sum of the even and odd part

    f(t) =fe(t) +fo(t)

    fe(t) =f(t) +f(t)

    2 fo(t) =

    f(t) f(t)2

    f(t) f (t)e f (t)o

    t t t= +

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://prevpage/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    6/118

    6/59Fourier Tx definition: continuous cased

    F{f(t)} =F(), where [Hz=s1] is a frequency and2 [s1] is the angularfrequency.

    Fourier Tx Inverse Fourier Tx

    F() =

    f(t) e2it dt f(t) =

    F() e2it d

    What is the meaning of the inverse Fourier Tx? Express it as a Riemann sum:

    f(t) .= . . .+F(0) e

    2i0t +F(1) e2i1t +. . . ,

    kde=k+1 k prok . Any 1D function can be expressed as a the weighted sum (integral) of manydifferent complex exponentials(because of Eulers formulaej = cos +jsin ,

    also of cosinusoids and sinusoids).

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    7/118

    7/59Existence conditions of Fourier Tx

    1.

    | f(t) | dt < , i.e.f(t)has to grow slower than an exponential curve.

    2. f(t)can have only a finite number of discontinuities and maxima, minimain

    any finite rectangle.

    3. f(t)need not have discontinuities with the infinite amplitude.

    Fourier transformation exists always for digital imagesas they are limited andhave finite number of discontinuities.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    8/118

    8/59Fourier Tx, symmetries

    Symmetry with regards to the complex conjugate part, i.e.,F(i) =F(i).

    |F(i)|is always even.

    The phase ofF(i) is always odd. Re{F(i)}is always even. Im{F(i)} is always odd. The even part off(t)transforms to the real part ofF(i).

    The odd part off(t) transforms to the imaginary part ofF(i).

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    9/118

    9/59Convolution, definition, continuous case

    Convolution (in functional analysis) is an operation on two functionsf and

    hwhich produces a third function(f

    h), often used to create a

    modification of one of the input functions.

    Convolution is an integral mixing values of two functions, i.e., of the

    functionh(t), which is shifted and overlayed with the functionf(t)or

    vice-versa.

    Consider first thecontinuous casewith general infinite limits

    (fh)(t) = (h f)(t)

    f() h(t ) d =

    f(t ) h() d .

    The limits can be constraint to the interval[0, t], because we assume zerovalues of functions for the negative argument

    (f h)(t) = (h f)(t) t

    0

    f()h(t ) d = t

    0

    f(t )h() d .

    http://showthumbs/http://nextpage/http://nextpage/http://nextpage/http://nextpage/http://showthumbs/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    10/118

    10/59Convolution, discrete approximation

    (f h)(i) = (h f)(i) mO

    h(i m)f(m) = mO

    h(i)f(i m),

    where O is a local neighborhood of a current positioniandhis the convolutionkernel (also convolution mask).

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    11/118

    11/59Fourier Tx, properties (1)

    Property f(t) F()

    Linearity af1(t) +bf2(t) a F1() +b F2()

    Duality F(t) f()Convolution (f

    g)(t) F() G()

    Product f(t) g(t) (F G)()Time shift f(t t0) e2it0 F()

    Frequency shift e2i0tf(t) F(

    0)

    Differentiation df(t)dt 2iF()

    Multiplication byt t f(t) i2dF()d

    Time scaling f(a t) 1

    |a|

    F(/a)

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    12/118

    12/59Fourier Tx, properties (2)

    Area in time F(0) =

    f(t)dt Area functionf(t).

    Area in freq. f(0) =

    F(j)d Area underF(j)

    Parsevals th.

    |f(t)|2dt=

    |F(j)|2d f energy =F energy

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://prevpage/http://cmp.felk.cvut.cz/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    13/118

    13/59Basic Fourier Tx pairs (1)

    0 0

    00

    0

    0

    t

    x

    t t

    x x

    1

    1

    f(t)

    ReF( )x

    d(t)

    d( )x

    T-T-2T 2T

    f(t)

    F( )x

    1

    T

    1

    2T

    1

    -T

    1

    -2T

    Dirac constant sequence of Diracs

    http://showthumbs/http://prevpage/http://showthumbs/http://cmp.felk.cvut.cz/http://prevpage/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    14/118

    14/59Basic Fourier Tx pairs (2)

    0 00x x xx0 x0

    -x0

    -x0

    -2x0 2x0-x0 x0

    f(t)

    F( )x

    ReF( )x ReF( )xImF( )x

    t

    f(t)= (2 t)cos px0

    t t

    f(t)= (2 t)sin px0 f(t)= (2 t) +cos px0 cos(4 t)px0

    cosine sine two cosines mixture

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    15/118

    15/59Basic Fourier Tx pairs (3)

    0

    00

    0

    f(t)

    F( )x

    ReF( )=(sin 2 T)/x px px ReF( )x

    f(t)=(sin 2 t)/ tpx p0

    t t

    f(t) f(t)=exp(-t )2

    ReF( )= exp(- )x p px2 2

    t

    1

    0

    0

    T-T

    1

    x x0 x x

    rectangle int rectangle in Gaussian

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    16/118

    16/59Uncertainty principle

    All Fourier Tx pairs are constrained by the uncertainty principle.

    The signal of short duration must have wide Fourier spectrum and vice versa.

    (signal duration) (frequency bandwith)

    1

    Observation: Gaussianet2

    modulated by a sinusoid (Gabor function) has

    the smallest duration-bandwidth product.

    The principle is an instance of the general uncertainty principle introduced

    by Werner Heisenberg in quantum mechanics.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    17/118

    17/59Non-periodic signals

    Fourier transform assumes a periodic signal. What if a non-periodic signal hasto

    be processed? There are two common approaches.

    1. To process the signal in small chunks (windows) and assume that the signalis periodic outside the windows.

    The approach was introduced by Dennis Gabor in 1946 and it is named Short time

    Fourier transform.Dennis Gabor, 1900-1979, inventor of holography, Nobel price for physics in 1971,

    studied in Budapest, PhD in Berlin in 1927, fled Nazi persecution to Britain in 1933.

    Mere cutting of the signal to rectangular windows is not good because discontinuiti esat windows limits cause unwanted high frequencies.

    This is the reason why the signal is convolved by a dumping weight function, oftenGaussian or Hamming function ensuring the zero signal value at the limits of thewindow and beyond it.

    2. Use of more complex basis function, e.g., wavelets in the wavelet transform.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    18/118

    18/59Discrete Fourier transform

    Letf(n) be an input signal (a sequence),n= 0, . . . , N

    1.

    LetF(k)be a Frequency spectrum (the result of the discrete Fourier

    transformation) of a signalf(n).

    Discrete Fourier transformation

    F(k) N1n=0

    f(n)e2ikn

    N

    Inverse discrete Fourier transformation

    f(n) 1N

    N1k=0

    F(k)e2iknN

    C t ti l l it

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    19/118

    19/59

    Computational complexity,

    a reminder of a notation

    While considering complexity, it is abstracted from a specific computer and

    only asymptotic behavior of algorithms is concerned. An asymptotic upper bound for the magnitude of a function (i.e., its

    growth) in terms of another, usually simpler, function is sought.

    Big

    O notation; for example,

    O(n2)means that the number of algorithm

    steps will be roughly proportional to the square of the number of samplesinthe worst case.

    Additional terms and multiplicative constants are not taken into account

    because a qualitative comparison is sought.

    The quadratic complexityO(n2)is worse than sayO(n) (linear) orO(1)(constant, independent of the lengthn), but is better thanO(n3)(cubic).If the complexity is exponential, e.g.,O(2n), then it often means that thealgorithm cannot be applied to larger problems (in practical terms).

    Computational complexity of

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    20/118

    20/59

    Computational complexity of

    the discrete Fourier transform

    LetWbe a complex number,W e2iN .

    F(k) N1

    n=0

    f(n)e2ikn

    N =N1

    n=0

    Wnk f(n)

    The vectorf(n) is multiplied by the matrix whose element(n, k) is the

    complex constantW to the powerN k. This has the computationalcomplexity

    O(N2).

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    21/118

    21/59Fast Fourier transform

    A fast Fourier transform (FFT) is an efficient algorithm to compute the

    discrete Fourier transform and its inverse. Statement: FFT has the complexityO(Nlog2 N). Example(according to Numerical recepies in C):

    A sequence ofN = 106

    , 1second computer. FFT 30 seconds of CPU time. DFT 2 weeks of CPU time, i.e., 1,209,600 seconds, which is about

    40.000

    more.

    A FFT idea(Danielson, Lanczos, 1942): The DFT of lengthNcan be

    expressed as sum of two DFTs of lengthN/2, the first one consisting ofodd

    and the second ofevensamples. Note: FFT exists also for a general

    lengthN.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    22/118

    22/59FFT, the proof

    F(k) =N1n=0

    e2ikn

    N f(n)

    =

    (N/2)1

    n=0

    e2ik(2n)

    N f(2n) +

    (N/2)1

    n=0

    e2ik(2n+1)

    N f(2n+ 1)

    =

    (N/2)1n=0

    e2iknN/2 f(2n) +Wn

    (N/2)1n=0

    e2iknN/2 f(2n+ 1)

    = Fe(k) +Wn Fo(k), k= 1, . . . , N

    The key idea:recursivenessandN is power of 2.

    Onlylog2 N iterations needed.

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    23/118

    23/59FFT, THE PROOF (2)

    SpectraFe(k)andFo(k)are periodic ink with lengthN/2.

    What is Fourier transform o length 1? It is just identity.

    For every pattern oflog2 Nes and os, there is a one-point transform that

    is just one of input numbersf(n),

    Feoeeoeo...oee(k) =f(n) for somen .

    The next trick is to utilize partial results=

    butterfly scheme of

    computations.

    http://showthumbs/http://nextpage/http://showthumbs/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    24/118

    24/59FFT butterfly scheme

    f1

    F1

    f0

    F0

    f2

    F2

    f3

    F3

    f4

    F4

    f5

    F5

    f6

    F6

    f7

    F7

    Iteration

    1

    2

    3

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    25/118

    25/592D Fourier transform

    The idea. The image functionf(x, y) is decomposed to a linear combinationof

    harmonic (sines and cosines, more generally orthogonal) functions.

    Definition of the direct transform. u, v are spatial frequencies.

    F(u, v)=

    f(x, y)e2i(xu+yv) dx dy

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    26/118

    26/59Inverse Fourier tranform

    f(x, y)=

    F(u, v)e2i(xu+yv) du dv

    f(x, y)is a linear combination of simple harmonic functions (components)e2i(xu+uv).

    Thanks to Euler formula (eiz = cos z+i sin z),coscorresponds to the real

    part andsincorresponds to the imaginary part.

    FunctionF(u, v)(complex spectrum) gives weights of harmonic

    components in the linear combination.

    2D i id ill i

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    27/118

    27/592D sinusoid, illustration

    2D sinusoids can be imagined as plane waves with the amplitude shown as

    intensity (gray level).

    The analogy to corrugated iron comes from a topographic displaying of a2D

    sinusoid (or cosinusoid).

    2D i id ill t ti (2)

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    28/118

    28/592D sinusoid, illustration (2)

    =

    u2 +v2,u= cos,v= sin, = tan1vu

    .

    u

    v(u,v)

    Q

    w

    w Qcos

    w

    Q

    si

    n

    Ill t ti f 2D FT b t

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    29/118

    29/59Illustration of 2D FT bases vectors

    Analogy corrugated iron.

    sin(3x+ 2y) cos(x+ 4y)

    Li bi ti f b t

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    30/118

    30/59Linear combination of base vectors

    Analogy carton egg tray.

    sin(3x+ 2y)+cos(x+ 4y) different display only

    Carton egg tray

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    31/118

    31/59Carton egg tray

    2D discrete Fourier transform

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    32/118

    32/592D discrete Fourier transform

    Direct transform

    F(u, v) = 1

    M N

    M1m=0

    N1n=0

    f(m, n) exp2i

    muM

    +nv

    N

    ,

    u= 0, 1, . . . , M

    1, v= 0, 1, . . . , N

    1,

    Inverse transform

    f(m, n) =M1

    u=0

    N1

    v=0

    F(u, v) exp 2i muM

    +nv

    N ,

    m= 0, 1, . . . , M 1, n= 0, 1, . . . , N 1.

    2D Fourier Tx as twice 1D Fourier Tx

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    33/118

    33/592D Fourier Tx as twice 1D Fourier Tx

    2D direct FT can be modified to

    F(u, v) = 1

    M

    M1m=0

    1

    N

    N1n=0

    exp

    2invN

    f(m, n)

    exp

    2imuM

    ,

    u= 0, 1, . . . , M 1, v= 0, 1, . . . , N 1. The term in square brackets corresponds to the one-dimensional Fourier

    transform of themth line and can be computed using the standard fast

    Fourier transform (FFT).

    Each line is substituted with its Fourier transform, and the one-dimensional

    discrete Fourier transform of each column is computed.

    Spatial frequencies spectrum

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    34/118

    34/59Spatial frequencies spectrum

    The outcome of the Fourier transformF(u, v)is a function of complex variables.

    (Complex) spectrum F(u, v) =R(u, v) +i I(u, v)

    Amplitude spectrum |F(u, v)| = R2(u, v) +I2(u, v)Phase spectrum (u, v) =tan1

    I(u,v)R(u,v)

    Power spectrum P(u, v) = |F(u, v)|2 =R2(u, v) +I2(u, v)

    Displaying spectra 2D Gaussian example

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    35/118

    35/59Displaying spectra, 2D Gaussian example

    Gaussian is selected for illustration because it has a smooth spectrum, cf.

    uncertainty principle.

    Input intensity image, coordinate system

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    36/118

    36/59Input intensity image, coordinate system

    100 200 300 400 500

    50

    100

    150

    200

    250

    300

    350

    400

    450

    5000

    50

    100

    150

    200

    250

    Real part of the spectrum, image and mesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    37/118

    37/59Real part of the spectrum, image and mesh

    Problem with the image related coordinate system related to the image:

    interesting information is in corners, moreover divided into quarters. Due to

    spectrum periodicity it can be arbitrarily shifted.

    Real part of the spectrum

    Spatial frequency u

    Spatialfrequencyv

    100 200 300 400 500

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    real part, image real part, mesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    38/118

    Log power of the spectrum, image and mesh

    http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    39/118

    39/59g p p , g

    log power spectrum

    Spatial frequency u

    Spatialfre

    quencyv

    100 200 300 400 500

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    image mesh

    Centered spectra

    http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    40/118

    40/59p

    It is useful to visualize a centered spectrum

    with the origin of the coordinate system(0, 0) in the middle of the spectrum.

    Assume the original spectrum is divided into

    four quadrants. The small gray-filled

    squares in the corners represent positions oflow frequencies.

    Due to the symmetries of the spectrum the

    quadrant positions can be swapped

    diagonally and the low frequencies locations

    appear in the middle of the image.

    MATLABu provides functionfftshift

    which converts noncenteredcenteredspectra by switching quadrants diagonally.

    A D

    CB

    original spectrum

    low frequencies in corners

    AD

    C B

    shifted spectrum

    with the origin at(0, 0)

    Real part of the centered spectrum, image and

    h

    http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/http://nextpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    41/118

    41/59mesh

    Real part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    real part, image real part, mesh

    Imaginary part of the centered spectrum

    image and mesh

    http://showthumbs/http://showthumbs/http://nextpage/http://prevpage/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    42/118

    42/59image and mesh

    Imaginary part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    imaginary part, image imaginary part, mesh

    /

    Log power of the centered spectrum

    image and mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    43/118

    43/59image and mesh

    log power spectrum, centered

    Spatial frequency u

    Spatialfr

    equencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    image mesh

    http://showthumbs/http://showthumbs/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    44/118

    45/59

    Real part of the centered spectrum, image and

    mesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    45/118

    45/59mesh

    Real part of the spectrum, centered

    Spatial frequency u

    Spatialfr

    equencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    real part, image real part, mesh

    46/59

    Imaginary part of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    46/118

    46/59image and mesh

    Imaginary part of the spectrum, centered

    Spatial frequency u

    Spatialfr

    equencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    imaginary part, image imaginary part, mesh

    47/59

    Log power of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    47/118

    47/59image and mesh

    log power spectrum, centered

    Spatial frequency u

    Spatialfr

    equencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    image mesh

    48/59Rice example, input image 265256

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    48/118

    48/59

    50 100 150 200 250

    50

    100

    150

    200

    25040

    60

    80

    100

    120

    140

    160

    180

    200

    49/59

    Real part of the centered spectrum, image and

    mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    49/118

    49/59mesh

    Real part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    real part, image real part, mesh

    50/59

    Imaginary part of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    50/118

    50/59image and mesh

    Imaginary part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    imaginary part, image imaginary part, mesh

    51/59

    Log power of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    51/118

    51/59g

    log power spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    100 50 0 50 100

    100

    50

    0

    50

    100

    image mesh

    52/59Horizontal line example, input image 265256

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    52/118

    /

    53/59Horizontal line example, real part of the spectrum

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    53/118

    /

    54/59

    Horizontal line example,imaginary part of the spectrum

    http://showthumbs/http://showthumbs/http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    54/118

    http://showthumbs/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    55/118

    56/59Rectangle example, input image 512512

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    56/118

    100 200 300 400 500

    50

    100

    150

    200

    250

    300

    350

    400

    450

    5000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    57/59

    Real part of the centered spectrum, image andmesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    57/118

    Real part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    real part, image real part, mesh

    58/59

    Imaginary part of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    58/118

    Imaginary part of the spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    imaginary part, image imaginary part, mesh

    59/59

    Log power of the centered spectrumimage and mesh

    http://showthumbs/http://showthumbs/http://cmp.felk.cvut.cz/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    59/118

    log power spectrum, centered

    Spatial frequency u

    Spatialfrequencyv

    200 100 0 100 200

    250

    200

    150

    100

    50

    0

    50

    100

    150

    200

    250

    image mesh

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    60/118

    spatialfilter

    frequencyfilter

    inputimage

    directtransformation

    inversetransformation

    outputimage

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    61/118

    f( )

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    62/118

    f(t)

    t

    f(t)

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    63/118

    t

    f(t)

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    64/118

    f(t) f (t)e f (t)o

    t t t= +

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    65/118

    0 0

    00

    0

    0

    t

    x

    t t

    x x

    1

    1

    f(t)

    ReF( )x

    d(t)

    d( )x

    T-T-2T 2T

    f(t)

    F( )x

    1

    T

    1

    2T

    1

    -T

    1

    -2T

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    66/118

    0 00x x xx0 x0

    -x0

    -x0

    -2x0 2x0-x0 x0

    f(t)

    F( )x

    ReF( )x ReF( )xImF( )x

    t

    f(t)= (2 t)cos px0

    t t

    f(t)= (2 t)sin px0 f(t)= (2 t) +cos px0 cos(4 t)px0

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    67/118

    0

    00

    0

    f(t)

    F( )x

    ReF( )=(sin 2 T)/x px px ReF( )x

    f(t)=(sin 2 t)/ tpx p0

    t t

    f(t) f(t)=exp(-t )2

    ReF( )= exp(- )x p p x2 2

    t

    1

    0

    0

    T-T

    1

    x x0 x x

    f1f0 f2 f3 f4 f5 f6 f7

    Iteration

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    68/118

    F1F0 F2 F3 F4 F5 F6 F7

    Iteration

    1

    2

    3

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    69/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    70/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    71/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    72/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    73/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    74/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    75/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    76/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    77/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    78/118

    50

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    79/118

    100 200 300 400 500

    100

    150

    200

    250

    300

    350

    400

    450

    5000

    50

    100

    150

    200

    Real part of the spectrum

    50

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    80/118

    Spatial frequency u

    Spatialfrequency

    v

    100 200 300 400 500

    100

    150

    200

    250

    300

    350

    400

    450

    500

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    81/118

    Imaginary part of the spectrum

    50

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    82/118

    Spatial frequency u

    Spatialfrequency

    v

    100 200 300 400 500

    100

    150

    200

    250

    300

    350

    400

    450

    500

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    83/118

    log power spectrum

    50

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    84/118

    Spatial frequency u

    Spatialfrequency

    v

    100 200 300 400 500

    100

    150

    200

    250

    300

    350

    400

    450

    500

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    85/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    86/118

    A D

    CB

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    87/118

    AD

    C B

    Real part of the spectrum, centered250

    200

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    88/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    150

    100

    50

    0

    50

    100

    150

    200

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    89/118

    Imaginary part of the spectrum, centered

    250

    200

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    90/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    150

    100

    50

    0

    50

    100

    150

    200

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    91/118

    log power spectrum, centered

    250

    200

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    92/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    150

    100

    50

    0

    50

    100

    150

    200

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    93/118

    50

    200

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    94/118

    50 100 150 200 250

    100

    150

    200

    2500

    50

    100

    150

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    95/118

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    96/118

    Imaginary part of the spectrum, centered

    100

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    97/118

    S ti l f

    Spatialfrequency

    v

    100 50 0 50 100

    50

    0

    50

    100

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    98/118

    log power spectrum, centered

    100

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    99/118

    Spatial frequency u

    Spatialfrequency

    v

    100 50 0 50 100

    50

    0

    50

    100

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    100/118

    50

    180

    200

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    101/118

    50 100 150 200 250

    100

    150

    200

    25040

    60

    80

    100

    120

    140

    160

    Real part of the spectrum, centered

    100

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    102/118

    Spatial frequency u

    Spatialfrequency

    v

    100 50 0 50 100

    50

    0

    50

    100

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    103/118

    Imaginary part of the spectrum, centered

    100

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    104/118

    Spatial frequency u

    Spatial

    frequency

    v

    100 50 0 50 100

    50

    0

    50

    100

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    105/118

    log power spectrum, centered

    100

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    106/118

    Spatial frequency u

    Spatial

    frequency

    v

    100 50 0 50 100

    50

    0

    50

    100

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    107/118

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    108/118

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    109/118

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    110/118

    http://prevpage/http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    111/118

    50

    100 160

    180

    200

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    112/118

    100 200 300 400 500

    150

    200

    250

    300

    350

    400

    450

    5000

    20

    40

    60

    80

    100

    120

    140

    Real part of the spectrum, centered

    250

    200

    150

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    113/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    100

    50

    0

    50

    100

    150

    200

    250

    http://prevpage/
  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    114/118

    Imaginary part of the spectrum, centered

    250

    200

    150

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    115/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    100

    50

    0

    50

    100

    150

    200

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    116/118

    log power spectrum, centered

    250

    200

    150

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    117/118

    Spatial frequency u

    Spatialf

    requency

    v

    200 100 0 100 200

    100

    50

    0

    50

    100

    150

    200

    250

  • 8/13/2019 SIPC Fourier transform, in 1D and in 2D

    118/118