sintesis filtros

98
 Lecturer: James Grimbleb URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: .b. rimbleb readin .ac.uk Number o f L ectures: 5 Reference text:  Circuits (3rd edition) McGraw-Hill 2003 ISBN 0071207031 School of Systems Engineering - Electronic Engineering Slide 1 James Grimbleby

Transcript of sintesis filtros

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 1/98

Lecturer: James Grimbleb

URL: http://www.personal.rdg.ac.uk/~stsgrimb/

email: .b. rimbleb readin .ac.uk

Number of Lectures: 5

Reference text:

Circuits (3rd edition)

McGraw-Hill 2003 ISBN 0071207031

School of Systems Engineering - Electronic Engineering Slide 1James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 2/98

Design with Operational

Integrated Circuits (3rd ed)

McGraw-Hill 2003

A rox £43

School of Systems Engineering - Electronic Engineering Slide 2James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 3/98

This course of lectures deals with the design of passive andactive analogue filters

e op cs a w e covere nc u e:

Fre uenc -domain filter a roximations

Filter transformations

Passive e uall -terminated ladder filtersPassive ladder filters from filter design tables

Active filters – cascade synthesis

Component value sensitivityCopying methods

Generalised immittance converter (GIC)

Inductor simulation using GICs

School of Systems Engineering - Electronic Engineering Slide 3James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 4/98

You should be familiar with the following topics:

Circuit analysis using Kirchhoff’s Laws

Thévenin and Norton's theorems

The Superposition Theorem

Semiconductor devicesComplex impedances

Frequency response function – gain and phase

The infinite-gain approximation

School of Systems Engineering - Electronic Engineering Slide 4James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 5/98

a signal and are therefore specified in the frequency domain:

Gain(dB)

Max pass-band gain

-Max

sto -Max stop-band gain

band

gain

lo fre

Stop-band

ed e

Stop-band

ed e

Pass-band

ed es

School of Systems Engineering - Electronic Engineering Slide 5James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 6/98

stages

In the first stage a frequency response function H (jω) is

In the second sta e an electronic circuit is desi ned togenerate the required frequency response function

Filter circuits can be constructed entirely from passivecomponents or can contain active elements such as

operational amplifiers

School of Systems Engineering - Electronic Engineering Slide 6James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 7/98

-

-

deriving a low-pass prototype filter normalised to a cut-off

fre uenc of 1 rad/s

This rotot e filter is then transformed to the re uired t e

and cut-off frequency:

-

High-pass

Band-stop

This procedure results in a frequency response function

which meets the specification

School of Systems Engineering - Electronic Engineering Slide 7James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 8/98

-

An ideal normalised sharp cut-off low-pass filter has a

frequency response:

Gain

.

Angular

ω =1.0 frequency

.

0.0

n or una e y suc a er s no rea sa e an s

necessary to use approximations to the ideal response

School of Systems Engineering - Electronic Engineering Slide 8James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 9/98

-

distributed elements is a rational function of jω :

nnaaaa ) j(..) j() j( 2

210 ωωω ++++n

nbbbb ) j(..) j() j( 2210 ωωω ++++

The first stage in the design is to choose suitable values for

the order n and the coefficients a0..an and b0..bn

,

Chebychev, Inverse Chebychev, Elliptic and Bessel

School of Systems Engineering - Electronic Engineering Slide 9James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 10/98

e u erwor approx ma on ga n s max ma y a

-as possible

The gain falls off monotonically in both pass-band (below

= - =

nH

21) j(

ω

ω

+=

School of Systems Engineering - Electronic Engineering Slide 10James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 11/98

(dB)

0-3

g s

log(freq)ω=1 ω= ωs

School of Systems Engineering - Electronic Engineering Slide 11James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 12/98

The poles pk of a Butterworth frequency response function

k k k y x p j+=

where:

k k )12()12( −−−

nk

nn

,,2,1

22

K=

Values of k from 1 to n are substituted into this formula

giving the n poles

School of Systems Engineering - Electronic Engineering Slide 12James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 13/98

e po es o e u erwor response p1, p2 , ... , pn are

then combined to give the Butterworth frequency response

) j().. j() j(

) j(

21 n p p p

H

−−−

=ωωω

ω

-

there are no zeros

School of Systems Engineering - Electronic Engineering Slide 13James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 14/98

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 15/98

Poles of H (jω):

– 0.5 + j 0.866 – 0.5 – j 0.866 – 1.0 + j 0.0

Combining the poles:

1) j( =ωH

1

.....

=

+++−+ ωωω

)0.1 j(1.0) j) j((2

+++ ωωω

1.02.0j) j(0.2) j( 23 +++=

ωωω

School of Systems Engineering - Electronic Engineering Slide 15James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 16/98

What order n is required to meet specification?

Gain (dB)

0-

g s

log(freq)ω

=1 ω

School of Systems Engineering - Electronic Engineering Slide 16James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 17/98

The gain g of a Butterworth filter, expressed in dB, is giveny:

) j(log20 10 H g ω=

og2

-10

n

ω

−=+=

The stop-band edge is at ωs, and the stop-band gain isrequired to be less than g s dB:

sssss

ng

g

ω

ωω

101010

log20

ogog

−≥

−≈+−≥

sg n

−≥

School of Systems Engineering - Electronic Engineering Slide 17James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 18/98

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 19/98

-

( d B )

≥ -3 dB

G a i

g s ≤ -40 dB

ω = 1.0

ωs = 1.5

School of Systems Engineering - Electronic Engineering Slide 19James Grimbleby

..

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 20/98

e e yc ev approx ma on ga n osc a es e ween

dB and g p dB in the pass-band (below ω=1)

In the stop-band (above ω=1) the gain falls off

approximation for each n, but a group of approximations

- p

approximation is an all-pole response

School of Systems Engineering - Electronic Engineering Slide 20James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 21/98

(dB)

0g p

g s

log(freq)ω=1 ω= ωs

School of Systems Engineering - Electronic Engineering Slide 25James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 22/98

Res onse of 6th-order Cheb chev a roximation:

(

d B )

g p ≥ -3 dB

G a i n g s ≤ -40 dB

ω p = 1.0

ω

s

= .

Fre uenc Hz 1.00.01School of Systems Engineering - Electronic Engineering Slide 26James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 23/98

The Inverse Chebychev approximation gain falls off

monotonically in the pass-band (below ω=1)

In the stop-band (above ω=1) the gain at first falls to -∞ dB,

an en osc a es e ween -∞ an g s

approximation for each n, but a group of approximations with

- s

School of Systems Engineering - Electronic Engineering Slide 27James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 24/98

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 25/98

( d B )

≥ -3 dB

G a i n g s ≤ -40 dB

ω = 1.0

ωs = 1.5

School of Systems Engineering - Electronic Engineering Slide 29James Grimbleby

..

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 26/98

The elliptic response gain oscillates between 0 and g p dB in

-

-

g s dB and -∞ dB

The elliptic approximation has imaginary zeros

For a given filter specification the elliptic approximation givesthe lowest order fre uenc res onse function

School of Systems Engineering - Electronic Engineering Slide 30James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 27/98

a n

(dB)

0g

g s

log(freq)ω=1 ω= ω

s

School of Systems Engineering - Electronic Engineering Slide 31James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 28/98

-

( d B )

≥ -3 dB

G a i n g s ≤ -40 dB

ω = 1.0

ωs = 1.5

School of Systems Engineering - Electronic Engineering Slide 32James Grimbleby

..

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 29/98

-

- -

1.0

g ( t

0.0

School of Systems Engineering - Electronic Engineering Slide 33James Grimbleby

. .

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 30/98

e esse approx ma on s use w ere a requency- oma n

filter is required which also has a good time-domain

-

frequency and the different frequency components are

-

seriously distorted

School of Systems Engineering - Electronic Engineering Slide 34James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 31/98

The Bessel approximation has an all-pole frequencyresponse function:

a0

nnbbbb ) j(..) j() j( 2210 ωωω ++++

n e g - requency m ω→∞:

an

nb ω

00 ba =

)!2( i nb

i ni

−=

School of Systems Engineering - Electronic Engineering Slide 35James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 32/98

-

d

B )

G a i n

School of Systems Engineering - Electronic Engineering Slide 36James Grimbleby

..

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 33/98

- -

.

t ) g (

0.0

School of Systems Engineering - Electronic Engineering Slide 37James Grimbleby

. .

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 34/98

- -

TransformationThis transformation shifts the cut-off frequency to ω0:

j jω

ωω →

ω= ω0 ω=1.0

School of Systems Engineering - Electronic Engineering Slide 38James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 35/98

- -

Transformation

Design example: A Chebychev low-pass filter is required with

e o ow ng spec ca on:

ass- an ga n: g p -

Stop-band gain: g s ≤ -50 dB

- p

Stop-band edge: f s = 2000 Hz

This corresponds to a normalised low-pass filter with ωp=1.0,s .

School of Systems Engineering - Electronic Engineering Slide 39James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 36/98

- -

TransformationNormalised low-pass filter:

ass- an ga n: g p ≥ -Stop-band gain: g s ≤ -50 dB

ass- an e ge: ωp= .

Stop-band edge: ωs=2.0

This specification can be met by a 5th-order Chebychev

62650.0=

-

) j(415.1) j(5745.0) j(

2

345 ++ ωωω

School of Systems Engineering - Electronic Engineering Slide 40James Grimbleby...

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 37/98

- -

Transformation Applying the low-pass to low-pass transformation with

ω0=2π×1000=6283:

j j.) j( 345

⎫⎧⎫⎧⎫⎧=

ωωω

ωH

6283.

6283.

6283

2

⎭⎩⎭⎩⎭⎩

06265.06283

4080.06283

5489.0 +⎭⎬

⎩⎨+

⎭⎬

⎩⎨+

ωω

10705.510686.310021.1

62650.0312416519 ×+×+×= −−−

ωωω

06265.0) j(10493.6) j(10390.1 528 +×+×+ −−ωω

School of Systems Engineering - Electronic Engineering Slide 41James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 38/98

- -

Transformation5th-order Chebychev low-pass with cut-off frequency 1000 Hz :

d

B )

a i n

School of Systems Engineering - Electronic Engineering Slide 42James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 39/98

- -

TransformationThis transformation converts to a high-pass response and

shifts the cut-off frequency to ω0:

ωω j 0→

ω= ω0ω=1.0

School of Systems Engineering - Electronic Engineering Slide 43James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 40/98

- -

TransformationDesign example: A Chebychev high-pass filter is required

- p -

Stop-band gain: g s ≤ -25 dB

- =p Stop-band edge: f s = 1000 Hz

This corresponds to a normalised low-pass filter withω =1.0 ω =2.0

School of Systems Engineering - Electronic Engineering Slide 44James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 41/98

- -

TransformationNormalised low-pass filter:

Pass-band gain: g p ≥ -3 dBStop-band gain: g s ≤ -25 dB

Pass-band edge: ωp=1.0

Stop-band edge: ω

s=2.0

This specification can be met by a 3rd-order Chebychev

approx ma on w pass- an r pp e:

2506.0) j(9284.0) j(5972.0) j(

.) j(

23 +++=

ωωω

ωH

School of Systems Engineering - Electronic Engineering Slide 45James Grimbleby

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 42/98

- -

Transformation

2506.0) j(9284.0)(5972.0) j(

2506.0) j(

23 +++=

ωωω

ωH

Applying the low-pass to high-pass transformation with

ω0=2π×2000:2506.0

ω =H

2506.012566

9284.012566

5972.012566

ωωω

+⎬⎫

⎨⎧

+⎬⎫

⎨⎧

+⎬⎫

⎨⎧

324712 2506.010167.110431.910984.1

)(2506.0

ωωω

ω

+×+×+×=

School of Systems Engineering - Electronic Engineering Slide 46James Grimbleby

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 43/98

- -

Transformation3rd-order Chebychev high-pass with cut-off frequency 2000 Hz :

( d B

G a i

School of Systems Engineering - Electronic Engineering Slide 47James Grimbleby

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 44/98

TransformationThis transformation converts to a band-pass response

centred on ω0 with relative bandwidth k 2 :

⎬⎫⎨⎧ +0 jωω

k → 0 jω

School of Systems Engineering - Electronic Engineering Slide 48James Grimbleby

0.

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 45/98

Transformation

with relative bandwidth k 2=4:

d

B )

a i n

School of Systems Engineering - Electronic Engineering Slide 49James GrimblebyFrequency (Hz)1000

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 46/98

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 47/98

Transformation10th-order Chebychev band-stop centred on f =1000 Hz

with relative bandwidth k 2=4:

)

n ( d B

G

a i

School of Systems Engineering - Electronic Engineering Slide 51James GrimblebyFrequency (Hz)1000

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 48/98

Passive filters are usually realised as equally-terminated

ladder filters

This type of filter has a resistor in series with the input and a

resistor of nominally the same value in parallel with the

output; all other components are reactive (that is inductors orcapacitors)

Passive equally-terminated ladder filters are not normally

used at frequencies below about 10 kHz because they

contain inductors

School of Systems Engineering - Electronic Engineering Slide 52James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 49/98

Equally-terminated low-pass all-pole ladder filter:

R

This type of filter is suitable for implementing all-pole,

=School of Systems Engineering - Electronic Engineering Slide 53James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 50/98

Alternative equally-terminated low-pass all-pole ladder filter:

R

This type of filter is suitable for implementing all-pole designs,

=School of Systems Engineering - Electronic Engineering Slide 54James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 51/98

- -zeros in response:

R

R Input Output

This type of filter is suitable for implementing an Inverse

Chebychev or Elliptic response

School of Systems Engineering - Electronic Engineering Slide 55James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 52/98

- -imaginary zeros in response:

R Input

Out ut

This type of filter is suitable for implementing an Inverse

Chebychev or Elliptic response

School of Systems Engineering - Electronic Engineering Slide 56James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 53/98

- -replacing the inductors by capacitors, and the capacitors

b inductors:

R

R In ut Out ut

This type of filter is suitable for implementing all-pole

designs such as Butterworth, Chebychev and Bessel

School of Systems Engineering - Electronic Engineering Slide 57James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 54/98

- -

replacing the inductors and capacitors by LC combinations

C L

1=

C

C LL 1

L2

=

where ω0 is the geometric centre frequency of the

passband

School of Systems Engineering - Electronic Engineering Slide 58James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 55/98

replacing the inductors and capacitors by LC combinations

R

R Input Output

This type of filter is suitable for implementing all-pole

designs such as Butterworth, Chebychev and Bessel

School of Systems Engineering - Electronic Engineering Slide 59James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 56/98

following procedure:

1. Select a suitable filter circuit

2. Obtain its frequency-response function in symbolic

form

3. Equate coefficients of the symbolic frequency-

response function and the required response

4. Solve the simultaneous non-linear equations to

obtain the component values

School of Systems Engineering - Electronic Engineering Slide 60James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 57/98

-

(R = 1.0 Ω, ω0 = 1.0 rad/s):

n C1 L2 C3 L4 C5 L6 C7

2 1.414 1.4143 1.000 2.000 1.000

4 0.765 1.848 1.848 0.765

5 0.618 1.618 2.000 1.618 0.618

6 0.518 1.414 1.932 1.932 1.414 0.518

7 0.445 1.247 1.802 2.000 1.802 1.247 0.445

School of Systems Engineering - Electronic Engineering Slide 61James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 58/98

- -cut-off (-3 dB) frequency 2 kHz

Normalised 5th-order Butterworth low-pass filter:

1Ω 1.618H 1.618H

0.618F 0.618F2.000F

School of Systems Engineering - Electronic Engineering Slide 62James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 59/98

k , divide capacitor values by k

Choose k = 10000

10kΩ 10kΩ16.18kH 16.18kH

61.8μF 61.8μF200μF

School of Systems Engineering - Electronic Engineering Slide 63James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 60/98

ca e requency: v e n uc or an capac or va ues y

where k = 2π×2000 = 1.257×104

10kΩ 10kΩ1.288H 1.288H

Input Output

. n . n . n

School of Systems Engineering - Electronic Engineering Slide 64James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 61/98

- -

( d B )

G a i n

School of Systems Engineering - Electronic Engineering Slide 65James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 62/98

Normalised 1 dB ripple low-pass Chebychev

= =. , .

2 0.572 3.132

3 2.216 1.088 2.2164 0.653 4.411 0.814 2.535

5 2.207 1.128 3.103 1.128 2.207

6 0.679 3.873 0.771 4.711 0.969 2.406

7 2.204 1.131 3.147 1.194 3.147 1.131 2.204

School of Systems Engineering - Electronic Engineering Slide 66James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 63/98

- -1 dB ripple and a cut-off (-3 dB) frequency 5 kHz

Normalised 3rd-order Chebychev high-pass filter:1

1Ω .088.1

1ΩIn ut Out ut0.451H 0.451H

216.2

1

School of Systems Engineering - Electronic Engineering Slide 67James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 64/98

divide capacitor values by k

Choose k = 1000

1000Ω 1000Ω

In ut Out ut451H 451H

School of Systems Engineering - Electronic Engineering Slide 68James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 65/98

ca e requency: v e n uc or an capac or va ues y

where k = 2π×5000 = 3.142×105

1000Ω . 1000Ω

In ut Out ut

14.36mH 14.36mH

School of Systems Engineering - Electronic Engineering Slide 69James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 66/98

- -

( d B )

G a i n

School of Systems Engineering - Electronic Engineering Slide 70James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 67/98

- -1 dB ripple and a cut-off (-3 dB) frequency 5 kHz

Normalised 3rd-order Chebychev high-pass filter:1

.216.2

.

1Ω0.919HIn ut Out ut

088.1

1

School of Systems Engineering - Electronic Engineering Slide 71James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 68/98

divide capacitor values by k

Choose k = 1000

919HIn ut Out ut

School of Systems Engineering - Electronic Engineering Slide 72James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 69/98

ca e requency: v e n uc or an capac or va ues y

where k = 2π×5000 = 3.142×105

1000Ω 14.36nF 1000Ω14.36nF

29.25mHInput Output

School of Systems Engineering - Electronic Engineering Slide 73James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 70/98

5th-order 3dB ripple low-pass Chebychev equally-terminated ladder filter with cut-off frequency 1000 Hz:

B )

a i n ( d

±10% variation of

G

School of Systems Engineering - Electronic Engineering Slide 74James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 71/98

order factors

) j(..) j() j() j( 2210 ++++= ωωω

ω aaaaH n

n

n

) j() j() j() j( 2222120

2121110

×

++

×

++

=

ωωωω aaaaaa

) j() j() j() j( 222120121110

=

++++ ωωωω bbbbbb

Each factor is implemented using a second-order active filter

These filters are then connected in cascade

School of Systems Engineering - Electronic Engineering Slide 75James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 72/98

If the response to be implemented is derived from an all-

pole approximation then the second-order factors will be of

s mp e ow-pass lp , an -pass bp or g -pass hp

form:

2210

0

) j() j() j(

ωω

ω

bbb

aH lp

++=

21 ) j(

) j( ω

ωa

H bp =

22 ) j( ωa2

210 ) j() j( ωω bbb p

++

School of Systems Engineering - Electronic Engineering Slide 76James Grimbleby

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 73/98

C 1

R 1 R 2

OutputInputC 2

1) j(H l =ω

22211121

212

:where C R T C R T R R ===

++ ωω

School of Systems Engineering - Electronic Engineering Slide 77James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 74/98

2212 ) j() j(21

) j(ωω

ω

T T T H lp

++=Sallen-Key:

Standard response:2

1) j( ω =H lp

200

1ωω

++Q

Thus: 221 211

T T T ==00ω

or:2

1

20210

22 T T Q

T T ===

ω

ω

School of Systems Engineering - Electronic Engineering Slide 78James Grimbleby

- -

Gain(dB)

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 75/98

Gain(dB)

20 dB

2=Q 10=Q

0 dB

2

1=Q

-20 dB-

1000 10000 10000010010-40 dB

School of Systems Engineering - Electronic Engineering Slide 79James Grimbleby

- -

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 76/98

R

C 1 C 2

u puInputR 2

221 ) j() j( T T H = ωω

211

:where

) j() j(21

C R T C R T C C

T T T

===

++ ωω

School of Systems Engineering - Electronic Engineering Slide 80James Grimbleby

- -

Gain(dB)

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 77/98

Gain(dB)

20 dB

2=Q 10=Q

0 dB

1=Q

-20 dB

1000 10000 10000010010-40 dB

School of Systems Engineering - Electronic Engineering Slide 81James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 78/98

R C 2

R 2 C

1

OutputInput

21 )() j( T H bp −= ω

ω

22211121

212

:where C R T C R T R R ===

School of Systems Engineering - Electronic Engineering Slide 82James Grimbleby

-

Gain(dB)

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 79/98

( )

40 dB 10=Q

20 dB 5=Q

2=Q

0 dB

1000 10000 10000010010

School of Systems Engineering - Electronic Engineering Slide 83James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 80/98

Design example: 5th-order Chebychev low-pass filter has

numerator and denominator coefficients:

a0 = 0.06265 b0 = 0.06265a1 = . 1 = . × -

a2 = 0.0 b2 = 1.390×10-8

-3 . 3 . ×a4 = 0.0 b4 = 3.686×10-16

-5 . 5 .

sections by finding the poles (there are no zeros)

School of Systems Engineering - Electronic Engineering Slide 84James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 81/98

The poles are the roots of the equation obtained by setting

the denominator polynomial to zero:

-9.011×10+2 + j3.751×10+3

- . × - . ×-3.463×10+2 + j6.070×10+3

- . × - . ×-1.115×10+3 + j0.0

The frequency response is of 5th-order so that the factors

root

School of Systems Engineering - Electronic Engineering Slide 85James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 82/98

Conjugate pole pairs are combined:-9.011×10+2 + j3.751×10+3

+2 +3- . - .

32

32 )10751.3 j109.011(j

..

×+×+

ω

2) j(= ω

322

) j)(109.011109.011(

2

×+×+ ω

732 10488.1) j(10802.1) j(

..

++ ×+×+= ωω

School of Systems Engineering - Electronic Engineering Slide 86James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 83/98

310115.1 j) j() j( +×+=−= ωωω pD

Dividing through by 1.115×10+3:

Fre uenc res onse function of 1st-order filter:

) j(10966.81) j( ωω −×+=D

1) j( ωH =

Thus: 4×

Let R =10 kΩ; then C =89.66 nF.

. ×

School of Systems Engineering - Electronic Engineering Slide 87James Grimbleby

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 84/98

Denominator of the 1st 2nd-order section:732 10488.1) j(10802.1) j() j( ++ ×+×+= ωωωD

v ng roug y . × :

284 −−=

Frequency response function of 2nd-order filter:

..

2212 ) j() j(21

) j(ωω

ω

T T T H lp

++=

Thus:

5

2

4

2 10054.610211.12

−−

×=→×= T T

= = = =

121 10110.110718.6 −− ×=→×= T T T

School of Systems Engineering - Electronic Engineering Slide 88James Grimbleby

. , .

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 85/98

Denominator of the 1st 2nd-order section:722 10696.3) j(10926.6) j() j( ++ ×+×+= ωωωD

v ng roug y . × :

285 −−=

Frequency response function of 2nd-order filter:

..

2212 ) j() j(21

) j(ωω

ω

T T T H lp

++=

Thus:

6

2

5

2 10369.910874.12

−−

×=→×= T T

= = = =

121 10888.210706.2 −− ×=→×= T T T

School of Systems Engineering - Electronic Engineering Slide 89James Grimbleby

. , .

-

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 86/98

Complete cascade synthesis of Chebychev active filter:

111.0nF 288.8nF

10kΩ 10kΩ 10kΩ 10kΩ

. . .

Input Output

School of Systems Engineering - Electronic Engineering Slide 90James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 87/98

e response s no er ve rom an a -po e approx ma on

then the second-order factors will be of general form:

2210 ) j() j( ωωω

aaaH ++=

210 ) j() j( ωω bbb ++

Rauch or Sallen-Key second-order filters are unsuitable and

- - - -

filter) can be used

School of Systems Engineering - Electronic Engineering Slide 91James Grimbleby

5th-order Chebychev low-pass implemented as a cascade

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 88/98

of active Sallen-Key sections:

d B )

a i n

School of Systems Engineering - Electronic Engineering Slide 92James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 89/98

the same low sensitivity properties of passive equally-

passive filter

This is then copied in some way which preserves the

desirable ro erties of the assive filters but which

eliminates the inductors

The copying method that will be described here is based on

inductor simulation

School of Systems Engineering - Electronic Engineering Slide 93James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 90/98

1

3

4131 Z I V V +=3

V 1 322

3231

Z Z V

Z Z V V

++

+=

2 V 210

021

Z Z V V

+=

Z 1

V Z 0

School of Systems Engineering - Electronic Engineering Slide 94James Grimbleby

4131 Z I V V +=

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 91/98

41313

22

31Z Z

Z V

Z Z

Z V V

++

+=

021

Z V V =

Substitute to remove V and V :

10

3223321 )( Z V Z V Z Z V +=+

013

123

)(

Z

Z Z Z

V Z V

+

+=

01314112

)()(

Z Z Z V Z I V Z

++−=

School of Systems Engineering - Electronic Engineering Slide 95James Grimbleby0

0

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 92/98

0

−=

)( 30311 Z Z Z Z V ++

Remove cancelling terms:

4201311 Z Z Z I Z Z V =

i

311 Z Z I Z i ==

School of Systems Engineering - Electronic Engineering Slide 96James Grimbleby

e an e res s ors o va ue an e a

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 93/98

e 0, 1 , 2,an 4 e res s ors o va ue , an 3 e acapacitor of value C :

23

420 j CR R Z Z Z Z i ω===

or:2

i ==

CR 2

By correct choice of R and C the PIC can be made to

simulate an re uired inductance.

School of Systems Engineering - Electronic Engineering Slide 97James Grimbleby

or er e yc ev g pass pass ve er:

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 94/98

-or er e yc ev g -pass pass ve er:

. . .

Input Output4.178H 4.178H 10kΩ

=

F10178.4H178.4 82 ×C CR

School of Systems Engineering - Electronic Engineering Slide 98James Grimbleby

5th-order Chebychev high-pass active filter:

9 134 F 9 134 F7 015 F

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 95/98

9.134nF 9.134nF7.015nF10kΩ

10kΩ 10kΩ

u t O

41.78nF41.78nF

I n t p

u t

Ω

Ω10kΩ

School of Systems Engineering - Electronic Engineering Slide 99James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 96/98

395nF382nF

Input Output815nF

1kΩ

2.29H

Let R =1 kΩ; then:62

×

School of Systems Engineering - Electronic Engineering Slide 100James Grimbleby

×

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 97/98

high-pass 815nF 395nF382nF1kΩ

1kΩ

2.29μF

Ω

1kΩ1kΩ

School of Systems Engineering - Electronic Engineering Slide 101James Grimbleby

8/12/2019 sintesis filtros

http://slidepdf.com/reader/full/sintesis-filtros 98/98

© J. B. Grimbleby, 19 February 2009

School of Systems Engineering - Electronic Engineering Slide 110James Grimbleby