Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in...

36
Singular Value Decomposition Analysis 376_069 Multivariable feedback control V3 1 of 36 Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control designs? Definition and properties of singular values Singular value decomposition (SVD) provides directional information

Transcript of Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in...

Page 1: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 1 of 36

Singular Value Decomposition Analysis

Introduction • Introduce a linear algebra tool: singular

values of a matrix • Motivation Why do we need singular values in

MIMO control designs? • Definition and properties of singular values • Singular value decomposition (SVD)

provides directional information

Page 2: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 2 of 36

SISO sinusoidal steady-state (I) u(s) g(s) y(s) • Assume: g(s) strictly stable • Sinusoidal steady-state u(t) = uejωt ⇒ y(t) = yejωt y = g(jω)u • Note g(jω) is a complex scalar g(jω) = |g(jω)| ejφ(ω) Magnitude: |g(jω)| = g*(jω)g(jω) Phase: φ(ω) = Im( (j ))arctan Re( (j ))

gg

ωω

⎧ ⎫⎪ ⎪⎨ ⎬⎪ ⎪⎩ ⎭

Above plotted in Bode plot defines frequency response of SISO plant g(s) • |g(jω)| defines plant gain at frequency ω

Page 3: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 3 of 36

SISO sinusoidal steady-state (II)

• Input with complex amplitude u(t) = uejωt ⇒ u = |u|ejψ u(t) = |u|ej(ωt + ψ) • Interpretation Re{u(t)} = |u|cos(ωt + ψ) Im{u(t)} = |u|sin(ωt + ψ) • Complex steady-state output y(t) = y ejωt y = g(jω) u

= |g(jω)| ejφ(ω) |u|ejψ = |g(jω)| |u| ej(φ(ω) + ψ) |y| = |g(jω)| |u| Re{y(t)} = |y|cos(ωt + ψ + φ(ω)) Im{y(t)} = |y|sin(ωt + ψ + φ(ω))

Page 4: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 4 of 36

SISO Bode plot information

• Provides graphical "summary" of plant gain

at different frequencies • Concepts of "small" and "large" gain are

clear |g(jω)| >> 1 ⇒ large gain |g(jω)| << 1 ⇒ small gain

Page 5: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 5 of 36

MIMO sinusoidal steady-state u(s) g(s) y(s) • Assume: G(s) strictly stable

• Sinusoidal inputs generate at steady-state

sinusoidal outputs

• Sinusoidal steady-state u(t) = uejωt ;u ∈ C m ⇒ y(t) = yejωt ;y ∈ C p y = G(jω)u • G(jω) : p x m complex matrix • Need notion of size of G(jω) vs. frequency

want visualize MIMO gain on Bode plot

Page 6: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 6 of 36

Issues • Deal with complex vectors and complex

matrices.

• How to quantify "large" and "small" • Impact of directions y(s) = G(s) u(s) u(t) = uejωt ;u ∈ C m ⇒ y(t) = yejωt ;y ∈ C p y = G(jω)u Direction and size of u and Plant properties at frequency ω yield Direction and size of y • Singular value decomposition (SVD) provides

the "tool" for analysis

Page 7: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 7 of 36

Notes on complex vectors • x is a complex vector; x ∈ C n

x = ⎝⎜⎜⎛

⎠⎟⎟⎞x1

x2 :

xn

xi = ai + jbi ; i = 1, 2, ..., n • Magnitude x = ||x||2 xH = [x*1 x*2 ... x*n] ||x||2 = xHx • Example x = 1

2 3jj

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

+−

;xH = [1 - j 2 + j3]

xHx = (1 - j)(1 + j) + (2 + j3)(2 - j3) = 15 ⇒ ||x||2 = 15

Page 8: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 8 of 36

Notes on complex matrices • A is a n x m matrix with complex-valued

elements: aik = αik + jβik • Notation AH : complex-conjugate transpose of A AH is a m x n matrix • Note: AHA m x m matrix AAH n x n matrix • Fact: AAH and AHA have real non-negative

eigenvalues • Example A =

1 12j

j j

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

+− +

⇒ AH =11 2

jj j

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠− −

det(λΙ - AHA) = λ2 - 9λ + 5 ;λ1 = 8.41 ;λ2 = 0.59 det(λΙ - AHA) = det(λΙ - AAH) • In this example λi[AHA] = λi[AAH] > 0

Page 9: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 9 of 36

Definition of singular values • A is a n x m complex matrix • Suppose : rank(A) = k • Notation σi(A): singular value of A • Definition: The strictly positive square roots of the non-zero eigenvalues of AHA ( and AAH equivalently), are the singular values of A σi(A) = λi[AHA] = λi[AAH] > 0 i = 1, 2, ..., k

Page 10: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 10 of 36

The singular value decomposition

• A is a n x m complex matrix: rank(A) = k • σ1 ≥ σ2 ≥ ... ≥ σk ≥ 0 : are singular values of A

Σ =

0 ... 0 010 ... 0 02... ... ... ... ...0 0 ... 0

0 0 ... 0 0k

σ

σ

σ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Σ n x m real matrix • SVD A = U Σ VH A = UH Σ V U : n x n unitary matrix (UH = U-1) V : m x m unitary matrix (VH = V-1) • Column vectors of U and V are orthonormal

Page 11: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 11 of 36

More on SVD • SVD A = U Σ VH A = UH Σ V • U : n x n unitary matrix (UH = U-1) U = [u1 u2 ... un] ;uH

iuj = δij ui : Left singular vectors of A (is right eigenvector of AAH associated with λi[AAH] ) • V : m x m unitary matrix (VH = V-1) V = [v1 v2 ... vm] ;vH

ivj = δij vi : Right singular vectors of A (is right eigenvector of AHA associated with λi[AHA] )

Page 12: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 12 of 36

Geometric interpretation • A complex n x n matrix • A-1 exists ⇒ λi(A) ≠ 0 • Consider linear transformation y = Ax ;x , y ∈ Rn x A y • Euclidean norm ||x||2 = x'x ;||y||2 = y'y • Spectral norm of matrix A

A

2=max

x≠0

Ax2

x2

= 2

2x 1max Ax

=

• Singular value relations

σ max ( A) = max

x2=1

Ax2= A

2

σ min ( A) = min

x2=1

Ax2= 1

A−1

2

Page 13: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 13 of 36

Graphical visualization • Real case : y = Ax ; y, x ∈ Rn, A ∈ Rnxn; n=2

• SVD A = U Σ VH

Σ = ⎝⎜⎜⎛

⎠⎟⎟⎞σ1 = σmax 0

0 σ2=σmin

U = [u1 u2] V = [v1 v2] Vector OD = v1 ; Vector OD" = u1 Vector OE = v2 ; Vector OE" = u2 Length of vector OD' = σmax = σ1

Length of vector OE' = σmin = σ2

Page 14: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 14 of 36

MIMO frequency response u(t) = uejωt G(s) y(t) = yejωt • Restrict u to unit (complex) sphere, i.e. ||u||2 = 1 • ui(t) is complex sinusoid, e.g.

ui(t) = |ui|ejψiejωt Re{ui(t)} = |ui|cos(ωt + ψi) • Output response y(s) = G(s)u(s) • Singular values σmax(G(jω)) =

22u 1

max G(j )uω=

= ||ymax(ω)||2

σmin(G(jω)) =

22u 1

min G(j )uω=

= ||ymin(ω)||2 • Maximum and minimum singular values of

G(jω) define max and min amplification of unit sinusoidal input at frequency ω

Page 15: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 15 of 36

Bode plot visualization

Page 16: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Singular Value Decomposition Analysis

376_069 Multivariable feedback control V3 16 of 36

Discussion • The concept of singular values will be heavily

exploited in analysis and design of MIMO feedback systems

• Correct interpretation of singular value plot

hinges on units of physical variables (scaling) • Singular value results assume "roundness"

(convexity) of input signal space u(t) = uejωt G(s) y(t) = yejωt Input Space Output Space

Page 17: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 17 of 36

Feedback Performance Specifications in the Frequency

Domain Introduction • Use singular values to establish nature of

mimo performance specs in frequency domain • Performance attributes

- command following - disturbance rejection - insensitivity to sensor noise

• Stability-robustness to be addressed later

Page 18: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 18 of 36

Fundamental relations

• True tracking error: e(s) = r(s) - y(s) • Loop TFM: L(s) L(s) = G(s)K(s) • Sensitivity TFM: S(s) S(s) = [Ι + L(s)]-1 • Closed-loop TFM: T(s) T(s) = [Ι + L(s)]-1L(s) • Performance equation

e(s) = S(s)[r(s) - d(s)] + T(s)n(s)

Constraint: T(s) + S(s) = Ι

Page 19: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 19 of 36

Command following (I)

• Sinusoidal command yields sinusoidal error r(t) = rejωt ⇒ e(t) = eejωt • Relation: e = S(jω)r ||e||2 ≤ σmax[S(jω)]||r||2 • Ωr range of frequencies where command input

has energy • Prescription for good command following make σmax[S(jω)] << 1 for all ω ∈ Ωr

Page 20: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 20 of 36

Command following (II) • Interpretation for unit command sinusoid r(t) = rejωt ; ||r||2 = 1 • Worst error at frequency ω e(t) = eejωt ||e||2 = σmax[S(jω)] Attained when r points along right singular vector associated with σmax • Best error at frequency ω ||e||2 = σmin[S(jω)] Attained when r points along right singular vector associated with σmin • In general σmin[S(jω)] ≤ ||e||2 ≤ σmax[S(jω)]

Page 21: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 21 of 36

Command following (III) • Objective: express prescription for good

command following in terms of loop TFM L(s) = G(s)K(s) • Singular value facts σmax[A-1] =

[ ]min

1Aσ

σmin[A] - 1 ≤ σmin[Ι + A] ≤ σmin[A] + 1

• Recall: Need σmax[S(jω)] << 1 ;ω ∈ Ωr But S(jω) = [Ι + L(jω)]-1

⇒ σmax[S(jω)] =

1σ min I +L(jω )⎡⎣ ⎤⎦

<< 1

⇒ σmin[Ι + L(jω)] >> 1 ;ω ∈ Ωr But σmin[Ι + L(jω)] < σmin[L(jω)] + 1 ⇒ Need σmin[L(jω)] >> 1 ;ω ∈ Ωr • For good command following make σmin[G(s)K(s)] >> 1 for all ω ∈ Ωr

Page 22: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 22 of 36

Disturbance rejection (I)

• Sinusoidal disturbance yields sinusoidal error d(t) = dejωt ⇒ e(t) = eejωt • Relation e = S(jω)d ||e||2 ≤ σmax[S(jω)]||d||2 • Ωd range of frequencies where disturbance

inputs has energy • Prescription for good disturbance rejection make σmax[S(jω)] << 1 for all ω ∈ Ωd or make σmin[G(s)K(s)] >> 1 for all ω ∈ Ωd

Page 23: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 23 of 36

Disturbance rejection (II) • Interpretation for unit disturbance sinusoid d(t) = dejωt ; ||d||2 = 1 • Worst error at frequency ω ||e||2 = σmax[S(jω)] Attained when d points along right singular vector associated with σmax • Best error at frequency ω ||e||2 = σmin[S(jω)] Attained when d points along right singular vector associated with σmin • In general σmin[S(jω)] ≤ ||e||2 ≤ σmax[S(jω)]

Page 24: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 24 of 36

Quantitative relations • Loop TFM: L(jω) = G(jω)K(jω) • Sensitivity TFM: S(jω) = [Ι + L(jω)]-1 • Closed-loop TFM: T(jω) = [Ι + L(jω)]-1 L(jω) • Ωp = Ωr ∪ Ωd • Key relations Let 0 < δ << 1 If σmax[S(jω)] ≤ δ ≤ 1 ; all ω ∈ Ωp Then 1 <<

1−δδ

≤ σmin[L(jω)] ; all ω ∈ Ωp and 1 - δ ≤ σmin[T(jω)] ≤ σmax[T(jω)] ≤ 1 + δ ; all ω ∈ Ωp ⇒ T(jω) ≈ Ι - Proofs: not in this course

Page 25: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 25 of 36

Comment • Good command following and good

disturbance rejection served by similar requirements

ω ∈ Ωp = Ωr ∪ Ωd • Large loop gain σmin[L(jω)] >> 1 • Small sensitivity σmax[S(jω)] << 1 • Flat closed-loop response σmin[T(jω)] ≈ σmax[T(jω)] ≈ 1

Page 26: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 26 of 36

Insensitivity to sensor noise

• Sinusoidal noise yields sinusoidal error n(t) = nejωt ⇒ e(t) = eejωt • Relation e = T(jω)n ||e||2 ≤ σmax[T(jω)]||n||2 • Ωn range of frequencies where noise has

significant energy • Prescription for good sensor noise rejection

make σmax[T(jω)]<<1 for all ω ∈ Ωn

Page 27: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 27 of 36

Conflict with performance • Let 0 < γ << 1 • Suppose that σmax[T(jω)] ≤ γ for all ω ∈ Ωn Then

σmin[L(jω)] ≤ σmax[L(jω)] ≤ γ1-γ

≈ γ ∀ ω ∈ Ωn

⇒ low loop gain for all ω ∈ Ωn and 1 ≈1 - γ ≤ σmin[S(jω)] ≤ σmax[S(jω)] ⇒ large sensitivity for all ω ∈ Ωn • Bad command following and disturbance

rejection in frequency range ω ∈ Ωn • Consequence of constraint S(s) + T(s) = Ι

Page 28: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 28 of 36

Design implications • Need wide frequency separation between sets

Ωp = Ωr ∪ Ωd and Ωn • Cannot do good command following and

disturbance rejection with noisy sensors that make low frequency errors (drift, bias, etc.)

• Stability-robustness to unmodelled high-

frequency dynamics, far-away nonminimum phase zeros, and neglected small time-delays impact design in the same way as region Ωn

Page 29: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Feedback Performance Specifications in the Frequency Domain

376_069 Multivariable feedback control V3 29 of 36

Page 30: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 30 of 36

Directional Information in Singular Value Plots

Introduction • Plots of min and max singular values vs.

Frequency provide valuable insight into frequency domain properties of mimo systems

• Singular value decomposition provides

directional information left singular vectors right singular vectors • Need to understand and exploit directional

information

Page 31: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 31 of 36

SVD and linear equations • y = Ax x A y • SVD A = U Σ VH ⇒ y = U Σ VH x • Suppose : x = vi (right singular vector) ⇒ y = U Σ VH vi Note (since vH

i vj = δij)

VHvi =

0:1:0

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

(1 in row i) ; ΣVH vi =

0:

:0

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

(σi in row i)

then yi = σi ui (ui left singular vector) • Visualization

Page 32: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 32 of 36

SVD directional information (I) • Maximum singular value σ1(A) = σmax(A) - Associated max right singular vector vmax = v1 ; ||vmax||2 = 1 - Associated max left singular vector umax = u1 ; ||umax||2 = 1 • Max amplification direction Let y = Ax If x = vmax Then y = σmaxumax ||y||2 = σmax (A) ;max amplification • Visualization

Vmax = x Umax

y

Page 33: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 33 of 36

SVD directional information (II) • Minimum singular value: Rank(A)= m σm(A) = σmin(A) - Associated min right singular vector vmin = vm ; ||vmin||2 = 1 - Associated min left singular vector umin = um ; ||umin||2 = 1 • Min amplification direction Let y = Ax If x = vmin Then y = σminumin ||y||2 = σmin (A) ;min amplification • Visualization

Vmin = x Umin

y

Page 34: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 34 of 36

Utilizing SVD directional information

• System:

y(s) = G(s)u(s) ;G(s) m x m matrix • Pick ω, calculate G(jω), do SVD G(jω) = U(jω) Σ(jω) VH(jω) • Maximum direction analysis - Find σmax(ω), vmax(ω) , umax(ω)

- Write [vmax(ω)]i = |ai|ejψi

- Write [umax(ω)]i = |bi|ejφi - Apply input ui(t) = |ai| sin(ωt + ψi) with u(t) = (u1(t); …;ui(t);…um(t)) then yi(t) = σmax|bi| sin(ωt + φi) • Minimum directional analysis similar • Complex directions of right and left singular

vectors correspond to sinusoidal vectors with relative phase-shift among their elements

Page 35: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 35 of 36

DC gain matrix analysis • SVD-based direction analysis easiest at DC

because plant is real (ω = 0) • Plant model (strictly stable) dx(t)/dt = Ax(t) + Bu(t) y(t) = Cx(t) G(s) = C(sΙ - A)-1B • Plant DC gain matrix s = jω = 0 G(0) = - CA-1B • At steady-state u(t) = u = real constant vector ⇒ y(t→∞) = y = real constant vector y = G(0)u or y = - CA-1Bu

Page 36: Singular Value Decomposition Analysis Introduction€¦ · Feedback Performance Specifications in the Frequency Domain 376_069 Multivariable feedback control V3 21 of 36 Command following

Directional Information in Singular Value Plots

376_069 Multivariable feedback control V3 36 of 36

SVD at DC • Steady-state analysis y = G(0)u G(0) = - CA-1B = real • SVD at G(0) G(0) = UΣVH (U, Σ, V = real) • Max amplification direction If u = vmax ; ||u||2 = 1 Then y = σmaxumax • Min amplification direction If u = vmin ; ||u||2 = 1 Then y = σminumin • Above provides valuable insight upon MIMO

plant characteristics at DC