Single Box

download Single Box

of 41

Transcript of Single Box

  • 7/30/2019 Single Box

    1/41

    SUMMARY OF STRUCTURAL CALCULATION OF 1-BARREL BOX CULVER

    1 Design Dimensions and Bar Arrangements Class III Road (BM50)

    Type of box culvert B2.0 x H2.5

    Clear width m 2.00Clear height m 2.50

    Height of fillet m 0.20

    Thickness Side wall cm 20.0

    Top slab cm 20.0Bottom slab cm 20.0

    Cover of reinforcement bar(between concrete surface and center of reinforcement bar)Side wall Outside cm 6.0

    Inside cm 6.0Top slab Upper cm 6.0

    Lower cm 6.0

    Bottom slab Lower cm 6.0Upper cm 6.0

    Bar arrangement (dia - spacing per unit length of 1.0 m)

    Side wall Lower outside Tensile bar mm 16@250Distribution bar mm 12@250

    Middle inside Tensile bar mm 12@250Distribution bar mm 12@250

    Upper outside Tensile bar mm 16@250

    Distribution bar mm 12@250

    Top slab Upper edge Tensile bar mm 16@250

    Distribution bar mm 12@250Lower middle Tensile bar mm 16@250

    Distribution bar mm 12@250

    Bottom sla Lower edge Tensile bar mm 16@250Distribution bar mm 12@250

    Upper middle Tensile bar mm 12@125Distribution bar mm 12@250

    Fillet Upper edge Fillet bar mm 12@250Lower edge Fillet bar mm 12@250

    2 Design Parameters

    Unit Weight Reinforced Concrete gc= 2.4 tf/m3

    Backfill soil (wet) gs= 1.8 tf/m

    (submerged) gs'= 1.0 tf/m3

    Live Load Class of road Class III (BM50)

    Truck load at rear wheel P= 5.0 tf Impact coefficien (for Class I to IV roa Ci= 0.3 (D4.0m)

    Pedestrian load (for Class V roads) 0 tf/m2

    Concrete Design Strength sck= 175 kgf/cm2

    (K175) Allowable Compressive Stress sca= 60 kgf/cm2

    Allowable Shearing Stress ta= 5.5 kgf/cm2

    Reinforcement Bar Allowable Tensile Stress ssa= 1,400 kgf/cm2

    (U24, deformed bar) Yielding Point of Reinforcement Bar ssy= 3,000 kgf/cm2

    Young's Modulus Ratio n= 24

    Coefficient of static earth pressure Ka= 0.5

  • 7/30/2019 Single Box

    2/41

    STRUCTURAL CALCULATION OF BOX CULVERT Type: B2.00m x H2.50m C

    Soil Cover Depth: 1.0 m

    1 Dimensions and ParametersBasic Parameters

    Ka: Coefficient of static earth pressure 0.5gw: Unit weight of water (t/m3) 1.00 t/m

    gd: Unit weight of soil (dry) (t/m3) 1.80 t/mgs: Unit weight of soil (saturated) (t/m3) 2.00 t/mgc: Unit weight of reinforced concrete (t/m3) 2.40 t/msck: Concrete Design Strength 175 kgsca Allowable Stress of Concrete 60 kgssa: Allowable Stress of Reinforcement Bar 1400 kgta: Allowable Stress of Shearing (Concrete) 5.5 kgssy: Yielding Point of Reinforcement Bar 3000 kgn: Young's Modulus Ratio 24Fa: Safety factor against uplift 1.2

    Basic Dimensions

    H: Internal Height of Box Culvert 2.50 mB: Internal Width of Box Culvert 2.00 mHf: Fillet Height 0.20 mt1: Thickness of Side Wall 0.20 mt2: Thickness of Top Slab 0.20 m

    t3: Thickness of Invert (Bottom Slab) 0.20 mBT: Gross Width of Box Culvert 2.40 mHT: Gross Height of Box Culvert 2.90 mD: Covering Depth 1.00 mGwd: Underground Water Depth for Case 1, 2 1.00 mhiw: Internal Water Depth for Case 1, 2 0.00 m

    for Case 3, 4 2.50 m

    Cover of R-bar Basic ConditionsTop Slab d2 0.06 m Classification of Live load by truck Class 3Side Wall d1 0.06 m PTM: Truck load of Middle Tire 5.00 tBottom Slab d3 0.06 m Ii: Impact coefficient (D 4.0m:0, D

  • 7/30/2019 Single Box

    3/41

    Load distribution of truck tire

    (1) Middle tire's acting point: center of the top slaba) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)(2B0-bm')/(am'B0^2) = 1.5444 tf/m2,am': length of distributed load 2D+1.75+bm = 4.000 mbm': width of distributed load 2D+am = 2.100 m

    b) distributed load of rear tirePvtr: distributed load of rear tire not reach to top slab 0.0000 tf/m2,ar': length of distributed load 2D+1.75+br = 4.000 mbr': width of distributed load 2D+ar = 2.100 m

    c) distributed load of front tirePvtf: distributed load of front tire not reach to top slab 0.0000 tf/m2,af': length of distributed load 2D+1.75+bf = 4.000 mbf': width of distributed load 2D+af = 2.100 m

    (2) Middle tire's acting point: on the side walla) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 1.5476 tf/m2,

    am': length of distributed load 2D+1.75+bm = 4.000 mbm': width of distributed load 2D+am = 2.100 m

    b) distributed load of rear tirePvtr: distributed load of rear tire not reach to top slab 0.0000 tf/m2,ar': length of distributed load 2D+1.75+br = 4.000 mbr': width of distributed load 2D+ar = 2.100 m

    c) distributed load of front tirePvtf: distributed load of front tire not reach to top slab 0.0000 tf/m2,af': length of distributed load 2D+1.75+bf = 4.000 mbf': width of distributed load 2D+af = 2.100 m

    (3) Rear tire's acting point: on the side walla) distributed load of rear tire

    Pvtr: distributed load of rear tire 2PTR(1+Ii)/(ar'br') = 1.5476 tf/m2,ar': length of distributed load 2D+1.75+br = 4.000 mbr': width of distributed load 2D+ar = 2.100 m

    b) distributed load of middle tirePvtm: distributed load of middle tire not reach to top slab 0.0000 tf/m2,am': length of distributed load 2D+1.75+bm = 4.000 mbm': width of distributed load 2D+am = 2.100 m

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0.0000 tf/m2,af': length of distributed load 2D+1.75+bf = 4.000 mbf': width of distributed load 2D+af = 2.100 m

    (4) Combination of load distribution of track tire

    Case.L1: Pvt1 = 1.5444 tf/m2, B = 2.200 m Combination for Case.L2 (2)Pvt2 = 0.0000 tf/m2, B = 0.000 m a) + b)

    Case.L2: Pvt1 = 1.5476 tf/m2, B = 2.200 m Distributed load total 1.5476Pvt2 = 0.0000 tf/m2, B = 0.000 m Select the combination case of

    for Case.L2, which is the largest load to

    In case of covering depth (D) is over 3.0m, uniform load of 1.0 tf/m2 is applied on the top slab of culvert instead of live load calc

    Distribution load by pedestrian load

    Pvt1 = 0.000 tf/m2

    2 Stability Analysis Against Uplift

    Analysis is made considering empty inside of box culvert.Fs=Vd/U > Fa Fs= 1.3241 > 1.2 ok

    where, Vd: Total dead weight (t/m) Vd= 9.216 tf/mU: Total uplift (t.m)

    U=BT*HT*gw U= 6.960 tf/m

    Ws: Weight of covering soil Ws = BT*{(D-Gwd)*(gs-gw)+Gwd*gd} = 4.320 tf/mWc: Self weight of box culvert Wc = (HT*BT-H*B+2*Hf^2)*gc = 4.896 tf/mFa: Safety factor against uplift Fa= 1.2

  • 7/30/2019 Single Box

    4/41

    3 Load calculation

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)Wtop= (t2*BT+Hf^2)*gc/B0 Wtop= 0.5673Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 1.8000Pvt1 Pvt1= 1.5444Pvt2 Pvt2= 0.0000

    Pv1= 3.9117

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.0000 we1= 0.0000 tf/m2P2=Ka*we2 P2= 0.0000 we2= 0.0000 tf/m2P3=Ka*gd*Gwd P3= 0.9000P4=Ka*gs*(D1-Gwd) P4= 0.1000P5=gw*(D1-Gwd) P5= 0.1000

    Ph1= 1.1000

    3) horizontal load at bottom of side wallActing Load (tf/m2)

    P1=Ka*we1 P1= 0.0000P2=Ka*we2 P2= 0.0000P3=Ka*gd*Gwd P3= 0.9000P4=Ka*gs*(D1+H0-Gwd) P4= 2.8000P5=gw*(D1+H0-Gwd) P5= 2.8000

    Ph2= 6.5000

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*gc Wsw= 1.2000

    5) ground reactionActing Load (tf/m2)Wbot=(t3*BT+Hf^2)*gc/B0 Wbot= 0.5673Wtop Wtop= 0.5673Ws=Wsw*2/B0 Ws= 1.0909

    Pvd Pvd= 1.8000Pvt1 Pvt1= 1.5444Pvt2 Pvt2= 0.0000Wiw=(hiw*B-2Hf^2)*gw/B0 Wiw= 0.0000 hiw: internal water dUp=-U/B0 U= -3.1636

    Q= 2.4062

    summary of resistance moment

    Item V H x y M(tf/m) (tf/m) (m) (m) (tf.m/m) acting point of result

    Self weight top slab 1.2480 - 1.1000 - 1.3728 X = SM/SV =side wall (left) 1.2000 - 0.0000 - 0.0000 e = B0/2 - X =side wall (right) 1.2000 - 2.2000 - 2.6400invert 1.2480 - 1.1000 - 1.3728 ground reaction

    load on top slab Pvd 3.9600 - 1.1000 - 4.3560 q1 = SV/Bo + 6SVePvt1 3.3977 - 1.1000 - 3.7375 q2 = SV/Bo - 6SVe

    Pvt2 0.0000 - 1.1000 - 0.0000soil pressure side wall (left) - 10.2600 - 1.0303 10.5705

    side wall (right) - -10.2600 - 1.0303 -10.5705internal water 0.0000 - 1.1000 - 0.0000uplift -6.9600 - 1.1000 - -7.6560total 5.2937 5.8231

    6) load against invert

    Acting Load (tf/m2)Pvd 1.8000Pvt1 1.5444Pvt2 0.0000Wtop 0.5673Ws 1.0909

    Pq= 5.0026

  • 7/30/2019 Single Box

    5/41

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)Wtop= (t2*BT+Hf^2)*gc/B0 Wtop= 0.5673Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 1.8000Pvt1 Pvt1= 1.5476

    Pvt2 Pvt2= 0.0000Pv1= 3.9149

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.7738 we1= 1.5476 tf/m2P2=Ka*we2 P2= 0.0000 we2= 0.0000 tf/m2P3=Ka*gd*Gwd P3= 0.9000P4=Ka*gs*(D1-Gwd) P4= 0.1000P5=gw*(D1-Gwd) P5= 0.1000

    Ph1= 1.8738

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)P1=Ka*we1 P1= 0.7738P2=Ka*we2 P2= 0.0000P3=Ka*gd*Gwd P3= 0.9000P4=Ka*gs*(D1+H0-Gwd) P4= 2.8000P5=gw*(D1+H0-Gwd) P5= 2.8000

    Ph2= 7.2738

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*gc Wsw= 1.2000

    5) ground reactionActing Load (tf/m2)Wbot=(t3*BT+Hf^2)*gc/B0 Wbot= 0.5673Wtop Wtop= 0.5673Ws=Wsw*2/B0 Ws= 1.0909Pvd Pvd= 1.8000Pvt1 Pvt1= 1.5476

    Pvt2 Pvt2= 0.0000Wiw=(hiw*B-2Hf^2)*gw/B0 Wiw= 0.0000 hiw: internal waterUp=-U/B0 U= -3.1636

    Q= 2.4094

    summary of resistance moment

    Item V H x y M(tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resu

    Self weight top slab 1.2480 - 1.1000 - 1.3728 X = SM/SV =

    side wall (left) 1.2000 - 0.0000 - 0.0000 e = B0/2 - X =side wall (right) 1.2000 - 2.2000 - 2.6400invert 1.2480 - 1.1000 - 1.3728 ground reaction

    load on top slab Pvd 3.9600 - 1.1000 - 4.3560 q1 = SV/Bo + 6SV

    Pvt1 3.4048 - 1.1000 - 3.7452 q2 = SV/Bo - 6SVe

    Pvt2 0.0000 - 1.1000 - 0.0000soil pressure side wall (left) - 12.3493 - 1.0844 13.3910

    side wall (right) - -12.3493 - 1.0844 -13.3910

    internal water 0.0000 - 1.1000 - 0.0000uplift -6.9600 - 1.1000 - -7.6560total 5.3008 5.8308

    6) load against invert

    Acting Load (tf/m2)Pvd 1.8000Pvt1 1.5476Pvt2 0.0000Wtop 0.5673Ws 1.0909total Pq= 5.0058

  • 7/30/2019 Single Box

    6/41

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)Wtop= (t2*BT+Hf^2)*gc/B0 Wtop= 0.5673Pvd=D*gd Pvd= 1.8000Pvt1 Pvt1= 1.5444

    Pvt2 Pvt2= 0.0000Pv1= 3.9117

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.0000 we1= 0.0000 tf/m2P2=Ka*we2 P2= 0.0000 we2= 0.0000 tf/m2P3=Ka*gd*D1 P3= 0.9900WP=-gw*0 P4= 0.0000

    Ph1= 0.9900

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)P1=Ka*we1 P1= 0.0000P2=Ka*we2 P2= 0.0000P3=Ka*gd*(D1+H0) P3= 3.4200WP=-gw*H P4= -2.5000

    Ph2= 0.9200

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*gc Wsw= 1.2000

    5) ground reaction

    Acting Load (tf/m2)Wbot=(t3*BT+Hf^2)*gc/B0 Wbot= 0.5673Wtop Wtop= 0.5673Ws=Wsw*2/B0 Ws= 1.0909Pvd Pvd= 1.8000Pvt1 Pvt1= 1.5444Pvt2 Pvt2= 0.0000Wiw=(hiw*B-2Hf^2)*gw/B0 Wiw= 2.2364 hiw: internal water

    Up=0 U= 0.0000Q= 7.8062

    summary of resistance moment

    Item V H x y M(tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resu

    Self weight top slab 1.2480 - 1.1000 - 1.3728 X = SM/SV =

    side wall (left) 1.2000 - 0.0000 - 0.0000 e = B0/2 - X =side wall (right) 1.2000 - 2.2000 - 2.6400invert 1.2480 - 1.1000 - 1.3728 ground reaction

    load on top slab Pvd 3.9600 - 1.1000 - 4.3560 q1 = SV/Bo + 6SV

    Pvt1 3.3977 - 1.1000 - 3.7375 q2 = SV/Bo - 6SVe

    Pvt2 0.0000 - 1.1000 - 0.0000soil pressure side wall (left) - 2.5785 - 1.3665 3.5235

    side wall (right) - -2.5785 - 1.3665 -3.5235internal water 4.9200 - 1.1000 - 5.4120uplift 0.0000 - 1.1000 - 0.0000

    total 17.1737 18.8911

    6) load against invert

    Acting Load (tf/m2)Pvd 1.8000Pvt1 1.5444Pvt2 0.0000Wtop 0.5673Ws 1.0909total Pq= 5.0026

  • 7/30/2019 Single Box

    7/41

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)Wtop= (t2*BT+Hf 2)*gc/B0 Wtop= 0.5673Pvd=D*gd Pvd= 1.8000

    Pvt1 Pvt1= 1.5476

    Pvt2 Pvt2= 0.0000Pv1= 3.9149

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.7738 we1= 1.5476 tf/m2

    P2=Ka*we2 P2= 0.0000 we2= 0.0000 tf/m2P3=Ka*gd*D1 P3= 0.9900WP=-gw*0 P4= 0.0000

    Ph1= 1.7638

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)P1=Ka*we1 P1= 0.7738P2=Ka*we2 P2= 0.0000P3=Ka*gd*(D1+H0) P3= 3.4200WP=-gw*H P4= -2.5000

    Ph2= 1.6938

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*gc Wsw= 1.2000

    5) ground reaction

    Acting Load (tf/m2)Wbot=(t3*BT+Hf^2)*gc/B0 Wbot= 0.5673

    Wtop Wtop= 0.5673Ws=Wsw*2/B0 Ws= 1.0909Pvd Pvd= 1.8000

    Pvt1 Pvt1= 1.5476Pvt2 Pvt2= 0.0000Wiw=(hiw*B-2Hf^2)*gw/B0 Wiw= 2.2364 hiw: internal water d

    Up=0 U= 0.0000Q= 7.8094

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultSelf weight top slab 1.2480 - 1.1000 - 1.3728 X = SM/SV =

    side wall (left) 1.2000 - 0.0000 - 0.0000 e = B0/2 - X =side wall (right) 1.2000 - 2.2000 - 2.6400invert 1.2480 - 1.1000 - 1.3728 ground reaction

    load on top slab Pvd 3.9600 - 1.1000 - 4.3560 q1 = SV/Bo + 6SVe

    Pvt1 3.4048 - 1.1000 - 3.7452 q2 = SV/Bo - 6SVe/

    Pvt2 0.0000 - 1.1000 - 0.0000soil pressure side wall (left) - 4.6678 - 1.3591 6.3440

    side wall (right) - -4.6678 - 1.3591 -6.3440internal water 4.9200 - 1.1000 - 5.4120

    uplift 0.0000 - 1.1000 - 0.0000

    total 17.1808 18.8988

    6) load against invert

    Acting Load (tf/m2)

    Pvd 1.8000Pvt1 1.5476

    Pvt2 0.0000Wtop 0.5673

    Ws 1.0909total Pq= 5.0058

    Summary of Load Calculation

    Item Pv1 Ph1 Ph2 Pq Wsw q1Case (tf/m2) (tf/m2) (tf/m2) (tf/m2) (tf/m) (tf/m2)

    Case.1 3.9117 1.1000 6.5000 5.0026 1.2000 2.4062

    Case.2 3.9149 1.8738 7.2738 5.0058 1.2000 2.4094

  • 7/30/2019 Single Box

    8/41

    ad

    KeringBasah

    is BetonMutu Bet

    i Tulanga

    )))

  • 7/30/2019 Single Box

    9/41

    m

    m

    m

    m

    m

    m

    m

    m

    m

    (3)a) + c)1.5476

  • 7/30/2019 Single Box

    10/41

    m

    tf/m2

    tf/m2

  • 7/30/2019 Single Box

    11/41

    m

    tf/m2tf/m2

  • 7/30/2019 Single Box

    12/41

    m

    tf/m2

    tf/m2

  • 7/30/2019 Single Box

    13/41

    m

    tf/m2

    tf/m2

  • 7/30/2019 Single Box

    14/41

    4 Analysis of Plane Frame

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 1.100 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 6.500 tf/m2

    Pv1 Vertical Pressure(1) on top slab 3.912 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0.000 tf/m2

    Pq Reaction to bottom slab 5.003 tf/m2

    a Distance from joint B to far end of Pv2 2.200 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.700 mB0 Width of plane frame 2.200 mt1 Thickness of side wall 0.200 mt2 Thickness of top slab 0.200 mt3 Thickness of invert (bottom slab) 0.200 m

    CAB = CDC = (2Ph1+3Ph2)H0

    2

    /60= 2.63655 tf m

    CBA = CCD = (3Ph1+2Ph2)H02/60 = 1.98045 tf m

    CBC = CCB = Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2 = 1.57772 tf m

    CDA = CAD = PqB02/12 = 2.01772 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1.0

    k2 = H0t23/(B0t1

    3) = 1.2273

    k3 = H0t33/(B0t1

    3) = 1.2273

    2(k1+k3) k1 0 k3 -3k1 qA CAB - CAD

    k1 2(k1+k2)k2

    0 -3k1 qB CBC - CBA0 k2 2(k1+k2) k1 -3k1 qC = CCD - CCB

    k3 0 k1 2(k1+k3) -3k1 qD CDA - CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    qA = -qD qB = -qC R =0

    2k1+k3 k1 qA

    k1 2k1+k2 qB

    3.2273 1.0 qA

    1.0 3.2273 qB

    By solving above equation, the result is led as shown below.

    qA = 0.25489 qC = 0.20377

    qB = -0.20377 qD = -0.25489

    =CAB - CAD

    CBC - CBA

    =

    0.61883333

    -0.40273333

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    14/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    15/41

    MAB = k1(2qA +qB) - CAB = -2.3305 tfm

    MBA = k1(2qB+qA)+CBA = 1.8278 tfm

    MBC = k2(2qB+qC) - CBC = -1.8278 tfm

    MCB = k2(2qC+qB)+CCB = 1.8278 tfm

    MCD = k1(2qC+qD) - CCD = -1.8278 tfm

    MDC =k1 (2qD+ qC)+CDC = 2.3305 tf m

    MDA = k3(2qD+qA) - CDA = -2.3305 tfm

    MAD = k3(2qA+qD)+CAD = 2.3305 tfm

    2) Calculation of Design Force

    2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 6.500 tf/m2

    w2 Load at end B 1.100 tf/m2

    MAB Bending moment at end A -2.3305 tfm

    MBA Bending moment at end B 1.8278 tfm

    L Length of member (=H0) 2.700 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    = 6.531 tf

    SBA = SAB - L(w1+w2)/2 = -3.729 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 m

    Sx1 = 4.790 tf (ii) In case of x2 = 2.420 m

    Sx2 = -3.342 tf

    c) Bending Moment

    MA = MAB = -2.331 tfm

    MB = -MBA = -1.828 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    = 6.5312 -6.5000 x + 1.0000 x2 , x = 5.258

    1.242Bending moment at x 1.2422 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = 1.407 tfm

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    15/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    16/41

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 3.912 tf/m2

    w2 Uniform load 0.000 tf/m2

    a Distance from end B to near end of 0.000 m

    b Length of uniform load w2 2.200 mMBC Bending moment at end B -1.8278 tf m

    MCB Bending moment at end C 1.8278 tf m

    L Length of member (=Bo) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SBC = (w1L+w2b)/2-(MBC+MCB)/L = 4.303 tf

    SCB = SBC -w1L - w2b = -4.303 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC - w1x - w2(x-a) in case of 0.000 m

  • 7/30/2019 Single Box

    17/41

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 3.342 tf

    (ii) In case of x2 = 2.420 mSx2 = -4.790 tf

    c) Bending Moment

    MC = MCD = -1.828 tfm

    MD = -MDC = -2.331 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    = 3.7288 -1.1000 x -1.0000 x2 , x = -2.5581.458

    Bending moment at x 1.4578 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = 1.40650 tfm

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 5.003 tf/m2

    w2 Reaction at end A 5.003 tf/m2

    MDA Bending moment at end B -2.33054 tfm

    MAD Bending moment at end C 2.33054 tfm

    L Length of member (=B0) 2.200 mch Protective covering height 0.060 m

    t Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    = 5.503 tf

    SAD = SDA - L(w1+w2)/2 = -5.503 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 4.102 tf

    (ii) In case of x2 = 1.920 mSx2 = -4.102 tf

    c) Bending Moment

    MD = MDA

    = -2.331 tf m

    MA = -MAD = -2.331 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    = 5.5029 -5.0026 x , x = 1.100

    Bending moment at x 1.1000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0.696 tfm

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    17/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    18/41

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 1.874 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 7.274 tf/m2

    Pv1 Vertical Pressure(1) on top slab 3.915 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0.000tf/m

    2

    Pq Reaction to bottom slab 5.006 tf/m2

    a Distance from joint B to far end of Pv2 2.200 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.700 mB0 Width of plane frame 2.200 mt1 Thickness of side wall 0.200 mt2 Thickness of top slab 0.200 mt3 Thickness of invert (bottom slab) 0.200 m

    CAB = CDC = (2Ph1+3Ph2)H02/60 = 3.10664 tfm

    CBA = CCD = (3Ph1+2Ph2)H02/60 = 2.45054 tfm

    CBC = CCB = Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2 = 1.57901 tfm

    CDA = CAD = PqB02/12 = 2.01901 tfm

    2) Calculation of Bending Moment at joint

    k1 = 1.0

    k2 = H0t23/(B0t1

    3) = 1.22727

    k3 = H0t33/(B0t1

    3) = 1.22727

    2(k1+k3) k1 0 k3 -3k1 qA CAB - CAD

    k1 2(k1+k2) k2 0 -3k1 qB CBC - CBA

    0 k2 2(k1+k2) k1 -3k1 qC = CCD - CCB

    k3 0 k1 2(k1+k3) -3k1 qD CDA - CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    qA = -qD qB = -qC R =0

    2k1+k3 k1 qA

    k1 2k1+k2 qB

    3.2273 1.0 qA1.0 3.2273 qB

    By solving above equation, the result is led as shown below.

    qA = 0.46537 qC = 0.41425

    qB = -0.41425 qD = -0.46537

    =CAB - CAD

    CBC - CBA

    =1.08763294

    -0.87153294

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    18/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    19/41

    MAB = k1(2qA +qB) - CAB = -2.5901 tfm

    MBA = k1(2qB+qA)+CBA = 2.0874 tfm

    MBC = k2(2qB+qC) - CBC = -2.0874 tfm

    MCB = k2(2qC+qB)+CCB = 2.0874 tf m

    MCD = k1(2qC+qD) - CCD = -2.0874 tfm

    MDC =k1 (2qD+ qC)+CDC = 2.5901 tfm

    MDA = k3(2qD+qA) - CDA = -2.5901 tfm

    MAD = k3(2qA+qD)+CAD = 2.5901 tfm

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 7.274 tf/m2

    w2 Load at end B 1.874 tf/m2

    MAB Bending moment at end A -2.5901 tfm

    MBA Bending moment at end B 2.0874 tfm

    L Length of member (=H0) 2.700 m

    ch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    = 7.5758 tf

    SBA = SAB - L(w1+w2)/2 = -4.7734 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 5.618 tf

    (ii) In case of x2 = 2.42 mSx2 = -4.170 tf

    c) Bending Moment

    MA = MAB = -2.590 tfm

    MB = -MBA = -2.087 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    = 7.5758 -7.2738 x + 1.0000 x2 , x = 6.0141.260

    Bending moment at x 1.2597 m is;Mmax = SABx - w1x

    2/2 - (w2-w1)x

    3/(6L) + MAB = 1.848 tfm

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    19/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    20/41

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 3.915 tf/m2

    w2 Uniform load 0.000 tf/m2

    a Distance from end B to near end of 0.000 m

    b Length of uniform load w2 2.200 mMBC Bending moment at end B -2.0874 tfm

    MCB Bending moment at end C 2.0874 tfm

    L Length of member (=Bo) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SBC = (w1L+w2b)/2-(MBC+MCB)/L = 4.306 tf

    SCB = SBC -w1L - w2b = -4.306 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC - w1x - w2(x-a) in case of 0.000 m

  • 7/30/2019 Single Box

    21/41

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 m

    Sx1 = 4.170 tf (ii) In case of x2 = 2.420 m

    Sx2 = -5.618 tf

    c) Bending Moment

    MC = MCD = -2.087 tfm

    MD = -MDC = -2.590 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    = 4.7734 -1.8738 x -1.0000 x2 , x = -3.3141

    1.4403

    Bending moment at x 1.4403 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = 1.8483 tfm

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 5.006 tf/m2

    w2 Reaction at end A 5.006 tf/m2

    MDA Bending moment at end B -2.5901 tfm

    MAD Bending moment at end C 2.5901 tfm

    L Length of member (=B0) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    = 5.506 tf

    SAD = SDA - L(w1+w2)/2 = -5.506 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 4.105 tf

    (ii) In case of x2 = 1.920 mSx2 = -4.105 tf

    c) Bending Moment

    MD = MDA = -2.590 tfm

    MA = -MAD = -2.590 tfmThe maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    = 5.5064 -5.0058 x , x = 1.1000

    Bending moment at x 1.1000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0.438 tfm

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    21/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    22/41

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 0.990 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 0.920 tf/m2

    Pv1 Vertical Pressure(1) on top slab 3.912 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0.000tf/m

    2

    Pq Reaction to bottom slab 5.003 tf/m2

    a Distance from joint B to far end of Pv2 2.200 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.700 mB0 Width of plane frame 2.200 mt1 Thickness of side wall 0.200 mt2 Thickness of top slab 0.200 mt3 Thickness of invert (bottom slab) 0.200 m

    CAB = CDC = (2Ph1+3Ph2)H02/60 = 0.57591 tfm

    CBA = CCD = (3Ph1+2Ph2)H02/60 = 0.58442 tfm

    CBC = CCB = Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2 = 1.57772 tfm

    CDA = CAD = PqB02/12 = 2.01772 tfm

    2) Calculation of Bending Moment at joint

    k1 = 1.0

    k2 = H0t23/(B0t1

    3) = 1.22727

    k3 = H0t33/(B0t1

    3) = 1.22727

    2(k1+k3) k1 0 k3 -3k1 qA CAB - CAD

    k1 2(k1+k2) k2 0 -3k1 qB CBC - CBA

    0 k2 2(k1+k2) k1 -3k1 qC = CCD - CCB

    k3 0 k1 2(k1+k3) -3k1 qD CDA - CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    qA = -qD qB = -qC R =0

    2k1+k3 k1 qA

    k1 2k1+k2 qB

    3.2273 1.0 qA

    1.0 3.2273 qB

    By solving above equation, the result is led as shown below.

    qA = -0.59971 qC = -0.49361

    qB = 0.49361 qD = 0.59971

    =CAB - CAD

    CBC - CBA

    =-1.44180667

    0.99330167

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    22/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    23/41

    MAB = k1(2qA +qB) - CAB = -1.28171 tfm

    MBA = k1(2qB+qA)+CBA = 0.97193 tfm

    MBC = k2(2qB+qC) - CBC = -0.97193 tfm

    MCB = k2(2qC+qB)+CCB = 0.97193 tf m

    MCD = k1(2qC+qD) - CCD = -0.97193 tfm

    MDC =k1 (2qD+ qC)+CDC = 1.28171 tfm

    MDA = k3(2qD+qA) - CDA = -1.28171 tfm

    MAD = k3(2qA+qD)+CAD = 1.28171 tfm

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 0.920 tf/m2

    w2 Load at end B 0.990 tf/m2

    MAB Bending moment at end A -1.2817 tfm

    MBA Bending moment at end B 0.9719 tfm

    L Length of member (=H0) 2.700 m

    ch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    = 1.388 tf

    SBA = SAB - L(w1+w2)/2 = -1.190 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 m

    Sx1 = 1.130 tf

    (ii) In case of x2 = 2.420 m

    Sx2 = -0.914 tf

    c) Bending Moment

    MA = MAB = -1.282 tfm

    MB = -MBA = -0.972 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    = 1.3882 -0.9200 x + -0.0130 x2 , x = -72.4501.478

    Bending moment at x 1.4782 m is;Mmax = SABx - w1x

    2/2 - (w2-w1)x

    3/(6L) + MAB = -0.249 tfm

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    23/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    24/41

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 3.912 tf/m2

    w2 Uniform load 0.000 tf/m2

    a Distance from end B to near end of 0.000 m

    b Length of uniform load w2 2.200 mMBC Bending moment at end B -0.972 tfm

    MCB Bending moment at end C 0.972 tfm

    L Length of member (=Bo) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SBC = (w1L+w2b)/2-(MBC+MCB)/L = 4.303 tf

    SCB = SBC -w1L - w2b = -4.303 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC - w1x - w2(x-a) in case of 0.000 m

  • 7/30/2019 Single Box

    25/41

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 m

    Sx1 = 0.914 tf (ii) In case of x2 = 2.420 m

    Sx2 = -1.130 tf

    c) Bending Moment

    MC = MCD = -0.972 tfm

    MD = -MDC = -1.282 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    = 1.1903 -0.9900 x + 0.0130 x2 , x = 75.15

    1.222

    Bending moment at x 1.2218 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = -0.249 tfm

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 5.003 tf/m2

    w2 Reaction at end A 5.003 tf/m2

    MDA Bending moment at end B -1.282 tfm

    MAD Bending moment at end C 1.282 tfm

    L Length of member (=B0) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    = 5.503 tf SAD = SDA - L(w1+w2)/2 = -5.503 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 4.102 tf

    (ii) In case of x2 = 1.920 mSx2 = -4.102 tf

    c) Bending Moment

    MD = MDA = -1.282 tfm

    MA = -MAD = -1.282 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    = 5.5029 -5.0026 x , x = 1.100

    Bending moment at x 1.1000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 1.745 tfm

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    25/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    26/41

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 1.764 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 1.694 tf/m2

    Pv1 Vertical Pressure(1) on top slab 3.915 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0.000 tf/m2

    Pq Reaction to bottom slab 5.006 tf/m2

    a Distance from joint B to far end of Pv2 2.200 m

    b Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.700 mB0 Width of plane frame 2.200 mt1 Thickness of side wall 0.200 mt2 Thickness of top slab 0.200 mt3 Thickness of invert (bottom slab) 0.200 m

    CAB = CDC = (2Ph1+3Ph2)H02/60 = 1.04600 tfm

    CBA = CCD = (3Ph1+2Ph2)H02/60 = 1.05450 tfm

    CBC

    = CCB

    = Pv1B0

    2/12 + {(a

    2-b

    2)B

    0

    2/2 - 2B

    0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B

    0

    2 = 1.57901 tfm

    CDA = CAD = PqB02/12 = 2.01901 tfm

    2) Calculation of Bending Moment at joint

    k1 = 1.0

    k2 = H0t23/(B0t1

    3) = 1.22727

    k3 = H0t33/(B0t1

    3) = 1.22727

    2(k1+k3) k1 0 k3 -3k1 qA CAB - CAD

    k1 2(k1+k2) k2 0 -3k1 qB CBC - CBA

    0 k2 2(k1+k2) k1 -3k1 qC = CCD - CCB

    k3 0 k1 2(k1+k3) -3k1 qD CDA - CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    qA = -qD qB = -qC R =0

    2k1+k3 k1 qA

    k1 2k1+k2 qB

    3.2273 1.0 qA

    1.0 3.2273 qB

    By solving above equation, the result is led as shown below.

    qA = -0.38922 qC = -0.28313

    qB = 0.28313 qD = 0.38922

    =CAB - CAD

    CBC - CBA

    =-0.97300706

    0.52450206

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    26/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    27/41

    MAB = k1(2qA +qB) - CAB = -1.54132 tfm

    MBA = k1(2qB+qA)+CBA = 1.23153 tfm

    MBC = k2(2qB+qC) - CBC = -1.23153 tfm

    MCB = k2(2qC+qB)+CCB = 1.23153 tfm

    MCD = k1(2qC+qD) - CCD = -1.23153 tfm

    MDC =k1 (2qD+ qC)+CDC = 1.54132 tf m

    MDA = k3(2qD+qA) - CDA = -1.54132 tfm

    MAD = k3(2qA+qD)+CAD = 1.54132 tfm

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 1.694 tf/m2

    w2 Load at end B 1.764 tf/m2

    MAB Bending moment at end A -1.541 tfm

    MBA Bending moment at end B 1.232 tfm

    L Length of member (=H0) 2.700 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    = 2.433 tf

    SBA = SAB - L(w1+w2)/2 = -2.235 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 m

    Sx1 = 1.958 tf (ii) In case of x2 = 2.42 m

    Sx2 = -1.742 tf

    c) Bending Moment

    MA = MAB = -1.541 tfm

    MB = -MBA = -1.232 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    = 2.4329 -1.6938 x + -0.0130 x2 , x = -132.086

    1.421

    Bending moment at x 1.4209 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = 0.193 tfm

    w1

    w2

    A

    B

    L

    x

    MAB

    MBA

    27/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    28/41

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 3.915 tf/m2

    w2 Uniform load 0.000 tf/m2

    a Distance from end B to near end of 0.000 m

    b Length of uniform load w2 2.200 mMBC Bending moment at end B -1.232 tfm

    MCB Bending moment at end C 1.232 tfm

    L Length of member (=Bo) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SBC = (w1L+w2b)/2-(MBC+MCB)/L = 4.306 tf

    SCB = SBC -w1L - w2b = -4.306 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC - w1x - w2(x-a) in case of 0.000 m

  • 7/30/2019 Single Box

    29/41

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 1.7421 tf

    (ii) In case of x2 = 2.420 m

    Sx2 = -1.9576 tf

    c) Bending Moment

    MC = MCD = -1.232 tfm

    MD = -MDC = -1.541 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    = 2.2349 -1.7638 x + 0.0130 x2 , x = 134.8

    1.279

    Bending moment at x 1.2791 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = 0.193 tfm

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 5.006 tf/m2

    w2 Reaction at end A 5.006 tf/m2

    MDA Bending moment at end B -1.541 tfm

    MAD Bending moment at end C 1.541 tfm

    L Length of member (=B0) 2.200 mch Protective covering height 0.060 mt Thickness of member (height) 0.200 md Effective height of member 0.140 m

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    = 5.506 tf

    SAD = SDA - L(w1+w2)/2 = -5.506 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0.280 mSx1 = 4.105 tf

    (ii) In case of x2 = 1.920 mSx2 = -4.105 tf

    c) Bending Moment

    MD = MDA = -1.541 tfm

    MA = -MAD = -1.541 tfm

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    = 5.5064 -5.0058 x , x = 1.100

    Bending moment at x 1.1000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 1.487 tfm

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    29/41 (2)168023748.xls.ms_officeMSN

  • 7/30/2019 Single Box

    30/41

    Summary of Internal forces

    M N

    (tfm) (tf) at joint at 2dSide wall A -2.331 5.503 6.531 4.790

    (left) Case.1 Middle 1.407 4.951 0.000 -B -1.828 4.303 -3.729 -3.342A -2.590 5.506 7.576 5.618

    Case.2 Middle 1.848 4.947 0.000 -B -2.087 4.306 -4.773 -4.170A -1.282 5.503 1.388 1.130

    Case.3 Middle -0.249 4.846 0.000 -B -0.972 4.303 -1.190 -0.914A -1.541 5.506 2.433 1.958

    Case.4 Middle 0.193 4.875 0.000 -B -1.232 4.306 -2.235 -1.742

    Top slab B -1.828 3.729 4.303 3.208Case.1 Middle 0.539 3.729 0.000 -

    C -1.828 3.729 -4.303 -3.208

    B -2.087 4.773 4.306 3.210Case.2 Middle 0.281 4.773 0.000 -

    C -2.087 4.773 -4.306 -3.210B -0.972 1.190 4.303 3.208

    Case.3 Middle 1.395 1.190 0.000 -C -0.972 1.190 -4.303 -3.208B -1.232 2.235 4.306 3.210

    Case.4 Middle 1.137 2.235 0.000 -C -1.232 2.235 -4.306 -3.210

    Side wall C -1.828 4.303 3.729 3.342(right) Case.1 Middle 1.407 4.951 0.000 -

    D -2.331 5.503 -6.531 -4.790C -2.087 4.306 4.773 4.170

    Case.2 Middle 1.848 4.947 0.000 -D -2.590 5.506 -7.576 -5.618C -0.972 4.303 1.190 0.914

    Case.3 Middle -0.249 4.846 0.000 -D -1.282 5.503 -1.388 -1.130C -1.232 4.306 2.235 1.742

    Case.4 Middle 0.193 4.875 0.000 -D -1.541 5.506 -2.433 -1.958

    Invert D -2.331 6.531 5.503 4.102Case.1 Middle 0.696 6.531 0.000 -

    A -2.331 6.531 -5.503 -4.102D -2.590 7.576 5.506 4.105

    Case.2 Middle 0.438 7.576 0.000 -A -2.590 7.576 -5.506 -4.105D -1.282 1.388 5.503 4.102

    Case.3 Middle 1.745 1.388 0.000 -

    A -1.282 1.388 -5.503 -4.102D -1.541 2.433 5.506 4.105

    Case.4 Middle 1.487 2.433 0.000 -A -1.541 2.433 -5.506 -4.105

    S (tf)Member Case

    Check

    Point

    30/41 (3)168023748.xls.ms_officeSum MSN

  • 7/30/2019 Single Box

    31/41

    5 Calculation of Required Reinforcement Bar5-1 Calculation of Required Reinforcement Bar

    1) At Joint "A" of side wall

    Case.1

    M= 2.3305 tfm sca = 60 kgf/m2 h = 20 cm (height of membeN= 5.5029 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 6.5312 tf n = 24 d' = 6 cm (protective coverS2d= 4.7896 tf c = 4.00 cm (distance from ne

    b = 100 cm

    e = M/N = 42.35 cmSolving the formula shown below, sc 38.729 kgf/cm2 ( -178470 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +48.46 sc^2 -4554.7 sc -132846.49s = nsc/(nsc+ssa) = 0.3990Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.7960 cm2

    Case.2

    M= 2.5901 tfm sca = 60 kgf/m2 h = 20 cm (height of membe

    N= 5.5064 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 7.5758 tf n = 24 d' = 6 cm (protective coverS2d= 5.6176 tf c = 4.00 cm (distance from ne

    b = 100 cm

    e = M/N = 47.04 cmSolving the formula shown below, sc 39.304 kgf/cm2 ( -214195 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0 0 = sc^3 +44.48 sc^2 -5018.6 sc -146375.06s = nsc/(nsc+ssa) = 0.4026Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.9778 cm2

    Case.3M= 1.2817 tfm sca = 60 kgf/m2 h = 20 cm (height of membe

    N= 5.5029 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 1.3882 tf n = 24 d' = 6 cm (protective cover

    S2d= 1.1296 tf c = 4.00 cm (distance from ne

    b = 100 cme = M/N = 23.29 cmSolving the formula shown below, sc 34.762 kgf/cm2 ( -51486 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +64.51 sc^2 -2681.8 sc -78220.23s = nsc/(nsc+ssa) = 0.3734Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.5595 cm2

    Case.4

    M= 1.5413 tfm sca = 60 kgf/m2 h = 20 cm (height of membeN= 5.5064 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 2.4329 tf n = 24 d' = 6 cm (protective cover

    S2d= 1.9576 tf c = 4.00 cm (distance from ne

    b = 100 cm

    e = M/N = 27.99 cmSolving the formula shown below, sc 35.359 kgf/cm2 ( -83078 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +60.54 sc^2 -3145.7 sc -91748.80s = nsc/(nsc+ssa) = 0.3774Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.7390 cm2

    The maximum requirement of reinforcement bar is 3.9778 cm2 in Case2 from above calculation.

    Case. 1 2 3 4

    Requirement 3.7960 3.9778 2.5595 2.7390 (cm2)

    2) At Joint "B" of side wall

    Case.1

    M= 1.8278 tfm sca = 60 kgf/m2 h = 20 cm (height of membeN= 4.3029 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 3.7288 tf n = 24 d' = 6 cm (protective cover

    S2d= 3.3424 tf c = 4.00 cm (distance from ne

    b = 100 cm

    e = M/N = 42.48 cmSolving the formula shown below, sc 34.350 kgf/cm2 ( -119177 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +56.89 sc^2 -3571.3 sc -104162.18s = nsc/(nsc+ssa) = 0.3706Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.2920 cm2

    h

    h

  • 7/30/2019 Single Box

    32/41

    Case.3

    M= 0.9719 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.3029 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 1.1903 tf n = 24 d' = 6 cm (protective cove

    S2d= 0.9141 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 22.59 cmSolving the formula shown below, sc 30.914 kgf/cm2 ( -26310 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +69.99 sc^2 -2042.9 sc -59585.39s = nsc/(nsc+ssa) = 0.3464Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.2805 cm2

    Case.4

    M= 1.2315 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.3064 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 2.2349 tf n = 24 d' = 6 cm (protective cove

    S2d= 1.7421 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 28.60 cmSolving the formula shown below, sc 31.538 kgf/cm2 ( -55148 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +66.01 sc^2 -2506.8 sc -73113.96s = nsc/(nsc+ssa) = 0.3509Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.4577 cm2

    The maximum requirement of reinforcement bar is 3.4713 cm2 in Case2 from above calculation.

    Case. 1 2 3 4

    Requirement 3.2920 3.4713 2.2805 2.4577 (cm2)

    3) At Joint "B" of top slab

    Case.1

    M= 1.8278 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 3.7288 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 4.3029 tf n = 24 d' = 6 cm (protective cove

    S2d= 3.2076 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 49.02 cm

    Solving the formula shown below, sc 32.854 kgf/cm2 ( -121704 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +57.24 sc^2 -3530.3 sc -102966.22s = nsc/(nsc+ssa) = 0.3603Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.2550 cm2

    Case.2

    M= 2.0874 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.7734 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 4.3064 tf n = 24 d' = 6 cm (protective cove

    S2d= 3.2102 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 43.73 cmSolving the formula shown below, sc 33.391 kgf/cm2 ( -158603 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +52.63 sc^2 -4068.5 sc -118663.80

    s = nsc/(nsc+ssa) = 0.3640Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.6683 cm2

    Case.3

    M= 0.9719 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 1.1903 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 4.3029 tf n = 24 d' = 6 cm (protective cove

    S2d= 3.2076 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 81.66 cmSolving the formula shown below, sc 28.090 kgf/cm2 ( -25354 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +71.89 sc^2 -1820.6 sc -53100.81s = nsc/(nsc+ssa) = 0.3250Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.7147 cm2

    Case.4

    M= 1.2315 tfm sca = 60 kgf/m2 h = 20 cm (height of membN= 2.2349 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 4.3064 tf n = 24 d' = 6 cm (protective cove

    S2d= 3 2102 tf c = 4 00 cm (distance from n

    h

  • 7/30/2019 Single Box

    33/41

    4) At Joint "A" of invert

    Case.1

    M= 2.3305 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 6.5312 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 5.5029 tf n = 24 d' = 6 cm (protective cove

    S2d= 4.1021 tf c = 4.00 cm (distance from n

    b = 100 cme = M/N = 35.68 cmSolving the formula shown below, sc 37.763 kgf/cm2 ( -187704 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +47.83 sc^2 -4628.2 sc -134988.86s = nsc/(nsc+ssa) = 0.3930Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.7547 cm2

    Case.2

    M= 2.5901 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 7.5758 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 5.5064 tf n = 24 d' = 6 cm (protective cove

    S2d= 4.1048 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 34.19 cmSolving the formula shown below, sc 38.275 kgf/cm2 ( -229043 kgf/cm2) check

    sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0 0 = sc^3 +43.22 sc^2 -5166.4 sc -150686.44s = nsc/(nsc+ssa) = 0.3962Asreq = (sc*s/2 - N/(bd))bd/ssa = 2.1706 cm2

    Case.3

    M= 1.2817 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 1.3882 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 5.5029 tf n = 24 d' = 6 cm (protective cove

    S2d= 4.1021 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 92.33 cmSolving the formula shown below, sc 31.398 kgf/cm2 ( -47590 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +67.03 sc^2 -2387.9 sc -69648.09s = nsc/(nsc+ssa) = 0.3499Asreq = (sc*s/2 - N/(bd))bd/ssa = 4.5017 cm2

    Case.4

    M= 1.5413 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 2.4329 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    S0= 5.5064 tf n = 24 d' = 6 cm (protective cove

    S2d= 4.1048 tf c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 63.35 cmSolving the formula shown below, sc 31.945 kgf/cm2 ( -82522 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +62.42 sc^2 -2926.1 sc -85345.67s = nsc/(nsc+ssa) = 0.3539Asreq = (sc*s/2 - N/(bd))bd/ssa = 3.9142 cm2

    The maximum requirement of reinforcement bar is 4.5017 cm2 in Case3 from above calculation.

    Case. 1 2 3 4Requirement 2.7547 2.1706 4.5017 3.9142 (cm2)

    5) At Middle of side wall

    Case.1

    M= 1.4065 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.9508 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 28.41 cmSolving the formula shown below, sc 21.9840 kgf/cm2 ( -105515 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +62.94 sc^2 -2865.2 sc -83569.35s = nsc/(nsc+ssa) = 0.2737

    Asreq = (sc*s/2 - N/(bd))bd/ssa = 0.0000 cm2 Tensile is on inside of member

    Case.2

    M= 1.8483 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    h

    h

  • 7/30/2019 Single Box

    34/41

    Case.3

    M= 0.2487 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.8459 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 5.13 cmSolving the formula shown below, sc 16.634 kgf/cm2 ( -9256 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +80.73 sc^2 -790.27 sc -23049.47s = nsc/(nsc+ssa) = 0.2219Asreq = (sc*s/2 - N/(bd))bd/ssa = 0.0000 cm2 Tensile is on outside of member

    Case.4

    M= 0.1933 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.8749 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 3.97 cmSolving the formula shown below, sc 16.839 kgf/cm2 ( -3998 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +81.56 sc^2 -693.38 sc -20223.53

    s = nsc/(nsc+ssa) = 0.2240Asreq = (sc*s/2 - N/(bd))bd/ssa = 0.0000 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 0.0000 cm2 in Case1 from above calculation.

    Case. 1 2 3 4

    Requirement 0.0000 0.0000 - 0.0000 (cm2)

    Side inside inside outside inside

    6) At Middle of top slab

    Case.1

    M= 0.5388 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 3.7288 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 14.45 cmSolving the formula shown below, sc 27.583 kgf/cm2 ( 9834 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +76.97 sc^2 -1228.4 sc -35829.57s = nsc/(nsc+ssa) = 0.3210Asreq = (sc*s/2 - N/(bd))bd/ssa = 1.7643 cm2 Tensile is on inside of member

    Case.2

    M= 0.2811 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 4.7734 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 5.89 cmSolving the formula shown below, sc 28.160 kgf/cm2 ( 37662 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +80.27 sc^2 -842.93 sc -24585.42

    s = nsc/(nsc+ssa) = 0.3256Asreq = (sc*s/2 - N/(bd))bd/ssa = 1.1745 cm2 Tensile is on inside of member

    Case.3

    M= 1.3946 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 1.1903 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 117.17 cmSolving the formula shown below, sc 29.939 kgf/cm2 ( -66752 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +65.42 sc^2 -2575.5 sc -75117.73s = nsc/(nsc+ssa) = 0.3392Asreq = (sc*s/2 - N/(bd))bd/ssa = 4.2268 cm2 Tensile is on inside of member

    Case.4

    M= 1.1370 tfm sca = 60 kgf/m2 h = 20 cm (height of membN= 2.2349 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4 00 cm (distance from n

    h

  • 7/30/2019 Single Box

    35/41

    7) At Middle of invert

    Case.1

    M= 0.6960 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 6.5312 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cme = M/N = 10.66 cmSolving the formula shown below, sc 31.3560 kgf/cm2 ( -1005 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +72.85 sc^2 -1709.4 sc -49858.59s = nsc/(nsc+ssa) = 0.3496Asreq = (sc*s/2 - N/(bd))bd/ssa = 0.8160 cm2 Tensile is on inside of member

    Case.2

    M= 0.4384 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 7.5758 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 5.79 cmSolving the formula shown below, sc 31.902 kgf/cm2 ( 29116 kgf/cm2) check

    sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0 0 = sc^3 +76.15 sc^2 -1323.9 sc -38614.44s = nsc/(nsc+ssa) = 0.3535

    Asreq = (sc*s/2 - N/(bd))bd/ssa = 0.2279 cm2 Tensile is on inside of member

    Case.3

    M= 1.7449 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 1.3882 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 125.69 cmSolving the formula shown below, sc 33.146 kgf/cm2 ( -98063 kgf/cm2) check sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +59.94 sc^2 -3215 sc -93770.34s = nsc/(nsc+ssa) = 0.3623Asreq = (sc*s/2 - N/(bd))bd/ssa = 5.0134 cm2 Tensile is on inside of member

    Case.4

    M= 1.4872 tfm sca = 60 kgf/m2 h = 20 cm (height of memb

    N= 2.4329 tf ssa = 1400 kgf/m2 d = 14 cm (effective height

    n = 24 d' = 6 cm (protective cove

    c = 4.00 cm (distance from n

    b = 100 cm

    e = M/N = 61.13 cmSolving the formula shown below, sc 33.682 kgf/cm2 ( -67860 kgf/cm2) check

    sc^3+{3ssa/(2n) - 3N(e+c)/(bd^2)}sc^2 - 6N(e+c)ssasc/(nbd^2) - 3N(e+c)ssa^2/(n^2bd^2) = 0

    0 = sc^3 +63.25 sc^2 -2829.5 sc -82526.20s = nsc/(nsc+ssa) = 0.3660Asreq = (sc*s/2 - N/(bd))bd/ssa = 4.4269 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 5.0134 cm2 in Case3 from above calculation.

    Case. 1 2 3 4Requirement 0.8160 0.2279 5.0134 4.4269 (cm2)

    Side inside inside inside inside

    8) Summary of required reinforcement

    Required reinforcement for design is the maximum required reinforcement calculated above in 1) - 4).

    Item Side wall Side wall Top slab Invert Side wall Top slab Invert

    Point bottom top end end middle middle middle

    Side outside outside outside outside inside inside inside

    Calculation 1) 2) 3) 4) 5) 6) 7)

    Requirement 3.978 3.471 3.715 4.502 0.000 4.227 5.013 (cm2)

    h

  • 7/30/2019 Single Box

    36/41

    6 Bar Arrangement and Calculation of StressType: B2.00m x H2.50m

    bottom middle top end middle end middle

    outside inside outside outside inside outside inside

    Bending moment M kgfcm 259,015 140,650 208,741 97,193 139,465 128,171 174,486

    Shearing force (joint) S kgf 7,576 0 4,773 4,306 0 5,506 0

    Shearing force (2d) S2d kgf 5,618 - 4,170 3,210 - 4,105 -Axial force N kgf 5,506 4,951 4,306 1,190 1,190 1,388 1,388

    Height of member h cm 20 20 20 20 20 20 20

    Covering depth d' cm 6 6 6 6 6 6 6

    Effective height d cm 14 14 14 14 14 14 14

    Effective width b cm 100 100 100 100 100 100 100

    Effective area bd cm2 1400 1400 1400 1400 1400 1400 1400

    Young's modulus ratio n - 24 24 24 24 24 24 24

    Required R-bar Asreq cm2 3.98 0.00 3.47 3.71 4.23 4.50 5.01

    R-bar arrangement 16@250 12@250 16@250 16@250 16@250 16@250 12@125

    Reinforcement As cm2 8.04 4.52 8.04 8.04 8.04 8.04 9.05

    Perimeter of R-bar U 20.11 15.08 20.11 20.11 20.11 20.11 30.16

    M/N e cm 47.039 28.410 48.472 81.656 117.172 92.327 125.689

    Dist. from neutral axis c cm 4.00 4.00 4.00 4.00 4.00 4.00 4.00

    a' 111.1 55.2 115.4 215.0 321.5 247.0 347.1

    b' 590.9 210.9 607.5 991.7 1402.9 1115.2 1690.1

    c' -8272.7 -2953.3 -8505.1 -13883.7 -19640.3 -15613.3 -23661.5

    x 10.16 17.62 10.19 9.38 8.92 9.69 9.27

    ######## ######## ######## ######## ######## ######## ########

    (check) check check check check check check check

    Compressive stress sc kgf/cm2 12.7 5.5 9.9 3.2 3.5 3.5 3.9

    Allowable stress sca kgf/cm2 60.0 60.0 60.0 60.0 60.0 60.0 60.0

    ok ok ok ok ok ok ok

    Tensile stress ss kgf/cm2 115.0 0.0 88.6 37.6 48.4 37.2 48.3

    Allowable stress ssa kgf/cm2 1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 1400.0

    ok ok ok ok ok ok ok

    Shearing stress at joint t kgf/cm2 5.41 0.00 3.41 3.08 0.00 3.93 0.00

    Allowable stress ta kgf/cm2 11.00 11.00 11.00 11.00 11.00 11.00 11.00ok ok ok ok ok ok ok

    Shearing stress at 2d t2d kgf/cm2 4.01 - 2.98 2.29 - 2.93 -

    Allowable stress t2da kgf/cm2 5.50 - 5.50 5.50 - 5.50 -

    ok - ok ok - ok -

    Resisting Moment Mr kgfcm 206,044 173,378 205,852 205,817 205,817 205,798 213,308

    Mr for compression Mrc kgfcm 206,044 173,378 205,852 205,817 205,817 205,798 213,308

    x for Mrc cm 6.408 5.258 6.238 5.820 5.820 5.846 6.096 ss for Mrc kgf/cm2 1706.1 2394.3 1791.9 2023.7 2023.7 2008.6 1867.3

    Mr for tensile Mrs kgfcm 372,070 204,735 334,555 251,307 251,307 256,073 297,721

    x for Mrs cm 8.970 7.358 8.643 7.729 7.729 7.791 8.215 sc for Mrs kgf/cm2 104.0 64.6 94.1 71.9 71.9 73.2 82.8

    Distribution bar (>As/6 and >Asmin) 12@250 12@250 12@250 12@250 12@250 12@250 12@250

    Reinforcement As cm2 4.52 4.52 4.52 4.52 4.52 4.52 4.52ok ok ok ok ok ok ok

    Reinforcement bar for fillet 12@250 12@250

    Reinforcement As cm2 4.52 4.52

    Minimum requirement of reinforcement bar As min = 4.5 cm2

    Side wall Top slab Invert

    36/41 (5)168023748.xls.ms_officeR-bar stress

  • 7/30/2019 Single Box

    37/41

    DATA PLOT PEMBESIAN

    1. Design Data

    b1 = m b2 = m

    h1 = m h2 = m h3 = m d = m

    Bb = m Ha = m Fillet = m

    2. Data PembesianBottom slab : Tulangan bagi :

    As1 (cm ) : O 16 @ O 12 @ O 12 @

    As2 (cm ) : O 12 @ O 16 @

    Side wall : Tulangan bagi :

    As1 (cm ) : O 16 @ O 12 @ O 12 @

    As2 (cm ) : O 12 @ O 16 @

    Top slab : Tulangan bagi :

    As1 (cm ) : O 16 @ O 16 @ O 12 @

    As2 (cm ) : O 16 @ O 16 @

    3. Tulangan Miring (fillet) :

    Bottom slab : O 12 @

    Top slab : O 12 @

    4. Nama Bangunan : Culvert Type 1 (2 m x 2 m)

    Lokasi : . Irrigation Project

    250

    125 250

    Section of Culvert

    0.200 2.000

    0.200 2.500 0.200 0.06

    Tumpuan Lapangan

    2.400 2.900 0.20

    Tumpuan Lapangan

    250 125

    Tumpuan Lapangan

    250 250 250

    250 250

    250

    250 250

    250

    250

    250 250

    b1b1 b2

    h3

    h2

    h1

    Bb

    Ha

  • 7/30/2019 Single Box

    38/41

    DATA PLOT MOMENT AND SHEAR FORCE DIAGRAM

    1. Design Data

    b1 = m b2 = m

    h1 = m h2 = m h3 = m

    Bb = m Ha = m

    2. Result Calculation

    Side wall (left)

    Case 1Case 2

    Side wall (right)

    Case 1

    Case 2

    Top slab

    Case 1

    Case 2

    Bottom slab

    Case 1

    Case 2

    3. Nama Bangunan : Culvert Type 1 (2 m x 2 m)

    Lokasi : . Irrigation Project

    Case 1MmaxMab =Mcd =

    Sb

    Section of Culvert

    0.200 2.000

    0.200 2.500 0.200

    Na Nb

    2.200 2.700

    Ma Mmax Mb Sa

    -2.331 1.407 -1.828 6.531 -3.729 5.503 4.303

    Nc

    -1.282 -0.249 -0.972 1.388 -1.190 5.503 4.303

    Mc Mmax Md Sd Sc Nd

    -1.828 1.407 -2.331 -6.531 3.729 5.503 4.303

    -0.972 -0.249 -1.282 -1.388 1.190 5.503 4.303

    3.729

    Mb Mmax Mc Sb Sc Nb Nc

    -1.828 0.539 -1.828 4.303 -4.303 3.729

    -0.972 1.395 -0.972 4.303 -4.303 1.190 1.190

    Ma Mmax Md Sa Sd Na Nd

    1.388

    -2.331 0.696 -2.331 -5.503 5.503 6.531 6.531

    -1.282 1.745 -1.282 -5.503 5.503 1.388

    x x1 x2 x3 x4 x5 x6 x71.242 -0.48 0.70 1.30 1.38 1.04 0.34 -0.641.458 -0.48 0.70 1.30 1.38 1.04 0.34 -0.64

    b1b1 b2

    h3

    h2

    h1

    Bb

    Ha

  • 7/30/2019 Single Box

    39/41

    MmaxMbc =Mad =

    Ha =

    Bb =

    Sab

    Case 2MmaxMab =Mcd =MmaxMbc =Mad =

    Ha =

    Bb =

    Sab

    -0.05 -0.79y1 y2 y3 y4 y5 y6 y7

    1.1 -0.79 -0.05 0.39 0.54 0.391.1 -1.01 -0.06 0.51 0.70 0.51 -0.06 -1.01

    0.550 0.275

    2.700 0.338 0.675 1.013 1.350 1.688 2.025 2.363

    2.200 0.275 0.550 0.825 1.100 0.825

    -2.53 -3.24x x1 x2 x3 x4 x5 x6 x7

    2.700 4.45 2.60 0.98 -0.42 -1.59

    -0.63x x1 x2 x3 x4 x5 x6 x7

    -0.631.242 -0.87 -0.56 -0.35 -0.26 -0.27 -0.39

    y71.458 -0.87 -0.56 -0.35 -0.26 -0.27 -0.39

    0.80 0.06y1 y2 y3 y4 y5 y6

    1.1 0.06 0.80 1.25 1.39 1.251.1 0.04 0.99 1.56 1.74 1.56 0.99 0.04

    0.550 0.275

    2.700 0.338 0.675 1.013 1.350 1.688 2.025 2.363

    2.200 0.275 0.550 0.825 1.100 0.825

    -0.53 -0.86x x1 x2 x3 x4 x5 x6 x7

    2.700 1.08 0.76 0.44 0.12 -0.20

  • 7/30/2019 Single Box

    40/41

    MAB MBA

    -1.282 0.972-2.331

    MCD

    1.828

    MDC

    -1.828 2.331

    MBC MCB

    -0.972

    -1.828

    1.282

    1.828

    -0.972 0.972

    2.331 -2.331

    MAD

    1.282

    MDA

    -1.282

    q1 q26.500 1.1001.100 6.500

  • 7/30/2019 Single Box

    41/41

    q1

    q1

    3.9125.003

    q1 q20.920 0.9900.990 0.920

    3.9125.003