Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation...

24
Simulation study in Design of Miniaturized Mid- Infrared Sensors X. Wang , S-S. Kim, B. Mizaikoff* Stuttgart, 10/27/11, 11:00 am.

Transcript of Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation...

Page 1: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Simulation study in Design of Miniaturized Mid-Infrared Sensors

X. Wang, S-S. Kim, B. Mizaikoff*

Stuttgart, 10/27/11, 11:00 am.

Page 2: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Dr. Boris Mizaikoff [email protected]

2

Content

→ MIR sensors combined with quantum cascade lasers (QCL) → MIR GaAs/Al0.2Ga0.8As waveguides Strip waveguides Slot waveguides → Simulation studies on MIR waveguide design

Page 3: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Dr. Boris Mizaikoff [email protected]

3

Quantum Cascade Lasers (QCL)

1994 - Breakthrough in IR light source technology

J.Faist, et al., Science, 264, 553 (1994)

• Photons produced by intersubband transitions rather than recombination processes

• Layer dimensions dictate energy levels in heterostructure (quantum wells)

• Cascaded structures may produce multiple photons per electron

• Layers of semiconductor materials create a quantum heterostructure

• Common materials are: InGaAs/AlInAs/InP and GaAs/AlGaAs

Page 4: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

4

MIR Waveguide Design

Metal-organic vapor phase epitaxy (MOVPE)

S.-S. Kim, et., Anal. Bioanal. Chem.390, 231 (2008)

Substrate: GaAs:Si Substrate: GaAs:Si

GaAs 30 nm

Substrate: GaAs:Si

GaAs 30 nm

Al0.20Ga0.80As 6 µm

GaAs 6 µm

Substrate: GaAs:Si

GaAs 30 nm

Al0.20Ga0.80As 6 µm

Process flow

Growth parameters • MOVPE AIX – 200 • Materials used: TMGa, TEGa, TMAl, AsH3, • Horizontal reactor at 100 mbar • TG = 750°C

Dr. Boris Mizaikoff [email protected]

Page 5: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Dr. Boris Mizaikoff [email protected]

5

MIR Waveguides

→ Frequency matched to QCL emission → Well-defined evanescent field → Superior mode control → Toward the theoretical sensitivity limits of evanescent field sensing

Towards superior mode control with GaAs/Al0.2Ga0.8As waveguides

Page 6: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

→ Strip waveguide microfabrication via RIE (reactive ion etching) → 200/100/50... µm wide waveguide strips → QCL emission at 974 cm-1

overlaps with absorption of analyte (acetic anhydride)

Chip-integrated IR devices

6

QCL Combinded with Strip Waveguides

C. Charlton, et., Anal. Chem. 78, 4224 (2006)

Dr. Boris Mizaikoff [email protected]

Page 7: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

→ Wavenumber: 1665 cm-1 → Duty cycle: 1 % → Repetition rate: 100 kHz → Evidence of single mode pulse lasing of the EC-QCL (1575-1735 cm-1)

Beam Profile of EC-QCL in pulse mode

7

Sing Mode laser of EC-QCL Mode analysis of EC-QCL with MIR camera

1 mm

Dr. Boris Mizaikoff [email protected]

Page 8: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

→ Analyte: acetic anhydride → 200 µm wide waveguide → Micro-capillary used to generate 2 nL droplets → pseudo Lambert-Beer law:

A = (ε × c × l) r EW ratio: r = Ie/I0

(Ie : evanescent filed intensity, I0 : total intensity of guided light)

Measurements with strip waveguides

8

QCL Combined with Strip Waveguides Calibration of coverage length

System response for GaAs strip waveguide as a function of the coverage length with linear fit. Each 2 nl droplet covered a diameter of 0.4 mm.

Dr. Boris Mizaikoff [email protected]

Page 9: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

9

QCL Combined with Strip Waveguides

System response to diluted acetic anhydride in diethylene glycol monoethyl ether. Each 2 nL droplet covered a diameter of 0.4 mm.

Dr. Boris Mizaikoff [email protected]

Calibration of concentration

→ Analyte: acetic anhydride → 200 µm wide waveguide → Micro-capillary used to generate 2 nL droplets → pseudo Lambert-Beer law:

A = (ε × c × l) r EW ratio: r = Ie/I0

(Ie : evanescent filed intensity, I0 : total intensity of guided light)

Measurements with strip waveguides

Page 10: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

10

QCL Combined with Strip Waveguides Comparison strip waveguide vs. slab waveguide

y = 0,0103x R² = 0,9963

y = 0,0007x R² = 0,9985

-0,03

0,02

0,07

0,12

0,17

0,22

0,27

0,32

0 100 200 300 400

abso

rban

ce (

a.u

.)

amount of analyte (nmol)

GaAs strip waveguide GaAs slab waveguide

→ CH3-C bending vibration of acetic anhydride overlap with QCL emission → 200 µm wide waveguide → LOD of 0.2 pL (2 pmol) → One order of magnitude improvement vs. slab waveguide → Further improved sensitivity anticipated via narrowing strip width

Strip waveguide vs. slab waveguide

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 2 4 6 8 10

abso

rban

ce (

a.u

.)

amount of analyte (nmol)

Dr. Boris Mizaikoff [email protected]

Page 11: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

11 Reference

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

RF module, Electromagnetic Waves (emw). Geometry and Material parameters: Core: 6 um GaAs, n=3.3 Clading: 6 um Al0.2Ga0.8As, n=3.2 Wafer: GaAs (doped), n= 3.2 Air: n=1 Width of WG: 5 um Wavelength: 6.01 um (1665 cm-1) Single Mode: TEM (0.0)

Dr. Boris Mizaikoff [email protected]

Single Mode Waveguides

Page 12: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Ex distribution along the cross-section with effective mode index of neff = 3.22. Acr length (0 - 2): evanescent field, (2 - 8): core, (8 - 14): clading, (14 - 16): substrate.

12

Mode Analysis of GaAs/Al0.2Ga0.8As

Intensity Fraction of evanescent field over the total beam is calculated to be 0.06 % along the cross-section.

Dr. Boris Mizaikoff [email protected]

2D mode analysis with strip width of 5 µm Red line stands for the cross-section in y-axis Red arrow stands for the direction of electrical field: Ex along x-axis.

Page 13: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Ex distribution with neff = 3.22. There is discontinuity of Ex on interface between the core and air (x = 3.5, 8.5).

13

Mode Analysis of GaAs/Al0.2Ga0.8As

The penetration depth Dp of evanescent field is estimated to be 1 µm in the simulation. The fraction of evanescent field is calculated to be 0.3 % for each interface along the cross-section.

Dr. Boris Mizaikoff [email protected]

Page 14: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

14 Reference

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

Ey distribution along the line is analyzed in the diagram on the right (neff1=3.22948). There is discontinuity of Ey on interface of vacuum and the core (x=2 um).

Dr. Boris Mizaikoff [email protected]

Page 15: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

15 Reference

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

Ey distribution along the line is analyzed in the diagram on the right (neff1=3.22948). There is no discontinuity of Ey on interface of vacuum and the core (x=3.5 and 8.5). The penetration depth Dp of evanescent field is around 1 um.

Dr. Boris Mizaikoff [email protected]

Page 16: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

16 Reference

The Ey (0, 0) behaves as an exponential curve and the EW ratio achieves re > 1 % with cutoff width Dc = 4 um at 1665 cm-1.

0E+00

2E-03

4E-03

6E-03

8E-03

1E-02

1E-02

0 5 10 15 20 25 30 35

Evan

esc

en

t fi

eld

rat

io (

a.u

.)

Width of strip waveguide (um)

EW ratio (Ex)

EW ratio (Ey)

cutoff

Dr. Boris Mizaikoff [email protected]

Mode Analysis of GaAs/Al0.2Ga0.8As

Page 17: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

17

MIR Slot Waveguides Advanced waveguide design with FEM simulations

SlotStrip waveguide vs. strip waveguide

→ pseudo Lambert-Beer law:

A = (εcl) r → EW ratio: r = Ie/I0 (Ie : evanescent filed intensity, I0 : total intensity of guided light)

→ Enhancement factor: up to 1-2 orders of magnitude expected!

,0

,002

,004

,006

,008

,010

0 2 4 6 8

Evan

esc

en

t w

ave

rat

io

trench depth (um)

EW ratio (Ey 600nm)

EW ratio (Ey 200nm)

x

y

WG width: 10 µm

Trench width: 200 / 600 nm

Dr. Boris Mizaikoff [email protected]

Page 18: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

18

Conclustions and Outlooks

Dr. Boris Mizaikoff [email protected]

→ Simulation studies on GaAs/AlGaAs strip waveguide → Optimization of single mode MIR strip waveguide Simulation & experiment → 3-D Simulation of beam propagation in strip waveguide → Resonator based waveguide design

Page 19: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Dr. Boris Mizaikoff [email protected]

19

Acknowledgements

Dr. P. Michler Dr. R. Rossbach Dr. M. Jetter

FIB Center UUlm

Prof. Dr. B. Mizaikoff

Dr. C. Kranz

Page 20: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

Dr. Boris Mizaikoff [email protected]

20

Thanks for your attention!

Page 21: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

21

Simulation Study COMSOL – RF-Module

Reference: www.comsol.com

The Electromagnetic Waves interface, analyzes frequency domain electromagnetic waves, and uses time-harmonic and eigenfrequency/eigenmode studies.

Work process: 1. Model Meshing 2. Applicate of material properties 3. Add the Physics 4. Defining the boundary conditions 5. Compute

It Provides:

Flexible what-if-scenarios 1. Physics Solution 2.

Solving Equations 3.

Electric:

Magnetic:

Divergence equations Curl equations

Maxwell Equations

Electric:

Magnetic:

Wave Equations

2v E (v r ,t)00r

2v E (v r ,t)

t2

2v H (v r ,t)00r

2v H (v r ,t)

t2

Dr. Boris Mizaikoff [email protected]

Page 22: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

22 Reference

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

Waveguide structure: Slab waveguide (WG) Polarization: TM Mode index: m = 0 Refractive Index of GaAs: n1=3.3 Refractive Index of air: n2=1 Slab waveguide with symmetric structure does not own cut–off thickness. Penetration depth Dp show dramatical increase as thickness of waveguide narrows down to sub-wavelength range.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Pe

net

rati

on

de

pth

(u

m)

Thickness of slab waveguide dw (um)

GaAs (n = 3.3), λ = 6 um

GaAs (r = 3.3), λ = 10 um

AgX (r = 2.2), λ = 6um

Slab waveguide

Air

Air

dw

Dr. Boris Mizaikoff [email protected]

Page 23: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

23 Reference

Cutoff width Dc of strip WG at 1665 cm-1 are 4.5 um for Ey and 5 um for Ex TE (0,0) mode respectively. Effective mode index neff must fulfill the range: nf> neff> nc As strip narrows down to Dc, neff approach to nc.

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

3,2

3,21

3,22

3,23

3,24

3,25

3,26

3,27

3,28

0 5 10 15 20 25

Effe

ctiv

e m

od

e in

dex

(a.

u.)

W (um)

n_eff_1 (Ey),(0,0)

n_eff_2(Ex),(0,0)

Dc

Dr. Boris Mizaikoff [email protected]

Page 24: Simulation study in Design of Miniaturized Mid- Infrared Sensors · 2011. 12. 1. · Simulation study in Design of Miniaturized Mid-Infrared Sensors . X. Wang, S-S. Kim, B. Mizaikoff*

24

Mode Analysis of GaAs/Al0.2Ga0.8As with COMSOL

Reference

3,18

3,2

3,22

3,24

3,26

3,28

3,3

2 7 12 17 22

Effe

ctiv

e m

od

e in

dex

(a.

u.)

W (um)

n_eff_1 (Ey),(0,0)

n_eff_2(Ex),(0,0)

n_eff_1 (Ey),(1,0)

n_eff_2(Ex),(1,0)

n_eff_1 (Ey),(2,0)

The strip waveguide will support higher order modes of light as w increases. According to the simulation results from the diagram on the left, in order to avoid the generation of higher order modes of light, the width should be confined within 8 um (Dc in Ex(1.0) mode).

Dr. Boris Mizaikoff [email protected]