Simulation Software ARMY

63
Renewable Energy Testing Center 5301 Price Avenue McClellan, CA 95652 916-929-8001 (p) 916-929-8020 (f) www.technikon.us TECHNIKON Accelerating the Marketplace for Renewable Technologies Operated by Funded through the Department of Defense rtment of De US Army Armament Research Development and Engineering Center Demil and Environmental Technology Division Environmental Sustainment and Energy Branch Evaluation of Process Simulation Software for Energy Technology Assessments Technikon Report # 1603-211 March 2010 US Army Contract W15QKN-05-D-0030 US Army Contract W15QKN-05-D-0030 Task 6 RETC, WBS # 2.1.1 Task 6 RETC, WBS # 2.1.1 Distribution Statement B: Distribution authorized to US Government agencies only; Critical Technology; 10 Feb 06. Other requests for this document shall be referred to: RDECOM/ARDEC AMSRD-AAR-AEE-E ATTN: K O’Connor Bldg 355 Picatinny Arsenal NJ 07806 (973) 724-7540

Transcript of Simulation Software ARMY

Page 1: Simulation Software ARMY

Renewable Energy Testing Center

5301 Price AvenueMcClellan, CA 95652916-929-8001 (p)916-929-8020 (f)www.technikon.us

TECHNIKON

Accelerating the Marketplace for Renewable Technologies

Operated by Funded through the Department of Defensertment of De

US Army Armament Research Development and Engineering Center

Demil and Environmental Technology DivisionEnvironmental Sustainment and Energy Branch

Evaluation of Process Simulation Software for Energy Technology AssessmentsTechnikon Report # 1603-211

March 2010

US Army Contract W15QKN-05-D-0030US Army Contract W15QKN-05-D-0030Task 6 RETC, WBS # 2.1.1Task 6 RETC, WBS # 2.1.1

Distribution Statement B: Distribution authorized to US Government agencies only; Critical Technology; 10 Feb 06. Other requests for this document shall be referred to: RDECOM/ARDECAMSRD-AAR-AEE-EATTN: K O’ConnorBldg 355Picatinny Arsenal NJ 07806(973) 724-7540

Page 2: Simulation Software ARMY

ii

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 3: Simulation Software ARMY

iii

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Evaluation of Process Simulation Software for Energy Technology Assessments

Technikon Report # 1603-211

This report has been reviewed for completeness and accuracy and approved for release by the following:

Director of Measurement Technologies //Original Signed//Kim Hunter, PE Date

Vice President //Original Signed//George Crandell Date

Page 4: Simulation Software ARMY

iv

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 5: Simulation Software ARMY

v

TECHNIKON REPORT # 1602-211 NAMARCH 2010

Table of Contents

Executive Summary .............................................................................................................1

1.0 Introduction ..............................................................................................................3

1.1. Organizational Background ..............................................................................31.2. Report Organization ...........................................................................................41.3. Test/Study Objectives ........................................................................................4

2.0 Scope of Study ..........................................................................................................5

2.1. Report Preparation, Review and Quality Assurance and Quality Control (QA/QC) Procedures/Protocols ..................................................................................5

2.2. Study Overview .................................................................................................52.2.1. Amine Absorption Process Simulation ........................................................62.2.2. Catalytic Reforming of Methane Process Simulation ..................................7

3.0 Study Results and Discussion .................................................................................11

4.0 Conclusion and Recommendations ........................................................................13

List of Figures and Tables

Figure 2-1 Amine Absorption Process Diagram ............................................................6

Figure 2-2 CRM/FTS Process Diagram ........................................................................8

Page 6: Simulation Software ARMY

vi

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 7: Simulation Software ARMY

1

TECHNIKON REPORT # 1602-211 NAMARCH 2010

EXECUTIVE SUMMARY

This report contains Technikon’s assessment of commercial process simulation software. Specifi cally, the suitability of simulation software for: 1) evaluating clean energy and al-ternative energy proposals at the conceptual stage and; 2) facilitating process design and integration of promising energy technologies as they progress to the demonstration stage.

In order to carry out the assessment Technikon obtained a two-week evaluation license for Design II, a Window s® based process simulation program developed by WinSim® Incorporated. Two test processes were modeled for the sequestration of CO2 from a coal-fi red power plant. The fi rst process employs conventional amine CO2 absorption/compres-sion, the second, a novel concept based on catalytic reforming of methane (CRM). In both cases the simulation program generated process material and energy balances, chemical compositions and equipment specifi cations that were necessary and suffi cient to evaluate the concepts. Design II was then applied to examine alternative designs for the CRM con-cept and to develop a progressively more effi cient process.

The principle weakness of the Design II package is its limited ability to model and simulate chemical reactors. This defi ciency is common to all chemical process simulation packages and limits their utility where reactors are a key element in the chemical process.

Page 8: Simulation Software ARMY

2

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 9: Simulation Software ARMY

3

TECHNIKON REPORT # 1602-211 NAMARCH 2010

1.0 INTRODUCTION

Technikon, LLC is a privately held contract research organization located in McClellan, California, a suburb of Sacramento. Technikon offers process development and demonstra-tion services to industrial and government clients specializing in advanced technologies in the areas of metal casting, point source emissions and renewable energy.

1.1. Organizational Background

The Renewable Energy Testing Center (RETC) program is based on the concept of test-ing and validation of renewable energy technologies related to biomass feedstock with a particular focus on biofuels for transportation. Technikon has a world-class research, dem-onstration and deployment facility located in the greater Sacramento, California region that is being utilized for this initiative. The Renewable Energy Testing Center program focuses on support of relevant and emerging renewable energy technologies in the area of cellu-losic waste and biomass to energy and fuel conversion technologies that would support the Department of Defense (DOD) need for compliance to Executive Order 13423 that sets goals for the DOD to increase alternative fuel consumption at least 10% annually.

The development of renewable energy technologies presents a major opportunity for re-ducing US dependence on foreign oil. The DOD, the Department of Energy (DOE) and industry share the goals of reducing energy and fuel costs needed to support transportation, manufacturing and production of electricity. A major roadblock to commercialization of renewable energy technologies is that the smaller manufacturers need a place to demon-strate their pilot units, and validate energy and environmental data. The RETC program fulfi lls this need by supplying the support for developers by being a 3rd party renewable energy testing and validation center with a focus on systems meeting DOD renewable fuel requirements.

The objective of RETC is to provide industry with an independent laboratory for develop-ing and evaluating the performance of renewable energy and renewable fuels technolo-

Page 10: Simulation Software ARMY

4

TECHNIKON REPORT # 1603-211 NAMARCH 2010

gies with respect to robustness, safety, energy effi ciency, environmental effectiveness and other key performance specifi cations. The RETC, and the oversight of the RETC staff, brings together technology developers, government entities and universities in a facility that provides the tools and services needed to bring renewable energy systems to the com-mercialization phase. It also allows developers to integrate technologies that are needed to supply a complete waste to energy system at an accelerated pace and at a signifi cant cost reduction. Present state and federal grant structures are less fl exible and almost exclude the smaller developers from making applications since they do not have the data needed to get awarded. The RETC fi lls this gap in funding and accelerates renewable energy com-mercialization.

1.2. Report Organization

The report has been organized in four sections to document the results of a series of process simulation runs. Section 2.0 includes a summary of the test cases used in the software eval-uation. Section 2.0 also includes Quality Assurance/Quality Control (QA/QC) procedures and specifi c data collected during the program evaluation. The results are summarized and discussed in Section 3.0 and conclusions are presented in section 4.0 accompanied by sug-gestions for further work.

1.3. Test/Study Objectives

The primary objective of this RETC Subtask is to determine the suitability of process simu-lation software for evaluating alternative energy technologies and assisting in the design and development of selected technologies.

Page 11: Simulation Software ARMY

5

TECHNIKON REPORT # 1602-211 NAMARCH 2010

2.0 SCOPE OF STUDY

The scope of this study is the evaluation of two conceptual technologies for sequestration of CO2 using PC-based process simulation software running in the Windows® environ-ment. The technologies are 1) amine recovery and compression of CO2 and, 2) catalytic methane reforming of CO2 followed by Fischer-Tropsch conversion of the reformed prod-ucts into high-density hydrocarbons.

2.1. Report Preparation, Review and Quality Assurance and Quality Control (QA/QC) Procedures/Protocols

The resulting data were reviewed by Technikon team members to ensure completeness, consistency with the test plan, and adherence to prescribed quality analysis/quality control (QA/QC) procedures. Appropriate observations, conclusions and recommendations were added to the report to produce a draft report. The draft report was then reviewed by senior management and comments are incorporated into a draft fi nal report prior to fi nal signature approval and distribution.

2.2. Study Overview

A number of industrial and government entities are investigating technologies for cap-turing and sequestering the CO2 emitted from coal-fi red power plants (CFPP). A recent call for proposals from the US Department of Energy (DOE) encouraged submissions of novel and innovative technologies to sequester the CO2 emissions from a 500 megawatt electric (MWe) CFPP. It was accompanied by a caveat that the proposed technologies’ performance be measured against amine absorption, which is regarded by DOE as the best current sequestration technology. Technikon, in collaboration with an institution that holds a patent in catalytic reforming of methane (CRM), evaluated a combined CRM/Fischer-Tropsch Synthesis process to sequester CO2 as high-density hydrocarbons.

Page 12: Simulation Software ARMY

6

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Technikon has long had an interest in the benefi ts of process simulation software for tech-nology evaluation for application to technology evaluated under the RETC contract. A decision was made to activate a trial-use license with WinSim® for its Design II simulation package expressly for this exercise.

2.2.1. Amine Absorption Process Simulation

The process model for amine absorption/regeneration/compression is shown in Figure 2-1. The 500 MWe CO2 emission load was subdivided into fi ve 100 MWe processing plants to allow reasonably sized absorbers and strippers, and to provide for continuing system operation when one of the plants is taken out of service. The composition and component fl ow rates of the CFPP fl ue gas is given in Appendix A.

Figure 2-1 Amine Absorption Process Diagram

Like most process simulation vendors, WinSim® has a library of packaged models for common processes, including amine CO2 absorption. The absorption/regeneration portion

Page 13: Simulation Software ARMY

7

TECHNIKON REPORT # 1603-211 NAMARCH 2010

of the model shown in Figure 2-1 was adapted from the WinSim® library. The unit mod-ules for CO2 conditioning and compression were added to deliver relatively pure carbon dioxide at 1500 pounds per square inch, absolute (psia) for pipeline transportation or direct geologic injection.

Process DescriptionPressurized fl ue gas from the CFPP is conducted to the bottom of a trayed absorption tower where the up-fl owing gas is contacted against an aqueous amine solution (8.1 mole% MDEA, 1.9 mole% piperazine). Absorbed carbon dioxide binds to the amine as carbonic acid which greatly reduces its activity in solution. The carrying capacity of this solvent is about .05 moles CO2 per mole water accompanied by very small amounts of dissolved nitrogen and oxygen. This, so called, “rich amine” solution is fl ashed (from 385 to 30 psia) into stripping towers where the carbon dioxide is regenerated as a gas and the “lean amine” solution is returned to the absorber. Sensible heat input to the lean solution during the stripping step is transferred to the rich stripper feed stream. The lean stream is then re-pressurized and cooled, if needed, before being reintroduced to the absorber. The regener-ated CO2 is cooled, dried, and compressed for storage or transportation. Design II provides a detailed description of each process stream and processing unit. These are summarized in Appendix B.

The simulation showed that the energy cost of removing CO2 in this fashion is signifi cant, consuming approximately 50% of the rated power output of the CFPP. The absorber/re-generator portion consumes 38% as modeled. That fi gure could be somewhat improved with additional heat integration. The energy consumption calculations are shown in Appendix D.

2.2.2. Catalytic Reforming of Methane Process SimulationCatalytic reforming of methane (CRM) has been proposed as a pathway to carbon se-questration by way of converting CO2 into synthesis gas (CO and H2) from which easily sequesterable products can be synthesized. The CRM reaction is straight forward: CO2 + CH4 => 2CO + 2H2, but the reaction rate is extremely low, necessitating unreasonably high temperatures in the absence of a catalyst. Past attempts to produce an industrially vi-

Page 14: Simulation Software ARMY

8

TECHNIKON REPORT # 1603-211 NAMARCH 2010

able CRM catalyst have failed due to sintering of the catalytic crystal structure or carbon deposition on the active sites. Recently CRM catalysts with improved stability have been prepared on carbon nanotubes prompting renewed interest in this reaction.

The CRM reaction requires relatively pure carbon dioxide and methane. Therefore, an inexpensive source of methane must be assumed and pure CO2 must be extracted from the CFPP fl ue gas prior to the CRM reactor. The CRM process model also relies on amine absorption/regeneration to supply CO2 at the required purity. The 38 MWe of power con-sumed in this case is charged to the CRM process (Appendix D). To be a credible alter-native, CRM and its associated synthesis block must consume no more than 12 MWe of power (the power for CO2 compression in the amine process - Appendix D). In this model, the synthesis block comprises a Fischer-Tropsch synthesis (FTS) conversion to higher mo-lecular weight hydrocarbons that can be stored without further processing.

Figure 2-2 CRM/FTS Process Diagram

Page 15: Simulation Software ARMY

9

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Process Description: Dry CO2 from the amine regenerator is pressurized to 450 psia and combined with CH4 from an assumed local source. The feed mixture is then preheated against the FTS reactor effl uent and CRM reactor effl uent to 1530 °F before introduction to the CRM reactor where it is converted to synthesis gas by the reaction:

1) CO2 + CH4 => 2CO + 2H2 ................................synthesis gas

The syngas product from the CRM reactor proceeds through an effl uent cooler directly to the FTS reactor where a range of hydrocarbon products are formed by the reactions:

2) nCO + (n+2)H2 => Cn-H2(n+1) + nH2O ................FTS

3) H2O + CO => H2 + CO2 ....................................water shift

The FTS products were arbitrarily fi xed in the reaction model as C1, C4, C9, C13, C16, C23, C+wax . Comparing the stoichiometry of the CRM and FTS reactions shows the hydrogen balance between them is not exactly matched. CRM produces hydrogen and carbon in a ratio of 1:1 while FTS (reaction 2) will always require a hydrogen/carbon ratio greater than 1:1. The difference is made up by the “water shift” reaction (reaction 3) which converts a portion of the water produced by reaction 1 into hydrogen. Water shift capability is often designed into FTS catalysts. However, the cost is additional CO2 generation. The effl uent from the FTS reactor is cooled below the bubble points of water and hydrocarbons (higher than methane) then passed to a three-phase separator where methane gas, and residual CO and CO2, is recycled to the CRM reactor. The water is sent to waste recovery and the hy-drocarbons to storage.

During the course of operation, the inert material introduced with the feed (oxygen, nitro-gen etc.) and generated by reaction (light hydrocarbons) will accumulate in the CRM/FTS recycle loop. This material must be purged from the recycle stream to maintain steady state operation. The purge gas consists mainly of CO and CO2 with small amounts of methane, C4-C9, and O2 and N2 (appendix C). Since many of these components are “greenhouse” gases or toxic/fl ammable compounds, the purge stream cannot be vented directly to atmo-sphere. Instead, it would likely undergo oxidation to CO2 in a simple reactor (not shown

Page 16: Simulation Software ARMY

10

TECHNIKON REPORT # 1603-211 NAMARCH 2010

in the model) whose effl uent would then be returned to the amine absorber’s fl ue gas feed. The overall effect would be an increase in the size, cost and power consumption of the absorber/regenerator block. Details of each process stream and processing unit are output by the simulation. These are summarized in Appendix C.

Page 17: Simulation Software ARMY

11

TECHNIKON REPORT # 1602-211 NAMARCH 2010

3.0 STUDY RESULTS AND DISCUSSION

The objective of this study has two parts: 1) evaluation of the competing sequestration concepts (compression versus chemical conversion); and 2) evaluation of simulation soft-ware as a general technology tool for the RETC. Even without a process simulation, the chemical conversion process would be suspect because of the very high positive enthalpy of the CRM reaction. But the simulation revealed a host of additional engineering issues that involved heat integration, hydrocarbon recovery and the handling of inert material. Less obvious, but clearly shown by simulation, is the magnitude of energy consumed by this process. Even after several iterations to optimize heat recovery and recycle power, the power consumption of the chemical conversion process (amine absorption/regeneration + CRM/FTS) was 108 MWe – exceeding the total power output of the CFPP. While storing CO2 in the form of condensed hydrocarbons is attractive, the CRM/FTS concept is energy negative, therefore not feasible.

Overall, the simulation software proved valuable in formulating process models and for quantitatively evaluating them. However, this exercise also demonstrated some of the limitations and liabilities of process simulation. First, simulation packages are designed to function primarily as equilibrium computing engines. They excel in situations where equations of state can be applied, parameters and mixing rules are known, etc. Their fi -delity drops signifi cantly when the models require transport or kinetic computations as do most of the processes of interest to the RETC. For example, the CRM reaction is simple, elementary and irreversible. If the activation energy and (catalyst) collision parameters are known, Design II should calculate a credible reactor size and space velocity for given inlet conditions. Conversely, the FTS reaction is a complex three-phase affair that yields a broad distribution of products which is highly dependent on the physical and transport properties of the reaction medium as well as the catalyst. Design II’s reactor modules have no provision to incorporate the transport and kinetic data needed to model the FTS reaction and they would be impractically unwieldy if they had. It therefore became necessary to arbitrarily adjust the kinetic parameters in the module to enable it to converge to a solution. Once a solution was reached, a trial and error adjustment process followed to nudge the reactor performance toward a realistic product distribution.

Page 18: Simulation Software ARMY

12

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 19: Simulation Software ARMY

13

TECHNIKON REPORT # 1602-211 NAMARCH 2010

4.0 CONCLUSION AND RECOMMENDATIONS

The WinSim® Design II simulation output is adequate for conceptual evaluations. However, for evaluating existing technologies, or for process development work, dedicated reactor modeling capability is highly desirable. There are other commercial software pack-ages available for chemical reactor analysis and modeling and these should be investigated. There are also generalized, open-source, computer codes capable of solving the non-linear systems of equations (boundary value problems) which characterize chemical reactors. Adapting these codes to specifi c applications can be time consuming but for certain prob-lems, e.g. FTS reactors, they may offer the only solution.

Process simulation software can afford valuable capability to the RETC and the energy technology companies the RETC works with. If the RETC moves forward into the area of process simulation, a comparable capability should be developed in chemical reactor modeling in order to take full advantage of the benefi ts of simulation software for process evaluation and development.

Finally, while simulators are undeniably valuable process development tools, they are highly dependent on reliable process and property data. They cannot further a technol-ogy project in the absence of, or be substituted for, accurate data acquired through a well designed experimental program.

Page 20: Simulation Software ARMY

14

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 21: Simulation Software ARMY

15

TECHNIKON REPORT # 1602-211 NAMARCH 2010

APPENDIX A SIMULATION BASIS: 100 MWE COAL-FIRED POWER PLANT EMISSIONS

Page 22: Simulation Software ARMY

16

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 23: Simulation Software ARMY

17

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Number 525Stream Name 101E Gas In

Molecular Weight 30.518Molar Flowrate lbmol/hr 20797.9Mass Flowrate lb 634710.3122Note: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 49 : CARBON DIOXIDE lbmol/hr 3109.2 50 : HYDROGEN SULFIDE lbmol/hr 0 62 : WATER lbmol/hr 70 47 : OXYGEN lbmol/hr 766.9 46 : NITROGEN lbmol/hr 16851.8 1219 : PIPERAZINE lbmol/hr 0 7051 : MDEA lbmol/hr 0 Total lbmol/hr 20797.9

Molar Composition By Component 49 : CARBON DIOXIDE molar % 14.94958626 50 : HYDROGEN SULFIDE molar % 0 62 : WATER molar % 0.336572442 47 : OXYGEN molar % 3.687391515 46 : NITROGEN molar % 81.02644979 1219 : PIPERAZINE molar % 0 7051 : MDEA molar % 0 Total molar % 100

100 MW CFPP Flue Gas

The mass, and molar, fl ow rates given in the following table are considered to be typical of the fl ue gas emitted from a 100 megawatt, coal-fi red, electric generating station operat-ing with a sulfur recovery system. These values were used to defi ne the input stream to the CO2 recovery simulation.

Page 24: Simulation Software ARMY

18

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 25: Simulation Software ARMY

19

TECHNIKON REPORT # 1602-211 NAMARCH 2010

APPENDIX B DESIGN II - AMINE ABSORPTION SIMULATION OUTPUT

Page 26: Simulation Software ARMY

20

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 27: Simulation Software ARMY

21

TECHNIKON REPORT # 1603-211 NAMARCH 2010

The information in Appendix B is an abridged version of the general simulation output for the Amine Absorption process. The output is tabulated in seven sections:

1. Stream Summary – Rows 1-4 contain the identifying fl ags for each process stream in the simulation. The numbers correspond to the numbered streams as they appear in the process diagram (Figure 2-1, Amine Absorption Process Diagram). Rows 6-29 evaluate the physical and thermal properties of each stream and rows 30-49 defi ne the composition and fl ow rate of each stream.

2. Heat Exchanger Summary – Rows 1-4 contain the identifying fl ags for each heat transfer unit in the simulation. Rows 6-29 evaluate the mechanical and thermal properties used to model each heat exchanger in the simulation.

3. Pump Summary – Rows 1-4 contain the identifying fl ags for each pump, ex-pander and compressor in the simulation. Rows 6-30 evaluate the mechanical and thermodynamic properties that characterize each unit in the simulation.

4. CO2 Absorber – Rows 1-4 contain the initial conditions for the iterative solution of the absorber column. Rows 14-38 contain the plate-to-plate temperature and fl ow profi les inside the column. Rows 41-94 contain the plate-to-plate physical and thermodynamic properties of the fl uid streams within the column. Rows 97-121 contain the mechanical properties of the absorber column and its inter-nal trays. Rows 126-163 contain the column’s distillate and bottom product rates and thermodynamic properties.

5. Amine Regenerator – The description of the amine regenerator/CO2 stripper section is identical in layout to the absorber section (4) above.

6. Energy & Power Balance – Rows 1-12 show the energy fl owing into, and out of, the simulated process through external streams. Rows 16-38 show the fl ow of energy into, and out of, individual process modules via the simulation’s in-ternal streams. Rows 43-54 evaluate the electric power consumed or generated by process mechanical equipment.

7. Material Balance – This section provides a check sum on the accuracy of the simulation material balance calculations. Rows 7-29 check the overall mole and mass balances for the simulation. The component “ID” refers to the identi-fi cation number of that component in the Design II component data base. Rows 31-113 check the node mole and mass balances at each simulation module and stream junction.

Page 28: Simulation Software ARMY

22

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Am

ine

Abs

orpt

ion/

Reg

ener

atio

n/C

ompr

essi

on S

tream

Sum

mar

y1

of 3

Stre

am N

umbe

r50

150

250

350

450

550

650

750

850

951

051

1

Stre

am N

ame

Lean

to 1

01-E

Strm

502

Ric

h So

lutio

nH

ot R

ich

Strm

505

Strm

506

Strm

507

Strm

508

Strm

509

Strm

510

Strip

per

Ovh

dTh

erm

o M

etho

d O

ptio

nG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

Vap

or F

ract

ion

0.00

0.00

0.00

0.00

0.00

0.04

0.00

0.04

1.00

1.00

1.00

Tem

pera

ture

F11

5.69

112.

0015

5.03

246.

3524

6.35

205.

7224

6.35

205.

7218

8.56

188.

5618

8.56

Pre

ssur

eps

ia43

9.70

439.

7039

3.47

384.

5838

4.58

30.4

138

4.58

30.4

130

.40

30.4

030

.40

Ent

halp

yB

tu/h

r-1

3672

2787

2.00

-137

3715

219.

00-1

3725

6430

0.00

-121

3702

228.

00-6

0685

1114

.00

-606

8508

62.0

0-6

0685

1114

.00

-606

8508

62.0

029

8016

0.36

2980

160.

3659

6032

0.71

Ent

ropy

Btu

/R/h

r0.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

00V

apor

Den

sity

lb/ft

32.

022.

020.

152.

020.

150.

160.

160.

16Li

quid

1 D

ensi

tylb

/ft3

62.7

862

.88

64.0

461

.26

61.2

661

.14

61.2

661

.14

Liqu

id 1

Spe

cific

Gra

vity

60F@

STP

0.98

0.98

0.99

0.98

0.99

Vap

or C

pB

tu/lb

mol

/R9.

619.

619.

179.

619.

179.

199.

199.

19V

apor

Cv

Btu

/lbm

ol/R

7.07

7.07

7.10

7.07

7.10

7.13

7.13

7.13

Liqu

id 1

Cp

Btu

/lbm

ol/R

24.5

924

.56

20.8

8V

apor

Vis

cosi

tycP

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

Liqu

id 1

Vis

cosi

tycP

2.21

2.34

1.38

0.69

0.69

0.86

0.69

0.86

Vap

or T

herm

al C

ondu

ctiv

ityB

tu/ft

/hr/F

0.02

0.02

0.01

0.02

0.01

0.01

0.01

0.01

Liqu

id 1

The

rmal

Con

duct

ivity

Btu

/ft/h

r/F0.

250.

250.

200.

200.

200.

230.

200.

23V

apor

Flo

wra

teM

MS

CF/

day@

STP

0.34

0.17

14.6

30.

1714

.63

20.3

220

.32

40.6

4Li

quid

1 F

low

rate

gal/m

in@

STP

Liqu

id 2

Flo

wra

tega

l/min

3908

.78

3908

.78

4242

.57

4239

.15

2119

.58

1993

.08

2119

.58

1993

.08

Mol

ecul

ar W

eigh

t27

.18

27.1

827

.88

27.8

827

.88

27.8

827

.88

27.8

836

.15

36.1

536

.15

Mol

ar F

low

rate

lbm

ol/h

r71

452.

5871

452.

5774

580.

5174

580.

5037

290.

2537

290.

2537

290.

2537

290.

2522

31.3

422

31.3

444

62.6

8M

ass

Flow

rate

lb19

4208

1.04

1942

080.

9620

7935

6.76

2079

356.

6710

3967

8.31

1039

678.

2710

3967

8.31

1039

678.

2780

667.

7080

667.

7016

1335

.41

N

ote:

All

liqui

d 1

phas

e ca

lcul

atio

ns e

xclu

de fr

ee

wat

er

Mol

ar F

low

rate

By

Com

pone

nt

49 :

CA

RB

ON

DIO

XID

Elb

mol

/hr

197.

7119

7.71

3305

.24

3305

.24

1652

.62

1652

.62

1652

.62

1652

.62

1550

.41

1550

.41

3100

.83

50

: H

YD

RO

GE

N S

ULF

IDE

lbm

ol/h

r0.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

00

62 :

WA

TER

lbm

ol/h

r64

520.

8064

520.

8064

525.

8064

525.

8032

262.

9032

262.

9032

262.

9032

262.

9067

1.87

671.

8713

43.7

3

47 :

OX

YG

EN

lbm

ol/h

r0.

000.

001.

141.

140.

570.

570.

570.

570.

570.

571.

14

46 :

NIT

RO

GE

Nlb

mol

/hr

0.00

0.00

14.3

814

.38

7.19

7.19

7.19

7.19

7.19

7.19

14.3

8

1219

: P

IPE

RA

ZIN

Elb

mol

/hr

952.

1295

2.12

951.

9895

1.98

475.

9947

5.99

475.

9947

5.99

1.29

1.29

2.58

70

51 :

MD

EA

lbm

ol/h

r57

81.9

557

81.9

557

81.9

457

81.9

428

90.9

728

90.9

728

90.9

728

90.9

70.

010.

010.

02

Tota

llb

mol

/hr

7145

2.60

7145

2.60

7458

0.50

7458

0.50

3729

0.30

3729

0.20

3729

0.30

3729

0.20

2231

.34

2231

.34

4462

.68

Mol

ar C

ompo

sitio

n B

y C

ompo

nent

49

: C

AR

BO

N D

IOX

IDE

mol

ar %

0.28

0.28

4.43

4.43

4.43

4.43

4.43

4.43

69.4

869

.48

69.4

8

50 :

HY

DR

OG

EN

SU

LFID

Em

olar

%0.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

00

62 :

WA

TER

mol

ar %

90.3

090

.30

86.5

286

.52

86.5

286

.52

86.5

286

.52

30.1

130

.11

30.1

1

47 :

OX

YG

EN

mol

ar %

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.03

0.03

46

: N

ITR

OG

EN

mol

ar %

0.00

0.00

0.02

0.02

0.02

0.02

0.02

0.02

0.32

0.32

0.32

12

19 :

PIP

ER

AZI

NE

mol

ar %

1.33

1.33

1.28

1.28

1.28

1.28

1.28

1.28

0.06

0.06

0.06

70

51 :

MD

EA

mol

ar %

8.09

8.09

7.75

7.75

7.75

7.75

7.75

7.75

0.00

0.00

0.00

To

tal

mol

ar %

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

00C

O2

RE

CO

VE

RE

D%

99.7

23

Page 29: Simulation Software ARMY

23

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Am

ine

Abs

orpt

ion/

Reg

ener

atio

n/C

ompr

essi

on S

tream

Sum

mar

y2

of 3

Stre

am N

umbe

r

Stre

am N

ame

Ther

mo

Met

hod

Opt

ion

Vap

or F

ract

ion

Tem

pera

ture

FP

ress

ure

psia

Ent

halp

yB

tu/h

rE

ntro

pyB

tu/R

/hr

Vap

or D

ensi

tylb

/ft3

Liqu

id 1

Den

sity

lb/ft

3Li

quid

1 S

peci

fic G

ravi

ty60

F@S

TPV

apor

Cp

Btu

/lbm

ol/R

Vap

or C

vB

tu/lb

mol

/RLi

quid

1 C

pB

tu/lb

mol

/RV

apor

Vis

cosi

tycP

Liqu

id 1

Vis

cosi

tycP

Vap

or T

herm

al C

ondu

ctiv

ityB

tu/ft

/hr/F

Liqu

id 1

The

rmal

Con

duct

ivity

Btu

/ft/h

r/FV

apor

Flo

wra

teM

MS

CF/

day@

STP

Liqu

id 1

Flo

wra

tega

l/min

@S

TPLi

quid

2 F

low

rate

gal/m

inM

olec

ular

Wei

ght

Mol

ar F

low

rate

lbm

ol/h

rM

ass

Flow

rate

lb

Not

e: A

ll liq

uid

1 ph

ase

calc

ulat

ions

exc

lude

free

w

ater

Mol

ar F

low

rate

By

Com

pone

nt

49 :

CA

RB

ON

DIO

XID

Elb

mol

/hr

50

: H

YD

RO

GE

N S

ULF

IDE

lbm

ol/h

r

62 :

WA

TER

lbm

ol/h

r

47 :

OX

YG

EN

lbm

ol/h

r

46 :

NIT

RO

GE

Nlb

mol

/hr

12

19 :

PIP

ER

AZI

NE

lbm

ol/h

r

7051

: M

DE

Alb

mol

/hr

To

tal

lbm

ol/h

r

Mol

ar C

ompo

sitio

n B

y C

ompo

nent

49

: C

AR

BO

N D

IOX

IDE

mol

ar %

50

: H

YD

RO

GE

N S

ULF

IDE

mol

ar %

62

: W

ATE

Rm

olar

%

47 :

OX

YG

EN

mol

ar %

46

: N

ITR

OG

EN

mol

ar %

12

19 :

PIP

ER

AZI

NE

mol

ar %

70

51 :

MD

EA

mol

ar %

To

tal

mol

ar %

CO

2 R

EC

OV

ER

ED

%

512

513

514

515

516

517

518

519

520

525

530

Strm

512

Strm

513

Hot

Lea

nSt

rm 5

15Le

an X

T 10

9CM

akeu

p H

2OSt

rm 5

18Le

an X

T 10

8CLe

an S

olut

ion

Flue

Gas

In10

1-E

Gas

O

utG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

CH

AN

GED

GLO

BA

LG

LOB

AL

GLO

BA

LG

LOB

AL

GLO

BA

L0.

000.

000.

000.

000.

000.

000.

000.

000.

001.

001.

0025

3.33

253.

3325

3.33

253.

3516

5.03

100.

0016

4.27

115.

0011

5.69

112.

0011

2.15

32.4

032

.40

32.4

044

.30

31.2

064

.70

31.2

019

.70

439.

7039

6.20

390.

20-5

4984

0358

.00

-549

8403

58.0

0-1

0996

8025

9.00

-109

9629

832.

00-1

2584

9139

9.00

-399

8858

.11

-128

3408

704.

00-1

3708

4319

8.00

-136

8361

287.

0096

7568

6.19

8526

760.

680.

000.

000.

000.

000.

00-6

370.

000.

000.

000.

000.

000.

002.

011.

8058

.85

58.8

558

.85

58.8

561

.44

62.0

061

.46

62.8

162

.79

7.70

7.27

5.38

5.04

26.2

126

.21

26.2

126

.21

25.1

517

.99

25.0

224

.60

24.5

80.

020.

020.

650.

650.

650.

651.

210.

681.

202.

232.

210.

010.

020.

260.

260.

260.

260.

250.

360.

260.

250.

2518

9.39

160.

91

1930

.29

1930

.29

3860

.59

3860

.59

3860

.59

7.94

3910

.92

3910

.92

3910

.92

27.3

527

.35

27.3

527

.35

27.3

518

.02

27.1

727

.17

27.1

730

.52

28.1

535

058.

9135

058.

9170

117.

8170

117.

7970

117.

7922

0.42

7151

5.03

7151

5.03

7151

5.03

2079

7.90

1766

9.97

9590

08.3

595

9008

.35

1918

016.

6319

1801

6.11

1918

016.

0339

70.9

919

4319

9.36

1943

199.

2819

4319

9.24

6347

10.3

149

7434

.37

102.

2110

2.21

204.

4120

4.43

204.

430.

0020

4.59

204.

5920

4.59

3109

.20

1.67

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3159

1.00

3159

1.00

6318

2.10

6318

2.00

6318

2.00

220.

4264

579.

1064

579.

1064

579.

1070

.00

64.9

80.

000.

000.

000.

000.

000.

000.

000.

000.

0076

6.90

765.

760.

000.

000.

000.

000.

000.

000.

000.

000.

0016

851.

8016

837.

4047

4.70

474.

7094

9.40

949.

4094

9.40

0.00

949.

4294

9.42

949.

420.

000.

1428

90.9

628

90.9

657

81.9

357

81.9

357

81.9

30.

0057

81.9

457

81.9

457

81.9

40.

000.

0135

058.

9035

058.

9070

117.

8070

117.

8070

117.

8022

0.42

7151

5.00

7151

5.00

7151

5.00

2079

7.90

1767

0.00

0.29

0.29

0.29

0.29

0.29

0.00

0.29

0.29

0.29

14.9

50.

010.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

0090

.11

90.1

190

.11

90.1

190

.11

100.

0090

.30

90.3

090

.30

0.34

0.37

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.69

4.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

81.0

395

.29

1.35

1.35

1.35

1.35

1.35

0.00

1.33

1.33

1.33

0.00

0.00

8.25

8.25

8.25

8.25

8.25

0.00

8.08

8.08

8.08

0.00

0.00

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

0010

0.00

100.

00

Page 30: Simulation Software ARMY

24

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Am

ine

Abs

orpt

ion/

Reg

ener

atio

n/C

ompr

essi

on S

tream

Sum

mar

y3

of 3

Stre

am N

umbe

r

Stre

am N

ame

Ther

mo

Met

hod

Opt

ion

Vap

or F

ract

ion

Tem

pera

ture

FP

ress

ure

psia

Ent

halp

yB

tu/h

rE

ntro

pyB

tu/R

/hr

Vap

or D

ensi

tylb

/ft3

Liqu

id 1

Den

sity

lb/ft

3Li

quid

1 S

peci

fic G

ravi

ty60

F@S

TPV

apor

Cp

Btu

/lbm

ol/R

Vap

or C

vB

tu/lb

mol

/RLi

quid

1 C

pB

tu/lb

mol

/RV

apor

Vis

cosi

tycP

Liqu

id 1

Vis

cosi

tycP

Vap

or T

herm

al C

ondu

ctiv

ityB

tu/ft

/hr/F

Liqu

id 1

The

rmal

Con

duct

ivity

Btu

/ft/h

r/FV

apor

Flo

wra

teM

MS

CF/

day@

STP

Liqu

id 1

Flo

wra

tega

l/min

@S

TPLi

quid

2 F

low

rate

gal/m

inM

olec

ular

Wei

ght

Mol

ar F

low

rate

lbm

ol/h

rM

ass

Flow

rate

lb

Not

e: A

ll liq

uid

1 ph

ase

calc

ulat

ions

exc

lude

free

w

ater

Mol

ar F

low

rate

By

Com

pone

nt

49 :

CA

RB

ON

DIO

XID

Elb

mol

/hr

50

: H

YD

RO

GE

N S

ULF

IDE

lbm

ol/h

r

62 :

WA

TER

lbm

ol/h

r

47 :

OX

YG

EN

lbm

ol/h

r

46 :

NIT

RO

GE

Nlb

mol

/hr

12

19 :

PIP

ER

AZI

NE

lbm

ol/h

r

7051

: M

DE

Alb

mol

/hr

To

tal

lbm

ol/h

r

Mol

ar C

ompo

sitio

n B

y C

ompo

nent

49

: C

AR

BO

N D

IOX

IDE

mol

ar %

50

: H

YD

RO

GE

N S

ULF

IDE

mol

ar %

62

: W

ATE

Rm

olar

%

47 :

OX

YG

EN

mol

ar %

46

: N

ITR

OG

EN

mol

ar %

12

19 :

PIP

ER

AZI

NE

mol

ar %

541

542

543

544

545

546

547

548

549

Strm

541

CO

2 pr

oduc

tSt

rm 5

43St

rm 5

44R

eflu

x C

ond

Strm

546

Strm

547

Strm

548

Com

pres

sed

CO

2G

LOB

AL

CH

AN

GED

CH

AN

GED

CH

AN

GED

CH

AN

GED

CH

AN

GED

CH

AN

GED

CH

AN

GED

CH

AN

GED

0.74

1.00

0.00

1.00

0.00

0.95

0.00

1.00

1.00

120.

0012

0.00

120.

0047

5.49

120.

2180

.00

80.0

080

.00

327.

5427

.40

27.4

027

.40

150.

0089

.70

150.

0015

0.00

150.

0015

00.0

0-1

7838

784.

5024

5790

4.37

-223

3055

0.50

1388

1118

.90

-209

1898

1.10

-236

7531

.18

-312

8330

.58

7607

99.4

058

8379

7.16

0.00

2151

.18

-328

52.9

364

11.1

40.

00-1

6868

.43

-464

5.95

-122

22.4

8-1

7436

.40

0.19

0.19

0.64

1.21

1.21

8.96

62.2

561

.73

61.7

462

.33

62.3

30.

991.

001.

001.

009.

149.

1510

.78

9.49

9.49

12.9

97.

087.

098.

676.

976.

978.

5517

.99

17.9

917

.99

17.9

90.

020.

020.

020.

020.

020.

020.

560.

560.

560.

860.

860.

010.

010.

020.

010.

010.

020.

370.

370.

370.

350.

3530

.24

29.9

229

.92

28.4

828

.48

28.4

842

.40

5.71

5.71

41.7

142

.40

36.1

542

.65

18.0

242

.65

18.0

242

.65

18.0

443

.89

43.8

944

62.6

932

85.8

611

76.8

232

85.8

611

76.8

232

85.8

615

8.12

3127

.74

3127

.74

1613

35.5

314

0127

.92

2120

7.56

1401

27.9

221

207.

5614

0127

.92

2852

.69

1372

75.3

113

7275

.31

3100

.83

0.16

0.16

3100

.67

0.10

3100

.58

0.00

0.00

0.00

0.00

0.00

0.00

1343

.73

1176

.63

1176

.63

167.

1015

8.00

9.09

1.14

0.00

0.00

1.14

0.00

1.14

14.3

80.

000.

0014

.38

0.00

14.3

82.

580.

020.

022.

560.

012.

540.

020.

010.

010.

010.

010.

0044

62.6

911

76.8

211

76.8

232

85.8

615

8.12

3127

.74

69.4

80.

010.

0194

.36

0.06

99.1

30.

000.

000.

000.

000.

000.

0030

.11

99.9

899

.98

5.09

99.9

30.

290.

030.

000.

000.

030.

000.

040.

320.

000.

000.

440.

000.

460.

060.

000.

000.

080.

010.

08

Page 31: Simulation Software ARMY

25

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Equi

pmen

t Num

ber

23

515

19Eq

uipm

ent N

ame

Trim

Coo

ler

109-

C10

8-C

110-

CA

/CB

X-19

Ove

rall

Hea

t Tra

ns. C

oef.

Btu

/hr/f

t2/F

5050

5050

50A

rea

Per

She

llft2

8277

.99

3776

7144

045.

991

03.1

810

0N

umbe

r Of S

hells

11

11

1S

hell

Pas

ses

Per

She

ll1

11

11

Tube

Pas

ses

Per

She

ll1

11

11

Coo

ling

Wat

eris

5192

00

6997

6019

0470

0D

elta

Pre

ssur

e S

hells

ide

psi

013

.111

.53

0D

elta

Pre

ssur

e Tu

besi

deps

i8.

9C

alcu

late

d D

uty

She

llsid

eB

tu/h

r-6

4873

46-1

5886

1600

-874

3449

0-2

3799

110

-162

4863

0S

peci

fied

Dut

y S

hells

ide

Ref

riger

ant N

umbe

rR

efrig

eran

t Pre

ssur

eR

efrig

eran

t Tem

pera

ture

Mea

n Te

mpe

ratu

re D

iffer

ence

Util

ity T

empe

ratu

re In

F90

9090

90U

tility

Tem

pera

ture

Out

F10

510

510

510

5Te

mpe

ratu

re O

ut S

pec.

F11

211

512

080

Tem

pera

ture

App

roac

h S

pec.

F10

Del

ta T

empe

ratu

re S

pec.

Cal

cula

ted

Are

aE

stim

ated

Are

aC

alcu

late

d M

TD (Q

/UA

)F

15.6

78.

413

39.7

52.2

9C

orre

cted

LM

TDF

15.6

78.

413

39.7

52.2

9LM

TD C

orre

ctio

n Fa

ctor

11

11

Hea

t Exc

hang

ers/

Con

dens

ers

Page 32: Simulation Software ARMY

26

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Equi

pmen

t Num

ber

1314

1617

18

Equi

pmen

t Nam

eLe

an S

oln

Pum

pP-

14P-

16C

-17

C-1

8D

river

Typ

eE

LEC

TRIC

ELE

CTR

ICE

LEC

TRIC

ELE

CTR

ICE

LEC

TRIC

Cal

cula

tion

Type

PU

MP

PU

MP

PU

MP

PO

LYTR

OP

PO

LYTR

OP

Sta

ges

1.00

1.00

1.00

1.00

2.00

Wor

k C

apac

ityH

P10

0000

0.00

1000

000.

0010

0000

0.00

1000

000.

0010

0000

0.00

Cal

cula

ted

Out

let P

ress

ure

psia

439.

7044

.30

89.7

015

0.00

1500

.00

Spe

cifie

d O

utle

t Pre

ssur

eps

ia43

9.70

44.3

089

.70

150.

0015

00.0

0S

peci

fied

Pol

y C

oefic

ient

Cal

cula

ted

Pol

y C

oefic

ient

0.29

0.49

Pol

ytro

pic

Hea

dft-

lbf/l

bm45

673.

5947

682.

61In

ters

tage

Tem

pera

ture

Out

F10

5.00

Effi

cien

cy (o

f cal

c ty

pe)

0.79

1.00

0.50

0.72

0.72

Wat

er F

low

gal/h

r0.

0052

322.

96Fu

el F

low

Ele

ctric

al U

sage

kW88

7.90

21.0

22.

3233

44.7

234

20.7

5R

eal W

ork

HP

-119

1.79

-28.

21-3

.11

-448

9.44

-459

1.50

Isen

tropi

c H

ead

ft-lb

f/lbm

4251

9.86

4513

7.32

Isen

tropi

c E

ffici

ency

0.67

0.68

Inle

t Tem

pera

ture

F11

5.00

253.

3412

0.00

120.

0080

.00

Inle

t Pre

ssur

eps

ia19

.70

32.4

027

.40

27.4

015

0.00

Inle

t Vol

umet

ric F

low

rate

ft3/m

in51

5.64

543.

175.

7312

323.

5318

97.2

0M

olar

Flo

wra

telb

/hr

1943

197.

0019

1801

8.00

2120

7.57

1401

27.9

013

7275

.20

Mas

s Fl

owra

telb

/hr

1943

197.

0019

1801

8.00

2120

7.57

1401

27.9

013

7275

.20

Dis

char

ge T

empe

ratu

reF

115.

6925

3.35

120.

2147

5.49

327.

54D

isch

arge

Vol

umet

ric F

low

rate

ft3/m

in51

5.79

543.

175.

7236

34.5

525

5.28

Cal

cula

ted

Cp/

Cv

Rat

io1.

261.

62

Pum

ps/C

ompr

esso

rs/E

xpan

ders

Page 33: Simulation Software ARMY

27

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Vapor Liquid Liquid Liquid Vapor Vapor CommentsTray Temperature Temperature Rate Rate Rate Rate

F F lbmol/hr lb/hr lbmol/hr lb/hr1 112.15 112.12 71471 1942600 17670 497429 Feed2 112.17 112.12 71471 1942600 17689 497959

Column Profiles

2 112.17 112.12 71471 1942600 17689 4979593 112.21 112.13 71472 1942600 17689 4979664 112.28 112.14 71472 1942600 17689 4979785 112.37 112.16 71473 1942600 17690 4980006 112.53 112.19 71474 1942700 17690 4980397 112.76 112.25 71477 1942800 17692 4981078 113.11 112.34 71482 1943000 17694 4982279 113.63 112.5 71490 1943300 17699 49843710 114.42 112.75 71504 1943900 17707 49880711 115.56 113.17 71528 1945000 17721 49945812 117.2 113.87 71571 1946800 17746 50059913 119.49 115.01 71646 1950000 17788 50259414 122.56 116.89 71774 1955400 17863 50605415 126 42 119 91 71988 1964500 17991 51195715 126.42 119.91 71988 1964500 17991 51195716 130.84 124.56 72324 1978800 18205 52169017 135.06 131.17 72806 1999300 18541 53677218 137.65 139.48 73413 2025200 19023 55797619 136.47 148.31 74066 2053500 19631 58435320 128.84 155.03 74581 2079300 20283 608893 Feed

Liquid Vapor Liquid Vapor SurfaceTray Enthalpy Enthalpy Molecular Molecular Tension Pressure

Btu/lbmole Btu/lbmole Weight Weight dyne/cm psia1 -19220 482.6 27.18 28.151 55.2 390.22 -19220 482.7 27.18 28.151 55.2 390.37

Column Properties

2 19220 482.7 27.18 28.151 55.2 390.373 -19220 483 27.18 28.151 55.2 390.544 -19220 483.4 27.18 28.152 55.2 390.725 -19219 484.1 27.18 28.152 55.2 390.896 -19218 485.1 27.18 28.153 55.2 391.067 -19217 486.8 27.181 28.155 55.19 391.238 -19215 489.3 27.182 28.157 55.19 391.419 19211 493 1 27 184 28 162 55 17 391 589 -19211 493.1 27.184 28.162 55.17 391.5810 -19205 498.7 27.187 28.17 55.15 391.7511 -19196 506.9 27.192 28.185 55.11 391.9312 -19180 518.7 27.201 28.21 55.06 392.113 -19154 535.1 27.217 28.254 54.96 392.2714 -19112 557.1 27.245 28.329 54.79 392.4415 -19045 584 8 27 29 28 456 54 53 392 6215 -19045 584.8 27.29 28.456 54.53 392.6216 -18946 616.5 27.361 28.656 54.13 392.7917 -18812 646.7 27.461 28.95 53.56 392.9618 -18653 664.8 27.586 29.331 52.83 393.1319 -18499 654.4 27.725 29.767 52.06 393.320 -18404 594.9 27.88 30.019 51.44 393.47

Page 34: Simulation Software ARMY

28

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Liquid VaporLiquid Vapor Liquid Vapor Specific Specific

Tray Density Density Viscosity Viscosity Gravity Gravitylb/ft3 lb/ft3 cP cP t,p/60F air=1

1 62.77 1.801 2.331 0.018863 1.0064 0.9781

Column Properties (Continued)

1 62.77 1.801 2.331 0.018863 1.0064 0.97812 62.77 1.802 2.331 0.018864 1.0064 0.97813 62.77 1.803 2.331 0.018865 1.0064 0.97814 62.77 1.803 2.33 0.018866 1.0064 0.9785 62.77 1.804 2.329 0.018869 1.0064 0.97786 62.77 1.804 2.328 0.018873 1.0064 0.97777 62.77 1.804 2.326 0.018878 1.0064 0.97748 62 76 1 804 2 323 0 018887 1 0064 0 9778 62.76 1.804 2.323 0.018887 1.0064 0.9779 62.76 1.804 2.318 0.0189 1.0063 0.976510 62.76 1.802 2.309 0.018919 1.0063 0.975911 62.75 1.8 2.295 0.018947 1.0062 0.975112 62.74 1.798 2.272 0.018987 1.006 0.974313 62.73 1.794 2.235 0.019042 1.0058 0.973914 62 71 1 79 2 176 0 019115 1 0055 0 974614 62.71 1.79 2.176 0.019115 1.0055 0.974615 62.68 1.787 2.087 0.019204 1.005 0.977816 62.63 1.788 1.96 0.019301 1.0042 0.985717 62.55 1.796 1.8 0.019385 1.003 1.000918 62.46 1.816 1.628 0.019418 1.0015 1.025519 62.36 1.852 1.474 0.019348 0.9999 1.060620 62.32 1.897 1.379 0.019131 0.9992 1.09790 6 3 89 3 9 0 0 9 3 0 999 09 9

Weir WeirTray Diameter % Flood Passes Height Length Spacing Actual Area % Open

ft in ft 2 or or Type1 13.358 80 2 4 21.669 2.833 107.207 10.02 13.361 80 2 4 21.675 2.833 107.258 10.0

Tray Internal Data

2 13.361 80 2 4 21.675 2.833 107.258 10.03 13.361 80 2 4 21.674 2.833 107.253 10.04 13.36 80 2 4 21.674 2.833 107.249 10.05 13.36 80 2 4 21.674 2.833 107.249 10.06 13.361 80 2 4 21.674 2.833 107.254 10.07 13.362 80 2 4 21.675 2.833 107.268 10.08 13.363 80 2 4 21.678 2.833 107.296 10.09 13 367 80 2 4 21 684 2 833 107 349 10 09 13.367 80 2 4 21.684 2.833 107.349 10.010 13.372 80 2 4 21.693 2.833 107.442 10.011 13.382 80 2 4 21.709 2.833 107.603 10.012 13.399 80 2 4 21.737 2.833 107.876 10.013 13.428 80 2 4 21.783 2.833 108.336 10.014 13.475 80 2 4 21.86 2.833 109.1 10.015 13 552 80 2 4 21 984 2 833 110 348 10 015 13.552 80 2 4 21.984 2.833 110.348 10.016 13.672 80 2 4 22.179 2.833 112.309 10.017 13.846 80 2 4 22.461 2.833 115.183 10.018 14.072 80 2 4 22.827 2.833 118.969 10.019 14.325 80 2 4 23.239 2.833 123.299 10.020 14.541 80 2 4 23.589 2.833 127.04 10.0

Note: % Open Reported For Sieve Trays Onlyote % Ope epo ted o S e e ays O y

Page 35: Simulation Software ARMY

29

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Amine AbsorberOverhead Product Rate Guess lbmol/hr 0Bottom Product Rate Guess lbmol/hr 0Top Tray Pressure psia 390.2Number of Actual Trays 20

Amine Column 1 (CO2 Absorber)

Number of Actual Trays 20Foaming Factor 0.8Convergence Tolerance 0.00001Maximum Iterations 500

Component lbmol/hr mol percent lb/hrCarbon dioxide 1.6678 0.00943835 73.396Hydrogen sulfide 0 0 0Water 64.979 0.36774 1170.6Oxygen 765.76 4.3337 24503

Distillate Vapor Product

Oxygen 765.76 4.3337 24503Nitrogen 16837 95.288 471673Piperazine 0.14325 0.000810691 12.339MDEA 0.00559091 3.16407E-05 0.66623Total 17670 100 497434

Temperature F 112.15P i 390 2Pressure psia 390.2Enthalpy Btu/hr 8526760Molecular Weight 28.151

Component lbmol/hr mol percent lb/hrCarbon dioxide 3305.2 4.4318 145460Hydrogen sulfide 0 0 0Water 64526 86.518 1162450Oxygen 1.1429 0.00153241 36.571

Bottom Product

Oxygen 1.1429 0.00153241 36.571Nitrogen 14.383 0.0192854 402.92Piperazine 951.98 1.2764 82000MDEA 5781.9 7.7526 689000Total 74581 100 2079350

Temperature F 155.03P i 393 47Pressure psia 393.47Enthalpy Btu/hr -1372560000Molecular Weight 27.88

Page 36: Simulation Software ARMY

30

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Vapor Liquid Liquid Liquid Vapor VaporTray Temperature Temperature Rate Rate Rate Rate Comments

F F lbmol/hr lb/hr lbmol/hr lb/hrCondenser 188.56 188.56 306.2 5701.4 2231 80669

1 205 59 205 55 35974 990310 919 4 31457 F d

Column Profiles

1 205.59 205.55 35974 990310 919.4 31457 Feed2 205.65 205.5 35972 990280 916.5 314043 205.77 205.47 35970 990250 914 313644 205.97 205.45 35968 990240 912 313375 206.29 205.43 35967 990230 910.4 313206 206.82 205.43 35966 990240 909.1 313137 207.65 205.45 35966 990260 908.3 313148 208.93 205.48 35966 990300 908 313259 210.78 205.56 35969 990370 908.5 31343

10 213.56 205.75 35976 990530 910.7 3136511 217.69 206.29 36000 990980 918.2 3138712 223.68 207.85 36075 992330 942 3143812 223.68 207.85 36075 992330 942 3143813 231.58 212.28 36296 996240 1017 3185814 240.27 222.28 36819 1005400 1238 3459915 246.98 235.85 37572 1018000 1759 4343316 250.77 245.68 38173 1027300 2513 5680017 252.57 250.62 38511 1031800 3113 68222

Reboiler 253 33 253 33 35059 958990 3455 72898Reboiler 253.33 253.33 35059 958990 3455 72898

Liquid Vapor Liquid Vapor SurfaceTray Enthalpy Enthalpy Molecular Molecular Tension Pressure

Btu/lbmole Btu/lbmole Weight Weight dyne/cm psiaCondenser -16538 1336 18.619 36.153 57.44 30.4

1 17076 1481 27 528 34 214 47 51 30

Column Properties

1 -17076 1481 27.528 34.214 47.51 302 -17078 1481 27.529 34.266 47.52 30.1383 -17079 1483 27.53 34.314 47.52 30.2754 -17080 1485 27.531 34.361 47.52 30.4125 -17080 1488 27.532 34.404 47.52 30.556 -17080 1493 27.533 34.444 47.52 30.6877 -17080 1501 27.533 34.477 47.52 30.8258 -17079 1513 27.534 34.5 47.52 30.9529 -17077 1530 27.534 34.501 47.51 31.08

10 -17072 1555 27.533 34.439 47.49 31.20711 -17059 1592 27.527 34.183 47.45 31.33412 -17018 1644 27.507 33.373 47.34 31.46212 17018 1644 27.507 33.373 47.34 31.46213 -16903 1706 27.447 31.323 47.02 31.58914 -16639 1760 27.306 27.939 46.28 31.71515 -16269 1785 27.095 24.688 45.28 31.84116 -15986 1791 26.912 22.602 44.56 31.96817 -15828 1792 26.794 21.915 44.18 32.096

Reboiler 15683 1797 27 354 21 101 43 58 32 4Reboiler -15683 1797 27.354 21.101 43.58 32.4

Page 37: Simulation Software ARMY

31

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Liquid VaporLiquid Vapor Liquid Vapor Specific Specific

Tray Density Density Viscosity Viscosity Gravity Gravitylb/ft3 lb/ft3 cP cP t,p/60F air=1

1 60 43 0 1452 0 8599 0 017575 0 969 1 1932

Column Properties (Continued)

1 60.43 0.1452 0.8599 0.017575 0.969 1.19322 60.43 0.1461 0.8603 0.017582 0.969 1.19483 60.44 0.1469 0.8605 0.017591 0.969 1.19634 60.44 0.1478 0.8607 0.017601 0.9691 1.19755 60.44 0.1485 0.8608 0.017614 0.9691 1.19846 60.44 0.1493 0.8609 0.017632 0.9691 1.19887 60.44 0.1499 0.8608 0.017657 0.9691 1.19858 60.44 0.1503 0.8606 0.017692 0.9691 1.1979 60.43 0.1505 0.86 0.017739 0.969 1.1938

10 60.43 0.1502 0.8587 0.017803 0.9689 1.18711 60.41 0.1488 0.8549 0.017879 0.9687 1.171912 60.36 0.1446 0.8441 0.017934 0.9679 1.13712 60.36 0.1446 0.8441 0.017934 0.9679 1.13713 60.22 0.1348 0.8152 0.017858 0.9656 1.062514 59.9 0.1193 0.756 0.01744 0.9604 0.95115 59.45 0.105 0.6884 0.016645 0.9532 0.850116 59.09 0.096134 0.6459 0.015848 0.9475 0.78617 58.89 0.093393 0.6251 0.015526 0.9442 0.7659

Reboiler 58 75 0 09074 0 6505 0 015063 0 942 0 74Reboiler 58.75 0.09074 0.6505 0.015063 0.942 0.74

Page 38: Simulation Software ARMY

32

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Wei

rW

eir

Act

ual

% O

pen

Tra y

Dia

met

er%

Flo

odPa

sses

Hei

ght

Leng

thSp

acin

gA

rea

or T

ype

ftin

ft2

o r1

8.10

675

21.

513

.149

2.25

39.4

765.

02

809

875

21

513

136

225

3939

75

0

Tray

Inte

rnal

Dat

a

28.

098

752

1.5

13.1

362.

2539

.397

5.0

38.

091

752

1.5

13.1

252.

2539

.328

5.0

48.

084

752

1.5

13.1

152.

2539

.268

5.0

58.

079

752

1.5

13.1

062.

2539

.218

5.0

68.

075

752

1.5

13.0

992.

2539

.177

5.0

78.

072

752

1.5

13.0

942.

2539

.146

5.0

87.

581

752

1.5

12.2

982.

2534

.53

7.0

97.

581

752

1.5

12.2

992.

2534

.534

7.0

107.

585

752

1.5

12.3

052.

2534

.569

7.0

117.

597

752

1.5

12.3

242.

2534

.675

7.0

127.

631

752

1.5

12.3

792.

2534

.985

7.0

1 37.

734

752

1.5

12.5

472.

2535

.942

7.0

137.

734

752

1.5

12.5

472.

2535

.942

7.0

148.

045

752

1.5

13.0

512.

2538

.889

7.0

158.

726

752

1.5

14.1

562.

2545

.75

7.0

169.

583

752

1.5

15.5

452.

2555

.174

7.0

1710

.218

752

1.5

16.5

762.

2562

.736

7.0

Not

e: %

Ope

n R

epor

ted

For S

ieve

Tra

ys O

nly

Page 39: Simulation Software ARMY

33

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Vapor Product lbmol/hr 2231.3Reflux Liquid lbmol/hr 306.22Temperature (V,L) 188.6Pressure psia 30.4

Partial Condenser

Liquid Vapor Liquid Vapor K-ValueComponent mole frac. mole frac. mass frac. mass frac.Carbon dioxide 0.0003105 0.6948 0.0007339 0.8458 2238Hydrogen sulfide 0 0 0 0 0Water 0.9917 0.3011 0.9595 0.15 0.3036Oxygen 7.943E-09 0.0002561 1.365E-08 0.0002267 32240Nitrogen 5.955E-08 0.003223 8.96E-08 0.002497 54120Piperazine 0.006535 0.0005779 0.03023 0.001377 0.08843MDEA 0.001487 0.000004048 0.009517 0.00001334 0.002722Total 1 1 1 1

Amine RegeneratorReboiler Duty Spec Btu/hr 66000000Overhead Product Rate Gues lbmol/hr 0Bottom Product Rate Guess lbmol/hr 0T T P i 30

Amine Column 4 (102-EA)

Top Tray Pressure psia 30Condenser Pressure psia 30.4Number of Actual Trays 17Foaming Factor 0.8Convergence Tolerance 0.01Maximum Iterations 500

Temperature F 188.56Pressure psia 30.4Enthalpy Btu/hr 2980160Molecular Weight 36.152

Distillate Vapor Product

Component lbmol/hr mol percent lb/hrCarbon dioxide 1550.4 69.483 68232Hydrogen sulfide 0 0 0Water 671.87 30.11 12104Oxygen 0.57144 0.0256097 18.285ygNitrogen 7.1916 0.3223 201.46Piperazine 1.2895 0.0577915 111.08MDEA 0.00903178 0.000404769 1.0763Total 2231.3 100 80668

Page 40: Simulation Software ARMY

34

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Temperature F 253.33Pressure psia 32.4Enthalpy Btu/hr -549840000Molecular Weight 27.354

Bottom Product

Component lbmol/hr mol percent lb/hrCarbon dioxide 102.21 0.29153 4498Hydrogen sulfide 0 0 0Water 31591 90.108 569123Oxygen 0 0 0ygNitrogen 0 0 0Piperazine 474.7 1.354 40889MDEA 2891 8.246 344499Total 35059 100 959009

Reflux Ratio 0.13724Condenser Duty Btu/hr -5834750Reboiler Duty Btu/hr 66000000

Column Parameters

Page 41: Simulation Software ARMY

35

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Feed(s) Product(s) DifferenceFlowsheet Node Btu/hr Btu/hr Btu/hrStream 501 (Lean to 101-) -1367227900 0 1367227900Stream 517 (Makeup H2O) -3998858 0 3998858Stream 520 (Lean Solutio) 0 -1368361300 -1368361300Stream 525 (Flue Gas In ) 9675686 0 -9675686Stream 530 (101-E Gas Ou) 0 8526761 8526761Stream 547 (Strm 547) 0 -3128331 -3128331Stream 549 (Compressed C) 0 5883797 5883797Total Streams -1361551000 -1357079100 4471984

Amcl 1 (CO2 Absorber) -1364039500 -1364037500 1992.785Heaexc 2 (Trim Cooler ) -1367227900 -1373715200 -6487346Heaexc 3 (109-C) -2472194100 -2472193600 505.1721Amcl 4 (102-EA) -606850860 -546860200 59990664Heaexc 5 (108-C) -1283408700 -1370843200 -87434494Val 6 (Rich Valve) -606851110 -606850860 252.5833Mix 7 (M-7) -1283409200 -1283408700 534.1818Amcl 8 (102-EB) -606850860 -546860200 59990664Div 9 (D-9) -1213702200 -1213702200 0Val 10 (Rich Valve) -606851110 -606850860 252.5833Mix 11 (M-11) 5960321 5960321 5.3593E-05Mix 12 (M-12) -1099680700 -1099680300 457.7091Pum 13 (Lean Soln Pu) -1370843200 -1368361300 2481911Pum 14 (P-14) -1099680300 -1099629800 50427.06Heaexc 15 (110-CA/CB) 5960321 -17838785 -23799105Pum 16 (P-16) -22330551 -20918981 1411569Compre 17 (C-17) 2457904 13881119 11423215Compre 18 (C-18) 760799.4 5883797 5122998Heaexc 19 (X-19) 13881119 -2367531 -16248650Fla 20 (F-20) -2367531 -2367531 -9.31323E-10Fla 21 (103-F) -17838785 -19872646 -2033862Total Equipments -14995106000 -14990634000 4471984

Enthalpy Difference Between Streams and Equipments 7.15256E-07

Used Product(s) DifferenceFlowsheet Node kW kW kWPum 13 (Lean Soln Pu) 887.9039 0 -887.9039Pum 14 (P-14) 21.01731 0 -21.01731Pum 16 (P-16) 2.319599 0 -2.319599Compre 17 (C-17) 3344.717 0 -3344.717Compre 18 (C-18) 3420.754 0 -3420.754Total Equipments 7676.712 0 -7676.712

Energy Balance

Power Balance

Page 42: Simulation Software ARMY

36

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Feed(s) Product(s) DifferenceFlowsheet Node lbmol/hr lbmol/hr lbmol/hrStream 501 (Lean to 101-) 71452.58 0 -71452.58Stream 517 (Makeup H2O) 220.4233 0 -220.4233Stream 520 (Lean Solution) 0 71515.03 71515.03

Material Balance by Node (Mole)

( )Stream 525 (Flue Gas In) 20797.9 0 -20797.9Stream 530 (101-E Gas Out 0 17669.97 17669.97Stream 547 (Strm 547) 0 158.1216 158.1216Stream 549 (Compressed C 0 3127.741 3127.741Total Streams 92470.9 92470.86 -0.03846321

Amcl 1 (CO Absorber) 92250 47 92250 48 0 002540075Amcl 1 (CO2 Absorber) 92250.47 92250.48 0.002540075Heaexc 2 (Trim Cooler) 71452.58 71452.57 -0.002972713Heaexc 3 (109-C) 144698.3 144698.3 -0.006020028Amcl 4 (102-EA) 37290.25 37290.25 -0.000775712Heaexc 5 (108-C) 71515.03 71515.03 -0.002975312Val 6 (Rich Valve) 37290.25 37290.25 -0.001551424Mix 7 (M-7) 71515.04 71515.03 -0.002975312Mix 7 (M 7) 71515.04 71515.03 0.002975312Amcl 8 (102-EB) 37290.25 37290.25 -0.000775712Div 9 (D-9) 74580.5 74580.5 -0.001551424Val 10 (Rich Valve) 37290.25 37290.25 -0.001551424Mix 11 (M-11) 4462.684 4462.684 2.36469E-11Mix 12 (M-12) 70117.81 70117.81 -0.002917182Pum 13 (Lean Soln Pu) 71515.03 71515.03 -0.001487656P 14 (P 14) 70117 81 70117 79 0 018962668Pum 14 (P-14) 70117.81 70117.79 -0.018962668Heaexc 15 (110-CA/CB) 4462.684 4462.688 0.003513279Pum 16 (P-16) 1176.825 1176.825 0Compre 17 (C-17) 3285.863 3285.863 0Compre 18 (C-18) 3127.741 3127.741 0Heaexc 19 (X-19) 3285.863 3285.863 -4.54747E-13Fla 20 (F-20) 3285.863 3285.863 0Fla 20 (F 20) 3285.863 3285.863 0Fla 21 (103-F) 4462.688 4462.688 0Total Equipments 914473.8 914473.8 -0.03846321

Flowrate Difference Between Streams and Equipments 1.74623E-10

Page 43: Simulation Software ARMY

37

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Feed(s) Product(s) DifferenceFlowsheet Node lb/hr lb/hr lb/hrStream 501 (Lean to 101-) 1942078 0 -1942078Stream 517 (Makeup H2O) 3971 0 -3971Stream 520 (Lean Solution) 0 1943197 1943197

Material Balance by Node (Mass)

Stream 520 (Lean Solution) 0 1943197 1943197Stream 525 (Flue Gas In) 634709.3 0 -634709.3Stream 530 (101-E Gas Out 0 497433.6 497433.6Stream 547 (Strm 547) 0 2852.68 2852.68Stream 549 (Compressed C 0 137275.2 137275.2Total Streams 2580759 2580758 -0.3109244

A l 1 (CO Ab b ) 2576788 2576787 0 053602334Amcl 1 (CO2 Absorber) 2576788 2576787 -0.053602334Heaexc 2 (Trim Cooler) 1942078 1942078 -0.040399111Heaexc 3 (109-C) 3997372 3997372 -0.1264002Amcl 4 (102-EA) 1039677 1039677 -0.021627357Heaexc 5 (108-C) 1943197 1943197 -0.04042238Val 6 (Rich Valve) 1039677 1039677 -0.043039951Mix 7 (M-7) 1943197 1943197 -0 040422381Mix 7 (M-7) 1943197 1943197 -0.040422381Amcl 8 (102-EB) 1039677 1039677 -0.021627357Div 9 (D-9) 2079354 2079354 -0.043254717Val 10 (Rich Valve) 1039677 1039677 -0.043039951Mix 11 (M-11) 161335.3 161335.3 1.94996E-09Mix 12 (M-12) 1918018 1918018 -0.039898616Pum 13 (Lean Soln Pu) 1943197 1943197 -0.040422379Pum 14 (P-14) 1918018 1918018 0.094505773Heaexc 15 (110-CA/CB) 161335.3 161335.5 0.1487266Pum 16 (P-16) 21207.57 21207.57 0Compre 17 (C-17) 140127.9 140127.9 0Compre 18 (C-18) 137275.2 137275.2 0Heaexc 19 (X-19) 140127.9 140127.9 -2.91038E-11Fla 20 (F-20) 140127 9 140127 9 -5 82077E-11Fla 20 (F-20) 140127.9 140127.9 -5.82077E-11Fla 21 (103-F) 161335.5 161335.5 0Total Equipments 25482799 25482798 -0.3109244

Flowrate Difference Between Streams and Equipments 3.25963E-09

Page 44: Simulation Software ARMY

38

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Feed(s) Product(s) DifferenceID Component Name lbmol/hr lbmol/hr lbmol/hr Relative Error49 Carbon dioxide 3306.91 3306.933 -0.022701985 -6.86501E-0650 Hydrogen sulfide 0 0 0 062 Water 64811.22 64811.17 0.05678339 8.76135E-07

Material Balance Summary (Mole)

47 Oxygen 766.9 766.9 1.48499E-05 1.93636E-0846 Nitrogen 16851.8 16851.8 0.000336638 1.99764E-08

1219 Piperazine 952.12 952.1191 0.000878485 9.22662E-077051 MDEA 5781.95 5781.948 0.001690643 2.924E-07Total 92470.9 92470.87 0.037002021 4.00148E-07

Feed(s) Product(s) DifferenceID Component Name lb/hr lb/hr lb/hr Relative Error49 Carbon dioxide 145533.1 145534.1 -0.9990871 -6.86501E-0650 Hydrogen sulfide 0 0 0 062 Water 1167596 1167595 1.022972 8.76135E-07

Material Balance Summary (Mass)

62 Water 1167596 1167595 1.022972 8.76135E 0747 Oxygen 24539.88 24539.88 0.00047518 1.93636E-0846 Nitrogen 472076.2 472076.2 0.009430378 1.99764E-08

1219 Piperazine 82012.76 82012.68 0.075670098 9.22662E-077051 MDEA 689000.3 689000.1 0.2014637 2.924E-07Total 2580759 2580758 0.3109244 1.20478E-07

Page 45: Simulation Software ARMY

39

TECHNIKON REPORT # 1602-211 NAMARCH 2010

APPENDIX C DESIGN II - CRM/FTS SIMULATION OUTPUT

Page 46: Simulation Software ARMY

40

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 47: Simulation Software ARMY

41

TECHNIKON REPORT # 1603-211 NAMARCH 2010

The information in Appendix C is an abridged version of the general simulation output for the CRM/FTS conversion process. The output is tabulated in four sections:

1. Stream Summary – Rows 1-4 contain the identifying fl ags for each process stream in the simulation. The numbers correspond to the numbered streams as they appear in the process diagram (Figure 2-2 CRM/FTS Process Diagram). Rows 6-28 evaluate the physical and thermal properties of each stream and rows 30-66 defi ne the composition and fl ow rate of each stream.

2. Heat Exchanger Summary – Rows 1-4 contain the identifying fl ags for each heat transfer unit in the simulation. Rows 6-29 evaluate the mechanical and thermal properties used to model each heat exchanger in the simulation.

3. Pump Summary – Rows 1-4 contain the identifying fl ags for each pump, ex-pander and compressor in the simulation. Rows 6-30 evaluate the mechanical and thermodynamic properties for each unit in the simulation.

4. Energy & Power Balance – Rows 1-14 show the energy fl owing into, and out of, the simulated process through external streams. Rows 16-39 show the fl ow of energy into, and out of, individual process modules via the simulation’s in-ternal streams. Rows 43-54 evaluate the electric power consumed or generated by process mechanical equipment.

The check sum results (sections 6 & 7) for the CRM/FTS process were similar to those for the Amine Absorption process in Appendix B and are not shown.

Page 48: Simulation Software ARMY

42

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Summary 1 of 5

Stream Number 600 601 602 603 605 606Stream Name CO2 from absor Strm 501 Strm 541 To Lean AmineCRM Methane Strm 1Thermo Method Option Global Global Global Changed Global GlobalVapor Fraction 1 1 0.6980425 0 1 1Temperature F 189.378 416.79785 50 50 60 224.37541Pressure psia 30.40007 85 82 82 445 445Enthalpy Btu/hr 5982720.69 15495675.7 -25432056.9 -27389196.8 -55976.7727 46957049.2Entropy Btu/R/hr 9884.344 13393.39 -50926.43 -41018.27 -19951.73 -57815.68Vapor Density lb/ft3 0.1590443 0.329733 0.6797945 1.36244 2.09706Liquid 1 Density lb/ft3 64.56032 64.46029Liquid 1 Specific Gravity 60F@STP 0.9939012 0.9997948Vapor Cp Btu/lbmol/R 9.15856 10.00139 9.08249 9.30411 9.58061Vapor Cv Btu/lbmol/R 7.10826 7.93058 6.83962 6.61984 7.18026Liquid 1 Cp Btu/lbmol/R 18.01178Vapor Viscosity cP 0.0143995 0.020231 0.0141923 0.0115246 0.0200904Liquid 1 Viscosity cP 1.30724 1.30724Vapor Thermal Conductivity Btu/ft/hr/F 0.0155951 0.0241646 0.0105899 0.0215669 0.0199468Liquid 1 Thermal Conductivity Btu/ft/hr/F 0.3352782 0.3352782Vapor Flowrate MMSCF/day@STP 40.63006 40.63006 28.36137 27.31878 293.47397Liquid 1 Flowrate gal/min@STP 48.35174Liquid 2 Flowrate gal/min 49.45431Molecular Weight 36.1346 36.1346 36.1346 18.0279 16.043 33.4508Molar Flowrate lbmol/hr 4461.7727 4461.7727 4461.7524 1341.3705 3000 32227.7217Mass Flowrate lb 161224.3718 161224.3718 161223.6383 24182.09324 48129 1078043.073Note: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 2 : Methane lbmol/hr 0 0 0 0 3000 3204.09 49 : Carbon dioxide lbmol/hr 3098.28 3098.28 3098.26 0.406311 0 11674.5 48 : Carbon monoxide lbmol/hr 0 0 0 0 0 15338.5 1 : Hydrogen lbmol/hr 0 0 0 0 0 0.172499 46 : Nitrogen lbmol/hr 14.1484 14.1484 14.1483 0.000001293 0 135.844 47 : Oxygen lbmol/hr 1.10557 1.10557 1.10556 0.000003024 0 10.5963 62 : Water lbmol/hr 1346.01 1346.01 1346.01 1340.88 0 956.035 6 : n-Butane lbmol/hr 0 0 0 0 0 783.433 13 : n-Nonane lbmol/hr 0 0 0 0 0 116.36 17 : n-Tridecane lbmol/hr 0 0 0 0 0 6.7187 21 : n-Heptadecane lbmol/hr 0 0 0 0 0 0.193477 3202 : n-Tricosane lbmol/hr 0 0 0 0 0 0 3215 : n-Hexatriacontan lbmol/hr 0 0 0 0 0 0 50 : Hydrogen sulfide lbmol/hr 0 0 0 0 0 0 1219 : Piperazine lbmol/hr 2.21528 2.21528 2.21528 0.072542 0 1.26512 7051 : MDEA lbmol/hr 0.013402 0.013402 0.013402 0.013098 0 0.000000153 Total lbmol/hr 4461.77 4461.77 4461.75 1341.37 3000 32227.7Molar Composition By Component 2 : Methane molar % 0 0 0 0 100 9.94203744 49 : Carbon dioxide molar % 69.44060317 69.44060317 69.44046618 0.030290748 0 36.22504864 48 : Carbon monoxide molar % 0 0 0 0 0 47.59415037 1 : Hydrogen molar % 0 0 0 0 0 0.000535251 46 : Nitrogen molar % 0.317102854 0.317102854 0.317102034 9.6394E-08 0 0.42151317 47 : Oxygen molar % 0.024778731 0.024778731 0.024778618 2.25441E-07 0 0.032879479 62 : Water molar % 30.16762406 30.16762406 30.16775929 99.96347018 0 2.966500867 6 : n-Butane molar % 0 0 0 0 0 2.430930535 13 : n-Nonane molar % 0 0 0 0 0 0.361055862 17 : n-Tridecane molar % 0 0 0 0 0 0.020847594 21 : n-Heptadecane molar % 0 0 0 0 0 0.000600344 3202 : n-Tricosane molar % 0 0 0 0 0 0 3215 : n-Hexatriacontan molar % 0 0 0 0 0 0 50 : Hydrogen sulfide molar % 0 0 0 0 0 0 1219 : Piperazine molar % 0.049650251 0.049650251 0.049650473 0.005408053 0 0.003925567 7051 : MDEA molar % 0.000300374 0.000300374 0.000300375 0.000976464 0 4.74747E-10 Total molar % 100 100 100 100 100 100

0.6920401

Page 49: Simulation Software ARMY

43

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Summary 2 of 5

Stream NumberStream NameThermo Method OptionVapor FractionTemperature FPressure psiaEnthalpy Btu/hrEntropy Btu/R/hrVapor Density lb/ft3Liquid 1 Density lb/ft3Liquid 1 Specific Gravity 60F@STPVapor Cp Btu/lbmol/RVapor Cv Btu/lbmol/RLiquid 1 Cp Btu/lbmol/RVapor Viscosity cPLiquid 1 Viscosity cPVapor Thermal Conductivity Btu/ft/hr/FLiquid 1 Thermal Conductivity Btu/ft/hr/FVapor Flowrate MMSCF/day@STPLiquid 1 Flowrate gal/min@STPLiquid 2 Flowrate gal/minMolecular WeightMolar Flowrate lbmol/hrMass Flowrate lbNote: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 2 : Methane lbmol/hr 49 : Carbon dioxide lbmol/hr 48 : Carbon monoxide lbmol/hr 1 : Hydrogen lbmol/hr 46 : Nitrogen lbmol/hr 47 : Oxygen lbmol/hr 62 : Water lbmol/hr 6 : n-Butane lbmol/hr 13 : n-Nonane lbmol/hr 17 : n-Tridecane lbmol/hr 21 : n-Heptadecane lbmol/hr 3202 : n-Tricosane lbmol/hr 3215 : n-Hexatriacontan lbmol/hr 50 : Hydrogen sulfide lbmol/hr 1219 : Piperazine lbmol/hr 7051 : MDEA lbmol/hr Total lbmol/hrMolar Composition By Component 2 : Methane molar % 49 : Carbon dioxide molar % 48 : Carbon monoxide molar % 1 : Hydrogen molar % 46 : Nitrogen molar % 47 : Oxygen molar % 62 : Water molar % 6 : n-Butane molar % 13 : n-Nonane molar % 17 : n-Tridecane molar % 21 : n-Heptadecane molar % 3202 : n-Tricosane molar % 3215 : n-Hexatriacontan molar % 50 : Hydrogen sulfide molar % 1219 : Piperazine molar % 7051 : MDEA molar % Total molar %

607 608 609 610 611 612CRM preheat 2CRM hot efflue FTS feed Strm 501 Strm 1 CRM rec in

Global Global Global Changed Global Global1 1 1 1 1 1

1530.95077 1600 500 50 236.81621 242.4258425 410 390 82 445 445

517292806 563995760 149015832 161074.881 4728746.54 42284279.4320411.3 331516.7 49827.69 -9805.714 -12093.38 -51206.20.6617296 0.5148263 1.05505 0.6805747 2.8104 2.07698

12.333 10.22696 8.99687 9.08171 10.73288 9.4567910.32161 8.22637 6.92049 6.83828 8.04115 7.10224

0.0440205 0.0465646 0.0254989 0.0145765 0.020483 0.0213391

0.0507243 0.0680805 0.0323923 0.0097248 0.0174019 0.0197967

293.47397 351.53683 351.53683 28.415 28.39728 237.75791

33.4508 27.9258 27.9258 43.9182 43.911 34.201632227.7217 38603.8708 38603.8708 3120.3819 3118.4355 26109.28621078043.073 1078043.975 1078043.975 137041.5564 136933.6212 892979.3629

3204.09 16.0205 16.0205 0 204.09511674.5 8486.43 8486.43 3097.79 8576.7215338.5 21714.6 21714.6 0 15338.5

0.172499 6376.32 6376.32 0 0.172499135.844 135.844 135.844 14.1483 121.69610.5963 10.5963 10.5963 1.10556 9.49078956.035 956.035 956.035 4.29371 951.741783.433 783.433 783.433 0 783.433116.36 116.36 116.36 0 116.366.7187 6.7187 6.7187 0 6.7187

0.193477 0.193477 0.193477 0 0.1934770 0 0 0 00 0 0 0 00 0 0 0 0

1.26512 1.26512 1.26512 1.09938 0.1657410.000000153 0.000000153 0.000000153 0.000000144 8.968E-09

32227.7 38603.9 38603.9 3118.44 26109.3

9.94203744 0.041499693 0.041499693 0 0.78169464536.22504864 21.98334883 21.98334883 99.33780993 32.8492912547.59415037 56.24975715 56.24975715 0 58.74726630.000535251 16.51729488 16.51729488 0 0.000660680.42151317 0.351891907 0.351891907 0.453698003 0.4661021170.032879479 0.027448781 0.027448781 0.035452342 0.0363501892.966500867 2.476524393 2.476524393 0.137687754 3.645218372.430930535 2.029414127 2.029414127 0 3.0005898280.361055862 0.301420323 0.301420323 0 0.4456649550.020847594 0.0174042 0.0174042 0 0.0257329760.000600344 0.000501185 0.000501185 0 0.000741027

0 0 0 0 00 0 0 0 00 0 0 0 0

0.003925567 0.003277182 0.003277182 0.035254166 0.0006347974.74747E-10 3.96333E-10 3.96333E-10 4.61769E-09 3.43479E-11

100 100 100 100 100

Page 50: Simulation Software ARMY

44

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Summary 3 of 5

Stream NumberStream NameThermo Method OptionVapor FractionTemperature FPressure psiaEnthalpy Btu/hrEntropy Btu/R/hrVapor Density lb/ft3Liquid 1 Density lb/ft3Liquid 1 Specific Gravity 60F@STPVapor Cp Btu/lbmol/RVapor Cv Btu/lbmol/RLiquid 1 Cp Btu/lbmol/RVapor Viscosity cPLiquid 1 Viscosity cPVapor Thermal Conductivity Btu/ft/hr/FLiquid 1 Thermal Conductivity Btu/ft/hr/FVapor Flowrate MMSCF/day@STPLiquid 1 Flowrate gal/min@STPLiquid 2 Flowrate gal/minMolecular WeightMolar Flowrate lbmol/hrMass Flowrate lbNote: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 2 : Methane lbmol/hr 49 : Carbon dioxide lbmol/hr 48 : Carbon monoxide lbmol/hr 1 : Hydrogen lbmol/hr 46 : Nitrogen lbmol/hr 47 : Oxygen lbmol/hr 62 : Water lbmol/hr 6 : n-Butane lbmol/hr 13 : n-Nonane lbmol/hr 17 : n-Tridecane lbmol/hr 21 : n-Heptadecane lbmol/hr 3202 : n-Tricosane lbmol/hr 3215 : n-Hexatriacontan lbmol/hr 50 : Hydrogen sulfide lbmol/hr 1219 : Piperazine lbmol/hr 7051 : MDEA lbmol/hr Total lbmol/hrMolar Composition By Component 2 : Methane molar % 49 : Carbon dioxide molar % 48 : Carbon monoxide molar % 1 : Hydrogen molar % 46 : Nitrogen molar % 47 : Oxygen molar % 62 : Water molar % 6 : n-Butane molar % 13 : n-Nonane molar % 17 : n-Tridecane molar % 21 : n-Heptadecane molar % 3202 : n-Tricosane molar % 3215 : n-Hexatriacontan molar % 50 : Hydrogen sulfide molar % 1219 : Piperazine molar % 7051 : MDEA molar % Total molar %

613 702 703 704 705 706CRM preheat 1 Strm 1 Strm 1 FTS cold efflu Strm 3 Strm 5

Global Global Global Global Global Global1 1 0.9998567 0.919883 1 1

400 500 331.64957 200 199.9595 199.9595435 385 375 365 364.5 364.5

102312878 137405438 82049609.4 -2671073.77 36612119.1 32950907.215566.73 62813.74 1102.281 -121224.5 -61615.07 -55453.561.5952 1.28177 1.53252 1.81521 1.81276 1.81276

41.82373 42.86810.7742851 0.749571

9.97589 10.5984 10.1442 9.28617 9.28539 9.285397.77452 8.44242 7.88112 6.94427 6.94393 6.94393

82.822670.0240407 0.0264195 0.0227189 0.0201035 0.0201014 0.0201014

0.5518658 0.59240960.0231245 0.0245543 0.0226757 0.0184446 0.0184422 0.0184422

0.0609122 0.0663231293.47397 288.72178 288.68039 265.59025 265.59445 239.035

2.23215 107.1941282.08077

33.4508 34.0013 34.0013 34.0013 34.1794 34.179432227.7217 31705.8621 31705.8621 31705.8621 29166.1436 26249.52921078043.073 1078040.529 1078040.529 1078040.529 996881.2886 897193.1583

3204.09 226.969 226.969 226.969 226.747 204.07211674.5 9567.33 9567.33 9567.33 9541.46 8587.3115338.5 17184.8 17184.8 17184.8 17176.3 15458.7

0.172499 0.192154 0.192154 0.192154 0.192082 0.172874135.844 135.844 135.844 135.844 135.778 122.210.5963 10.5963 10.5963 10.5963 10.5891 9.53018956.035 3324.15 3324.15 3324.15 1063.03 956.726783.433 888.907 888.907 888.907 874.148 786.733116.36 232.382 232.382 232.382 129.95 116.9556.7187 101.645 101.645 101.645 7.50131 6.75118

0.193477 31.8357 31.8357 31.8357 0.215946 0.1943510 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1.26512 1.26512 1.26512 1.26512 0.185058 0.1665520.000000153 0.000000153 0.000000153 0.000000153 1.002E-08 9.014E-09

32227.7 31705.9 31705.9 31705.9 29166.1 26249.5

9.94203744 0.715857301 0.715857301 0.715857301 0.77743339 0.77743195136.22504864 30.17523552 30.17523552 30.17523552 32.71421273 32.7141850347.59415037 54.20063774 54.20063774 54.20063774 58.8913156 58.891407460.000535251 0.000606051 0.000606051 0.000606051 0.00065858 0.000658580.42151317 0.428450225 0.428450225 0.428450225 0.465533616 0.4655326770.032879479 0.033420594 0.033420594 0.033420594 0.036306191 0.0363061392.966500867 10.48432626 10.48432626 10.48432626 3.644745098 3.64473992.430930535 2.803601222 2.803601222 2.803601222 2.997137087 2.9971351840.361055862 0.732929833 0.732929833 0.732929833 0.445551514 0.4455513440.020847594 0.32058702 0.32058702 0.32058702 0.025719277 0.0257192710.000600344 0.100409388 0.100409388 0.100409388 0.000740401 0.000740399

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0.003925567 0.003990172 0.003990172 0.003990172 0.000634497 0.0006344964.74747E-10 4.8256E-10 4.8256E-10 4.8256E-10 3.4355E-11 3.43397E-11

100 100 100 100 100 100

Page 51: Simulation Software ARMY

45

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Summary 4 of 5

Stream NumberStream NameThermo Method OptionVapor FractionTemperature FPressure psiaEnthalpy Btu/hrEntropy Btu/R/hrVapor Density lb/ft3Liquid 1 Density lb/ft3Liquid 1 Specific Gravity 60F@STPVapor Cp Btu/lbmol/RVapor Cv Btu/lbmol/RLiquid 1 Cp Btu/lbmol/RVapor Viscosity cPLiquid 1 Viscosity cPVapor Thermal Conductivity Btu/ft/hr/FLiquid 1 Thermal Conductivity Btu/ft/hr/FVapor Flowrate MMSCF/day@STPLiquid 1 Flowrate gal/min@STPLiquid 2 Flowrate gal/minMolecular WeightMolar Flowrate lbmol/hrMass Flowrate lbNote: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 2 : Methane lbmol/hr 49 : Carbon dioxide lbmol/hr 48 : Carbon monoxide lbmol/hr 1 : Hydrogen lbmol/hr 46 : Nitrogen lbmol/hr 47 : Oxygen lbmol/hr 62 : Water lbmol/hr 6 : n-Butane lbmol/hr 13 : n-Nonane lbmol/hr 17 : n-Tridecane lbmol/hr 21 : n-Heptadecane lbmol/hr 3202 : n-Tricosane lbmol/hr 3215 : n-Hexatriacontan lbmol/hr 50 : Hydrogen sulfide lbmol/hr 1219 : Piperazine lbmol/hr 7051 : MDEA lbmol/hr Total lbmol/hrMolar Composition By Component 2 : Methane molar % 49 : Carbon dioxide molar % 48 : Carbon monoxide molar % 1 : Hydrogen molar % 46 : Nitrogen molar % 47 : Oxygen molar % 62 : Water molar % 6 : n-Butane molar % 13 : n-Nonane molar % 17 : n-Tridecane molar % 21 : n-Heptadecane molar % 3202 : n-Tricosane molar % 3215 : n-Hexatriacontan molar % 50 : Hydrogen sulfide molar % 1219 : Piperazine molar % 7051 : MDEA molar % Total molar %

707 708 709 710 711 713CRM rec out Strm 1 Strm 2 Strm 4 Strm 6 Strm 2

Global Global Global Changed Global Changed1 0 0 0 1 0

242.44614 199.9595 90 199.9595 199.9595 90.00001445 364.5 364.5 364.5 364.5 364.5

42507123.2 -2411847.81 -4813192.95 -36871345.7 3661211.91 -39647.4184-51557.09 -922.3749 -4912.611 -58608.77 -6161.507 -63.326272.07534 1.81276

42.87026 45.71276 59.79058 63.316550.749573 0.7493906

9.45113 9.285397.0974 6.94393

82.83238 74.93815 18.08459 17.972110.0213428 0.0201014

0.5924539 0.7178107 0.3041737 0.76126620.0198019 0.0184422

0.0663151 0.0640526 0.3917366 0.3582849239.035 26.55944

107.18904 107.110370.0786665 82.06563 0.0786675

34.1794 145.8595 145.8595 18.0947 34.1794 18.100626249.5292 275.5499 275.5499 2264.1685 2916.6144 2.1695897193.1583 40191.57064 40191.57064 40969.44976 99688.13022 39.2692517

204.072 0.215298 0.215298 0.006361 22.6747 0.0000066858587.31 21.8438 21.8438 4.0224 954.146 0.00439815458.7 8.00957 8.00957 0.394732 1717.63 0.000446

0.172874 0.00006712 0.00006712 0.000005313 0.019208 5.871E-09122.2 0.064034 0.064034 0.002226 13.5778 0.000002593

9.53018 0.007013 0.007013 0.000231 1.05891 0.000000243956.726 2.42962 2.42962 2258.69 106.303 2.16366786.733 14.725 14.725 0.034551 87.4148 0.000003928116.955 102.426 102.426 0.005136 12.995 1.455E-076.75118 94.1438 94.1438 0.000296 0.750131 3.138E-09

0.194351 31.6198 31.6198 0.000008535 0.021595 3.939E-110 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0.166552 0.065814 0.065814 1.01425 0.018506 0.0009689.014E-09 1.354E-07 1.354E-07 7.534E-09 1.002E-09 1.8E-1226249.5 275.55 275.55 2264.17 2916.61 2.16948

0.777431951 0.078133914 0.078133914 0.000280942 0.77743339 0.00030813832.71418503 7.927345309 7.927345309 0.177654505 32.71421273 0.20272138958.89140746 2.906757394 2.906757394 0.01743385 58.8913156 0.0205579220.00065858 2.43586E-05 2.43586E-05 2.34656E-07 0.000658573 2.70618E-070.465532677 0.023238614 0.023238614 9.83142E-05 0.465533616 0.0001195220.036306139 0.002545092 0.002545092 1.02024E-05 0.036306191 1.12008E-053.6447399 0.881734712 0.881734712 99.7579687 3.644745098 99.73173295

2.997135184 5.343857739 5.343857739 0.00152599 2.997137087 0.0001810570.445551344 37.17147523 37.17147523 0.000226838 0.445551514 6.70668E-060.025719271 34.16577754 34.16577754 1.30732E-05 0.025719277 1.44643E-070.000740399 11.47515877 11.47515877 3.76959E-07 0.000740414 1.81564E-09

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0.000634496 0.023884594 0.023884594 0.044795665 0.000634504 0.0446189873.43397E-11 4.91381E-08 4.91381E-08 3.32749E-10 3.4355E-11 8.29692E-11

100 100 100 100 100 100

Page 52: Simulation Software ARMY

46

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Stream Summary 5 of 5

Stream NumberStream NameThermo Method OptionVapor FractionTemperature FPressure psiaEnthalpy Btu/hrEntropy Btu/R/hrVapor Density lb/ft3Liquid 1 Density lb/ft3Liquid 1 Specific Gravity 60F@STPVapor Cp Btu/lbmol/RVapor Cv Btu/lbmol/RLiquid 1 Cp Btu/lbmol/RVapor Viscosity cPLiquid 1 Viscosity cPVapor Thermal Conductivity Btu/ft/hr/FLiquid 1 Thermal Conductivity Btu/ft/hr/FVapor Flowrate MMSCF/day@STPLiquid 1 Flowrate gal/min@STPLiquid 2 Flowrate gal/minMolecular WeightMolar Flowrate lbmol/hrMass Flowrate lbNote: All Liquid 1 Phase calculations exclude Free Water

Molar Flowrate By Component 2 : Methane lbmol/hr 49 : Carbon dioxide lbmol/hr 48 : Carbon monoxide lbmol/hr 1 : Hydrogen lbmol/hr 46 : Nitrogen lbmol/hr 47 : Oxygen lbmol/hr 62 : Water lbmol/hr 6 : n-Butane lbmol/hr 13 : n-Nonane lbmol/hr 17 : n-Tridecane lbmol/hr 21 : n-Heptadecane lbmol/hr 3202 : n-Tricosane lbmol/hr 3215 : n-Hexatriacontan lbmol/hr 50 : Hydrogen sulfide lbmol/hr 1219 : Piperazine lbmol/hr 7051 : MDEA lbmol/hr Total lbmol/hrMolar Composition By Component 2 : Methane molar % 49 : Carbon dioxide molar % 48 : Carbon monoxide molar % 1 : Hydrogen molar % 46 : Nitrogen molar % 47 : Oxygen molar % 62 : Water molar % 6 : n-Butane molar % 13 : n-Nonane molar % 17 : n-Tridecane molar % 21 : n-Heptadecane molar % 3202 : n-Tricosane molar % 3215 : n-Hexatriacontan molar % 50 : Hydrogen sulfide molar % 1219 : Piperazine molar % 7051 : MDEA molar % Total molar %

714 715 716 800HC product Inert Purge Water reclaima intercooler

Global Global Changed Global0 1 0 0

90.00001 199.9595 199.8539 50.00024364.5 364.5 364.5 82

-4773545.51 3661211.91 -36910993.7 -37824.4101-4849.284 -6161.507 -58671.48 -55.4672

1.8127645.71276 59.79414 44.448560.7493906 0.6807423

9.285396.94393

74.93816 18.08429 37.704230.0201014

0.7178106 0.304372 0.88742540.0184422

0.0640526 0.3917227 0.091149126.55944

107.11037 0.121980582.1443 0.1822023

146.8733 34.1794 18.0947 55.4164273.3805 2916.6144 2266.338 1.9463

40152.29619 99688.13022 41008.70621 107.8569393

0.215291 22.6747 0.006368 021.8394 954.146 4.0268 0.064998.00912 1717.63 0.395174 0

0.00006711 0.019208 0.000005319 00.064032 13.5778 0.002229 0.0000052310.007013 1.05891 0.000232 0.0000011240.265962 106.303 2260.85 0.83768514.725 87.4148 0.034555 0102.426 12.995 0.005136 094.1438 0.750131 0.000296 031.6198 0.021595 0.000008535 0

0 0 0 00 0 0 00 0 0 0

0.064846 0.018506 1.01522 1.043361.354E-07 1.002E-09 7.536E-09 0.000304

273.38 2916.61 2266.34 1.94634

0.078751555 0.77743339 0.000280982 07.988660473 32.71421273 0.177678548 3.3390877242.929665667 58.8913156 0.01743666 02.45482E-05 0.000658573 2.34696E-07 00.023422343 0.465533616 9.83524E-05 0.0002687610.002565294 0.036306191 1.02368E-05 5.77494E-050.097286561 3.644745098 99.75775921 43.038985995.386275514 2.997137087 0.001524705 037.4665301 0.445551514 0.000226621 034.43697418 0.025719277 1.30607E-05 011.56624479 0.000740414 3.76598E-07 0

0 0 0 00 0 0 00 0 0 0

0.023720097 0.000634504 0.044795573 53.606255844.95281E-08 3.4355E-11 3.32519E-10 0.015619059

100 100 100 100

Page 53: Simulation Software ARMY

47

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Equipment Number 1 5 6 7 601Equipment Name X-1 X-5 trim cooler X-7 Stripper Cond.Overall Heat Trans. Coef. Btu/hr/ft2/F 50 50 50 50 50Area Per Shell ft2 99311.3 10687 10501 100 100Number Of Shells 1 1 1 1 1Shell Passes Per Shell 1 1 1 1 1Tube Passes Per Shell 1 1 1 1 1Cooling Water is 0 0 678040 0 0Delta Pressure Shellside psi 10 10 10 0 3Delta Pressure Tubeside psi 20 10Calculated Duty Shellside Btu/hr 414979900 55355830 -84720680 -2401345 -40927730Specified Duty ShellsideRefrigerant NumberRefrigerant PressureRefrigerant TemperatureMean Temperature DifferenceUtility Temperature In F 90 90 90Utility Temperature Out F 105 105 105Temperature Out Spec. F 500 400 200 90 50Temperature Approach Spec.Delta Temperature Spec.Calculated AreaEstimated AreaCalculated MTD (Q/UA) F 83.57 103.6 161.4Corrected LMTD F 83.57 103.6 161.4LMTD Correction Factor 1 1 1

Heat Exchangers/Condensers

Page 54: Simulation Software ARMY

48

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Equipment Number 2 13 605Equipment Name C-2 C-13 C-1Driver Type Electric Electric ElectricCalculation Type Polytrop Polytrop PolytropStages 2 1 1Work Capacity HP 1000000 1000000 1000000Calculated Outlet Pressure psia 445 445 85Specified Outlet Pressure psia 445 445 85Specified Poly CoeficientCalculated Poly Coeficient 0.3566308 0.3480564 0.2989935Polytropic Head ft-lbf/lbm 33809.28 5967.631 33058.69Interstage Temperature Out F 80Efficiency (of calc type) 0.72 0.72 0.72Water Flow gal/hr 29460.93Fuel FlowElectrical Usage kW 2421.352 2798.06 2785.393Real Work HP -3250.053 -3755.688 -3738.686Isentropic Head ft-lbf/lbm 32546.01 5914.012 31640.82Isentropic Efficiency 0.693097493 0.71353082 0.689119575Inlet Temperature F 50 199.9595 189.378Inlet Pressure psia 82 364.5 30.40007Inlet Volumetric Flowrate ft3/min 3356.026 8248.846 16895.14Molar Flowrate lb/hr 137041.6 897192 161224.6Mass Flowrate lb/hr 137041.6 897192 161224.6Discharge Temperature F 236.8162 242.4461 416.7979Discharge Volumetric Flowrate ft3/min 812.0642 7205.182 8149.248Calculated Cp/Cv Ratio 1.358872 1.335477 1.270886

Pumps/Compressors/Expanders

Page 55: Simulation Software ARMY

49

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Feed(s) Product(s) DifferenceFlowsheet Node Btu/hr Btu/hr Btu/hrStream 600 (CO2 from abs) 5982721 0 -5982721Stream 603 (To Lean Amin) 0 -27389197 -27389197Stream 605 (CRM Methane ) -55976.77 0 55976.77Stream 612 (CRM rec in) 42284279 0 -42284279Stream 707 (CRM rec out) 0 42507123 42507123Stream 714 (HC product) 0 -4773546 -4773546Stream 715 (Inert Purge) 0 3661212 3661212Stream 716 (Water reclaim) 0 -36910994 -36910994Stream 800 (intercooler) 0 -37824.41 -37824.41Total Streams 48211023 -22943225 -71154249

Heaexc 1 (X-1) 666308640 666308640 -0.001809478Compre 2 (C-2) 161074.9 4690922 4529847Rea 3 (CRM Reactor) 517292810 563995760 46702954Hplurea 4 (R-4) 149015830 137405440 -11610393Heaexc 5 (X-5) 184362490 184362490 -0.007899165Heaexc 6 (trim cooler) 82049609 -2671074 -84720683Heaexc 7 (X-7) -2411848 -4813193 -2401345Fla 8 (F-8) -2671074 -2671074 -0.6588938Fla 9 (F-9) -4813193 -4813193 0.028175876Div 10 (Purge splitt) 36612119 36612119 0Mix 11 (M-11) -36910993 -36910994 -0.5217581Mix 12 (M-12) 3661212 3661212 0Compre 13 (C-13) 32950907 42507123 9556216Heaexc 601 (Stripper Con) 15495676 -25432057 -40927733Fla 602 (103-F) -25432057 -27228122 -1796065Mix 603 (M-2) 46957049 46957049 -0.001932509Compre 605 (C-1) 5982721 15495676 9512955Total Equipments 1668611000 1597456700 -71154249

Enthalpy Difference Between Streams and Equipments 1.63913E-07

Used Product(s) DifferenceFlowsheet Node kW kW kWCompre 2 (C-2) 2421.352 0 -2421.352Compre 13 (C-13) 2798.06 0 -2798.06Compre 605 (C-1) 2785.393 0 -2785.393Total Equipments 8004.806 0 -8004.806

Energy Balance

Power Balance

Page 56: Simulation Software ARMY

50

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 57: Simulation Software ARMY

51

TECHNIKON REPORT # 1602-211 NAMARCH 2010

APPENDIX D EQUIVALENT ELECTRIC POWER CONSUMPTION FOR COMPRESSION VERSUS CHEMICAL CONVERSION

Page 58: Simulation Software ARMY

52

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 59: Simulation Software ARMY

53

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Appendix D contains the overall power consumption calculated for both the CO2 Absorption/ Compression process and the Absorption/Conversion process. These calcu-lations include power for both heating and mechanical work. The heating power calcula-tion is based on a direct conversion from Btus to MWe. For the process cooling power calculations, 10% of the cooling Btu value was charged to the process to account for power consumed by mechanical pumping and cooling tower operation.

There are separate sections for the Absorption/Compression and the Absorption/Conversion processes. The power calculations follow the simulation’s convention of assigning posi-tive values for electric power generation and negative values for consumption. The power consumed by simple absorption and compression of CO2 is a signifi cant fraction of the 100 MWe plant output (-38.7 MWe for the absorption/regeneration step and – 50 MWe when CO2 compression is included). The absorption/chemical conversion (CRM/FTS) process is entirely unfeasible according to its calculated energy requirement of -108 MWe which exceeds the power plant’s output.

Page 60: Simulation Software ARMY

54

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Thermal Thermal ChilledElectrical Heating Cooling Cooling

Processing Unit kW Btu/hr Btu/hr Btu/hr CommentsRegenerator Preheater 0 heat transferred between internal streamsRegenerator Reboilers -132000000 2 @ 66MM Btu/hrAbsorber Precooler 1 -87303000Lean Amine Pump -883

Equivalent MWe Power Generatedfor Absorbtion/Compression

Lean Amine Pump -883Absorber Trim Cooler -5306000CO2 Cooler -22834000CO2 Compressor 1 -3342Intercooler -16232000CO2 Compressor 2 -3420TOTAL -7645 -132000000 -131675000

Equivalent kW input -7645 -38685 372 -3859 012393Thermal cooling kW = 10% of cooling load for pumping and cooling tower operationEquivalent kW input -7645 -38685.372 -3859.012393 for pumping and cooling tower operation

Net Power Generated -50189.38439 kW-50.18938439 MW

Net Power Generated -38670.25592 kWw/o CO2 Compression -38.67025592 MW

Equivalent MWe Power Generatedfor Absorption/CRM/FTSThermal Thermal Chilled

Electrical kW Heating Cooling CoolingProcessing Unit Electrical kW Btu/hr Btu/hr Btu/hr Comments

Block inlet Compressor -2785Mixer inlet Compressor -2421CRM Preheater 1 N/A heat transferred between internal streamsCRM Preheater 2 N/A heat transferred between internal streamsCRM Reactor -362000000FTS Reactor 28570000 energy recovered as process steam

for Absorption/CRM/FTS

FTS Reactor 28570000 energy recovered as process steamTrim Cooler -87721000Product Separator Cooler -2402000Recycle Compressor -2798TOTAL -8004 -333430000 -90123000

Equivalent kW input -8004 -97718.66353 -2641.243773Thermal cooling kW = 10% of cooling load for pumping and cooling tower operation

Net Power Generated -108363.9073 kW-108.3639073 MW

Page 61: Simulation Software ARMY

55

TECHNIKON REPORT # 1602-211 NAMARCH 2010

APPENDIX E ACRONYMS AND ABBREVIATIONS

Page 62: Simulation Software ARMY

56

TECHNIKON REPORT # 1602-211 NAMARCH 2010

this page intentionally left blank

Page 63: Simulation Software ARMY

57

TECHNIKON REPORT # 1603-211 NAMARCH 2010

Acronyms and Abbreviations

CFPP Coal-Fired Power PlantCRM Catalytic Reforming of MethaneDOD Department of DefenseDOE Department of EnergyFTS Fischer-Tropsch SynthesisMDEA Methyl Diethanol AmineMWe Mega Watt of Electricitypsia Pounds Per Square Inch, AbsoluteQA/QC Quality Analysis/Quality ControlRETC Renewable Energy Testing CenterWBS Work Breakdown Structure