SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

25
SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS A. Kolesnikov, A. Gordeev, S. Vasilevskii 9 th International Planetary Probe Workshop June 18-22, 2012, Toulouse, France

description

SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS A. Kolesnikov, A. Gordeev, S. Vasilevskii. 9 th International Planetary Probe Workshop June 18-22, 2012, Toulouse, France. MOTIVATION. At Mars entry conditions surface recombination - PowerPoint PPT Presentation

Transcript of SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Page 1: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

A. Kolesnikov, A. Gordeev, S. Vasilevskii

9th International Planetary Probe WorkshopJune 18-22, 2012, Toulouse, France

Page 2: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

MOTIVATION

• At Mars entry conditions surface recombination of O and CO introduces a large portion of uncertainty in laminar convective heating

• Surface catalysis in terms of O+O→O2 and CO+O→CO2 reactions is one of the key issues of TPM development

• Requirements of reproduction of EXOMARS entry environment by RF-plasmatron and rebuilding recombination coefficients O and CO

on metals and quartz

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 3: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

• Simulation of stagnation point heat transfer to cooled surfaces for EXOMARS entry in terms of total enthalpy and stagnation pressure in subsonic 97%CO2+3%N2 plasma flows • Prediction of recombination coefficients O

and CO on silver, copper, stainless steel and quartz at specified enthalpy and stagnation pressure of subsonic CO2

plasma flows

OBJECTIVESР О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 4: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Laminar convective heat flux alongthe Mars Pathfinder base line at peak heating point

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 5: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

100-kW RF-PLASMOTRON IPG-4

Page 6: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

MAIN PARAMETERS OF IPG-4 FACILITYР О С С И Й С КА ЯАКАДЕМИЯ НАУК

Frequency, MHz 1.76

Torch diameter, mm 80

Anode power, kW 12-76

Pressure, hPa 6-1000

Mass flow rate, g/s 1.8-6.0

Working gases Air, N2, O2,

CO2, Ar

Page 7: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

RF-discharge in air and carbon dioxideflows

Air plasma at Р=100 hPa, G=2.4g/s, N=45 kW

Carbon dioxide plasma at Р=100 hPa, G=1.8 g/s, N=45 kW

Page 8: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

TPM testing in subsonic air and carbon dioxide plasma flows

Thermal protection tile surface with catalytic ring in air plasma flow

Thermal protection tile in carbon dioxide flow

Page 9: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Water-cooled test model with heat flux probe

water

water14

50

2 1

1 – copper body2 – water-flow calorimeter

Page 10: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Test facility

enthalpy stagnation pressure

model diameter

[MJ/kg] [hPa] [mm]

IPG-4 13.8 80 50

9.0 80 50

Test matrix

Page 11: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Heat flux probe with silver surface

Before testing After testingin CO2 plasma flow

Page 12: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

0 100 200 300 400 500 600 700 800 900

t, s

0

20

40

60

80

100

120

140

160

180

q, W

/cm

2

25 30 35 40 45 50 55

N ap, kW

0

50

100

150

200

250

q, W

/cm

2

Cu

Ag

quartzstainless steel

Heat flux measurements

Time history of heat flux to silver surface

Heating effect due to surface catalysis

Page 13: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0 4 2 4 4 4 60

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

Nap, kW

He, MJ/kg

6 0 8 0 1 0 0 1 2 0 1 4 04

6

8

1 0

1 2

1 4

1 6

Zm, mm

He, MJ/kg

Rebuilding enthalpy of CO2 flows

Enthalpy vs anode power Enthalpy along subsonic jet

Page 14: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

20 25 30 35 40 45 50

N ap, kW

0

20

40

60

80

100

120

140

160

180

q, W

/cm

2

Ag (calibration)

Ag

Cu

Stainlesssteel

SiO2

Heat fluxes to different materials at specified test conditions

Heat flux vs anode power at p0 = 80 hPa, G=2.8 g/s

Page 15: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

CFD modeling ICP flows (97%CO2 + 3%N2):isolines of stream function and isotherms

P=80 hPa, Npl=20.28 kW, G=2.8 g/s

Page 16: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

CFD modeling dissociated (97%CO2 + 3%N2) flowpast a model

Stream lines Isotherms

P=80 hPa, Npl=20.28 kW, G=2.8 g/s

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 17: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Model of surface chemistry forboundary layer problem

• adsorption of the oxygen atoms dominants over other species adsorption;

• adsorption of O atoms and desorption of the products are fast reactions;

• recombination reactions follow Eley-Rideal mechanism: O + S  → O_S; O + O_S  →  O2 + S; CO + O_S  →  CO2 + S;

• recombination of C atoms on surface is negligible

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 18: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

COWCOCO

OOWOO cK

m

mcKJ

COWCOCO cKJ

0CJ

COWCOCO cKJ

OWOO cKJ

0CJ

Models of surface catalysis:boundary conditions for diffusion fluxes of O and CO at the wall

Standard model New model

02

2

2

2 OCO

CO

OCO

CO

OO JJ

m

mJ

m

mJ

m2

TR

γ-2

γ2 = K

i

WA

wi

wiWi 0 w 1

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 19: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

3 .2 e-2

1e-2

1e-3

300 600 900 120 0 150 0 180 0 210 00

20

40

60

80

100

120

140

w C O

T w , K

q w

W /cm 2F ro zen , = 0

0.1

3 .2 e-2

1e-2

3 .2 e -3

1e-30

0

w = 1 a)

A g

C u

S tee l

S iO 2

Heat flux envelopes for catalysis standard and new models

P=80 hPa, Nap=40.4 kW, he=14 MJ/kg, wO =1e2

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 20: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

3 .2e-2

1e-2

1e-3

3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 0 2 1 0 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

w C O

T w , K

q w

W /cm 2F ro zen , = 0

0.1

3 .2e-2

1e-2

3 .2e-3

1 e -3

w = 1

0

b)

A g

C u

S tee l

S iO 2

Heat flux envelopes for catalysis standard and new models

P=80 hPa, Nap=40.4 kW, he=14 MJ/kg, wO =1e3

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 21: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

P Twqw

w = wO = wCO

P, hPa

material

Tw,K

q,W/cm2

wO

specified by

literature data

wCO

determined by novel

model

w

determined by standard model

80 quartz 755 70 2e3 6.0e-3 7.84e-3

steel 300 93 2.6e3 6.1e-3 8.48e-3

80 quartz 600 45 2e3 3e-3 4.97e-3

steel 300 66 2.6e3 n/a 1.07e-2

Results of CO determinationР О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 22: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Extrapolation of heat transfer tests to re-entry conditions

• H2 = H1

• P02 = P01

• (U/ s)e2 = (U/ s)e1

• Flow field outside of boundary layer is under thermochemical equilibrium

Page 23: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

,h2Vs

s

s

hk12

p

*m

s

s21

NR

V

h2k

3

8R

e

k

Recalculation of subsonic test conditions tore-entry parameters (velocity, altitude, nose radius)A. Kolesnikov, AIAA 2000-2515

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

IPG-4

he,

MJ/kg

p, hPa

VS,

m/s

Rm,

m

I 14.0 80 357 0.025

II 8.8 80 286 0.025

Marsentry

V,

m/s

Z, km

RN,

m

I 5290 41.2 0.18

II 4200 38.1 0.16

, ,

Page 24: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

CONCLUSIONS

• Simulation of stagnation point heat transfer for EXOMARS entry conditions carried out in subsonic test regimes at specified total enthalpy and stagnation pressure

• Recombination coefficients O and CO on quartz and stainless steel surfaces

predicted in subsonic dissociated CO2 flows using standard and new models for surface catalysis

• Adsorption of CO molecules should be included in catalysis model for copper surface

Р О С С И Й С КА ЯАКАДЕМИЯ НАУК

Page 25: SIMULATION OF HEAT TRANSFER AND SURFACE CATALYSIS FOR EXOMARS ENTRY CONDITIONS

This work has been carried out in the framework of the SACOMAR Project(Technologies for Safe and Controlled Martian Entry)

FP-7-SPACE-2010-1, Project No. 263210