Simulation of Climbing and Rescue Belays

48
A Simulation of Climbing and Rescue Belays Tom Moyer 2006 International Technical Rescue Symposium This presentation and the associated model can be downloaded at http://www.xmission.com/~tmoyer/testing Tom Moye r) All images in this present ation were generated with RescueRi gger (rescu erigger .com) SALT LAKE COUNTY S H E R I F F ’ S O F F I C E SEARCH RESCUE 

Transcript of Simulation of Climbing and Rescue Belays

Page 1: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 1/48

A Simulation of Climbingand Rescue Belays

Tom Moyer

2006 International Technical Rescue SymposiumThis presentation and the associated model can be downloaded at

http://www.xmission.com/~tmoyer/testing (© Tom Moyer)

All images in this presentation were generated with RescueRigger (rescuerigger.com)

SALT LAKE COUNTYS H E R I F F ’ S O F F I C E

SEARCH RESCUE 

Page 2: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 2/48

1

How do TTRL belays compareto climbing belays?

Page 3: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 3/48

2

46 N min209 N average425 N max

No load abovewhich 100% of

the populationcan grip

Mauthner - Gripping Ability on Rope in Motion study

Page 4: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 4/48

3

What gripping ability is required tohold the load statically?

F

f

F

f

F / f = force multiplication factor(FMF)

For a brake bar rack with 5bars, FMF ≈ 20 with 6 bars,FMF ≈ 25

For an ATC, FMF ≈ 7.5

Force Multiplication Factors of Friction Devices

Page 5: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 5/48

4

80 kgclimber

66% efficiency overbiner

ATC FMF =7.5

Hand Force T0

80 kg

rappeller

Rope tension T1

Hand Force T0

ATC FMF = 7.5

Rope tension T2

T1

Rappelling

T1 = 80 kg * 9.81 m/s2 = 785 N

T0 = 785 N / 7.5 = 105 N

Belaying

T2 = 80 kg * 9.81 m/s2 = 785 N

T1 = 785 N * 0.66 = 518 N

T0 = 518 N / 7.5 = 69 N

Climbing Scenarios –

Static Loads

Page 6: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 6/48

5

200 kg load

50% efficiencyover edge

Brake bar (5 bars) fmf = 20

Hand holds49N

Vertical TTRL Belay

T2 = 200 kg * 9.81 m/s2 = 1,962 N

T1 = 1,962 N * 0.50 = 981 N

T0 = 981 N / 20 = 49 N

Vertical TTRL

Scenario

Page 7: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 7/48

6

35°

600 kgload

Brake bar(6 bars)fmf = 25

Rope tension T1

Hand holds 135N

Low Angle TTRL BelayT1 = 600 kg * 9.81 * sin (35 °)= 3.38 kN or 760 lb

T0 = 3.38 kN / 25 = 135 N

Low Angle

TTRLScenario

Page 8: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 8/48

7

Dynamic Models

Model dynamic events and compare to test data

Why model?

• Repeatable

• Cheaper than testing• Can study one variable at a time

• Can study parameters that are difficult to test

Comparison Data

• No Hand

• Weber - PMI drop tests

• Moyer - cordelette tests

• Manufacturer’s ratings

• With Hand

• Petzl fall simulator

• CMT test data & simulation (live belayers)

• Rigging for Rescue TTRL tests (mechanical hand)

Lead Fall

0

1000

2000

3000

4000

5000

6000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Time (s)

   F  o  r  c  e   (   N   )

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

   D   i  s   t  a  n  c  e   (  m   )

Runner load

Rope LoadBelay site load (N)

Climber position (m)

Slide Distance (m)

Page 9: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 9/48

8

Gravitational potential energy

= strain energy in the rope

Rope Modulus M = T/strain or TL/ δ

Potential Energy = mg(h+δ)

Strain Energy = ½T δ

Simple Linear Model

Conservation of Energy

h

L

δ

m

mg

 M mgmgT 

21max ++=

where fall factor F = h/L   F  o  r  c  e   (   N   )

Distance (m)

StrainEnergy

δ

Fmax

Page 10: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 10/48

9

Detailed Model

Iterative Dynamic Motion Equations

Includes:• Nonlinear rope elasticity

• Knots

• Rope damping• Carabiner friction• Belay device friction

• Slipping in belayer’s hand• Lifting of belayer

Iterative solution approach:

• From current rope tension, calculate a = T/m +g

• Calculate  ∆v = a dt and  ∆ x = v dt 

• From new positions, calculate new rope strains ε =  ∆ L/L• From new strains, calculate rope tensions• Calculate slip distances at friction devices to limit tension ratios to allowed values

• Calculate new rope strains and new rope tensions

Page 11: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 11/48

10

Model ParametersFall Parameters

mc

      L1

   L   2

h

d

FMFα

η

δs

Fall equations

Fall height h = d + L2

Fall factor F = h / L

Parameters at static load

 Ls = L + δs

hs = h + δs

F s = hs / Ls

Climber mass (kg) mc

Belayer mass (kg) mb

Time step (s) dt

Rope span angle (deg) α

Runner angle (deg) βBelayer tie-in slack (m) b_slack

Belayer-biner distance (m) L1

Climber height above biner (m) d

Rope length (m) L

Biner efficiency η

Rope 2nd order modulus (N/strain ) B

Rope 1st order modulus (N/strain) A

Damping coefficient (N/strain/s) λ 

ka /kb k_ratio

Number of knots #_knots

Knot 2nd order stiffness (N/m2) E

Knot 1st order stiffness (N/m) D

Knot minimum force (N) CReaction time (s) Tr

Force multiplier FMF

Grip (N) grip

Fall height (m) h

Fall factor F

δd

Page 12: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 12/48

11

Three Components areCritical to Understand

The Rope

The Friction Device

The Hand

Page 13: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 13/48

12

Rope Properties2nd order curve fits – Weber PMI Data

Elongation of Ropes

2nd-order Curve Fits

y = 1,390,589x2

+ 0x

y = 60023x2

+ 4024x

y = 43072x2

+ 4603x

y = 366035x2

+ 318x

0

5,000

10,000

15,000

20,000

25,000

30,000

0% 10% 20% 30% 40% 50%

strain

   F  o  r  c  e

   (   N   )

Weber PMI 12.5mm staticSterling Superstatic (TM)BD/PMI 10.5 dynamic (TM)Weber PMI 10.6

• Model results with nonlinear properties match Attaway’s analytical predictions

• Nonlinear rope still obeys fall factor rule. Impact force is a function of fall factor.

• Impact force for a zero ff drop on nonlinear rope is 3 x weight instead of 2 x weight.

Page 14: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 14/48

13

Knot Properties2nd order curve fits – Weber PMI Data

Knot Elongation

2nd-order Curve Fits

y = 260,435x2

+ 7,462x + 783

y = 1,154,688x2 + 0x + 783

0

5,000

10,000

15,000

20,000

25,000

30,000

0 0.05 0.1 0.15 0.2 0.25

Extension (m)

   F  o  r  c  e   (   N   )

PMI 12.5mm staticPMI 10.6mm dynamic

• Knots modeled as rope sources rather than compliance terms

• Knots are much more significant on short ropes

Page 15: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 15/48

14

Rope Properties - Damping

What is damping?

• Elastic force is proportional

to deflection (strain)

• Damping, or viscous forceis proportional to velocity

(strain rate)

• Elastic energy is returnedon rebound.

• Damping energy is lost toheating in the rope.

• Damping causes

oscillations to die out.

C. Zanantoni - CMT

Page 16: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 16/48

15

Pavier Damping Model

• Spring in series with a spring/dashpot combination

• Simple spring/dashpot combo produces unrealisticresults.

Initial impact forces too high.Damping values too low (too underdamped)

• Real ropes are close to critically damped.

• Damping values ka /kb and λ determined by trialand error to produce reasonable model behavior.

• Overall spring rate k from slow-pull testing

• Damping values could be determinedexperimentally with good force/deflectionmeasurements in drop tests or fast pull-tests.

ka

kb

λ

Page 17: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 17/48

16

Comparison to Weber PMI Data

Example Load Profile

• Drop-test values give

maximum force,

elongation, and energy.

• Data points are veryclose to the rope-only

curve.

• Without damping,rope and rope + knotscurves do not store

sufficient strain energy.

• Therefore they over-

predict both force andelongation.

Weber - PMI Drop Tests #92 & #131

12.5mm PMI Static - hs = 5ft, Ls = 20ft

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Position (m)

   L  o  a   d   (   N   )

ModelWeber PMI Drop-tests

Slow-pull, rope & knots

Slow pull, rope only

Page 18: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 18/48

17

Impact ForcesPMI 12.5mm Static Rope, M = 80 kg, Ls* = 6.1m (20 ft)

0

5,000

10,000

15,000

20,000

25,000

0 1 2 3 4 5 6 7

Drop Distance* (m)

   F  o  r  c  e   (   N   )

Second-Order Rope

Linear Rope k = 178 kN (40,000 lb)

Second Order Rope with Knots

(Attaway)

This Model (Second Order Rope with

Knots & Damping)Weber Drop-Test Data

Linear Rope k = 67 kN (15,000 lb)

Comparison to Weber PMI Data

* Ls Length is at static resting point. DropDistance is height above free (unstretched)length of rope.

Page 19: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 19/48

18

UIAA Test

80 kg weightFall Factor 1.71

2.8 meter rope

Cordelette is at the directionchange anchor

Black Diamond 10.5mm rope

- rated impact force of 8.4 kN (1888 lb)

Comparison to Moyer Cordelette Testing

Page 20: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 20/48

19

Comparison to Moyer Cordelette Testing

Page 21: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 21/48

20

Comparison to Moyer Cordelette Testing

UIAA Drop - 10/15/00 Boulder, CO

0

2000

4000

6000

8000

10000

12000

0.0 0.5 1.0 1.5 2.0

Time (s)

   F

  o  r  c  e   (   N   )

Runner load

Runner load (data)

Rope load

Rope load (calc from data)

Belay site load

Belay site load (data)

5mm Gemini Drop #1

UIAA drop, Boulder80 m c

80 m b

0 .0005 d t36 α14 β

0 b_s lack

0.4 L11.96 d2.67 L0.78 η

62 25 2 B2657 A2800 λ 

6 k_ra tio

4 #_kno ts260 ,435 E

7 ,4 62 D783 C

0.00 r

6000.0 FMF1 grip

4.23 h

1 .5 84 F

Page 22: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 22/48

21

UIAA Drop - 10/15/00 Boulder, CO

0

2000

4000

6000

8000

10000

12000

0.0 0.5 1.0 1.5 2.0

Time (s)

   F  o  r  c  e

   (   N   )

Runner load

Runner load (data)

Rope load

Rope load (calc from data)

Belay site load

Belay site load (data)

Same Drop –

Damping

Removed

The Effect of Damping

5mm Gemini Drop #1

1st peakslightlyshifted

Biggereffect on2nd peak

Page 23: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 23/48

22

Comparison to Moyer Cordelette Testing

0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.50 1.00 1.50

position

   L

  o  a   d   (   N   )

Model

Data

UIAA Drop – 10/15/00 Boulder Colorado5mm Gemini Drop #1

Page 24: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 24/48

23

Drops with a Hand in the System

• Hand slipping makes rope properties relatively unimportant

Italian CMT has done extensive study of the behavior of thebelay hand in climbing falls

• Force measurements in falls compared to slow-motionvideo of the belayer

• Three phases of belay-hand behavior identified

• Inertial Phase• Muscular Phase• Slipping Phase

Page 25: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 25/48

24

“INERTIAL” PHASE

The hand moves fast

THE UPPER BODY STANDS STILL

THE HAND MOVESFAST

Page 26: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 26/48

25

“MUSCULAR” PHASE

The hand moves slowly

THE UPPER BODYMOVES

THE HAND MOVESSLOWLY

Page 27: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 27/48

26

“HAND SLIPPING” PHASE

Possible rope slipping in the operator’s hand

NOTE THESLIPPAGE IN

THE HAND

Page 28: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 28/48

27

FIX POINT BELAY

FIX POINT BELAY

0

100

200

300

400

500

600

700

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

time ( s )

   l  o  a   d

   (   d  a   N

   )

0

1

2

3

4

5

6

7

8

9

10

   d   i  s  p   l  a  c  e  m  e  n   t   (  m    )

  -  s

  p  e  e   d

   (  m   /  s   )

runner load (model) sliding length in the brake falling mass speed

fallig mass displacement hand speed

inertial phase

muscular phase

no more sliding in the brake

Page 29: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 29/48

28

Comparison to CMT Belay Simulation and Data

CMT Fall Parameters given:

• Mass m = 80 kg• Fall height h = 8 m• L1 = 7.15 m

• Belay Device FMF = 7.5• Hand mass = 2.5 kg

CMT Lead Fallmc

0.0005 dt7.15 1

4 d11.15 L0.58 η

0 B20920 A3000 λ 

 _ra o

0.15 r

7.5 FMF290 grip

8 h

0.717 F

CMT Lead Fall

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Time (s)

   F  o  r  c  e   (   N   )

0.00

0.40

0.80

1.20

1.60

2.00

2.40

2.80

3.20

3.60

   D   i  s   t  a  n

  c  e   (  m   )

Runner load

Rope Load

Belay site load (N)

Climber position (m)

Slide Distance (m)

Page 30: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 30/48

29

CMT Conclusions on Belaying

• Hand acts as an inertial load for the first few hundredmilliseconds.

• Slip distance is proportional to fall height, not fall factor.Confirmed.

• Peak force occurs at maximum hand acceleration, notat lowest climber position.

• Only a small amount of belayer lifting is helpful (~20cm). More lifting increases fall distance and does notdecrease peak force. Confirmed.

Page 31: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 31/48

30

Comparison to

Petzl Fall Simulator

Lead Fall - Comparison to Petzl

0

1000

2000

3000

4000

5000

6000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2Time (s)

   F  o  r  c  e   (   N   )

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

   D   i  s   t  a  n  c  e

   (  m   )

Runner load

Rope Load

Belay site load (N)

Climber position (m)

Slide Distance (m)

Peak Force- on rope 3000 N

- on anchor 5000 N

- on belayer 2000 N

- on belayer's hand 400 N

Slide distance 4.95 m

Petzl Simulator values:• Hand Grip = 400N• Rope Burn Warning = 1800J

• Reverso FMF = 5.0• Munter Hitch FMF = 7.5• Grigri FMF = ∞ (no slipping)

• 11mm rope modulus ≈ 44.1 kN• Carabiner efficiency = 66.6%

• Knot elongation included

• No rope damping• No lifting of belayer

Petzl Comparisonmc

0.0005 dt

10 L1

8 d18 L

0.67 η

0 B44100 A

0 λ . _rat o

1 #_knots260,435 E

7,462 D783 C0.00 r

5.0 FMF

400 grip16 h

0.889 F

Page 32: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 32/48

31

Belay Device Details - FMF Values

240°

120°

120°

120°

120°

80°

Attaway Friction

Analysis

T2 /T1 = e

µ β

Total = 800°

4.4π

T1 = T2 /31

T2

T1

Friction deviceproperties arevery important to

the modelpredictions

Page 33: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 33/48

32

Belay Device FMF ValuesBlack Diamond Testing

   M  o   t   i  o  n

BelayDevice

Page 34: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 34/48

33

Friction Device Force Multiplier Values (10.8mm rope)

0.0

5.0

10.0

15.0

     A     T     C

     A     t    o    g    a

     S     h    e    r     i     f     f

     B    u    g

     A     i    r     b    r    a     k    e

     A     i    r    s     t    y     l    e

     M    u    n     t    e    r

     P    y    r    a    m     i     d

     J    a    w    s

     V     C

     R    a    p     t    o    r

     C    u     b     i     k

     F     i    x    e

   F  o  r  c  e   M

  u   l   t   i  p   l   i  e  r

Low Friction

High Friction

Belay Device FMF ValuesBlack Diamond Test Data

Page 35: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 35/48

34

Friction Device Force Multiplier Values

Variation with Rope Diameter - (HF side of variable devices)

0.0

5.0

10.0

15.0

     A     T     C

     A     t    o    g    a

     S     h    e    r     i     f     f

     B    u    g

     A     i    r     b    r    a     k    e

     A     i    r    s     t    y     l    e

     M    u    n     t    e    r

     P    y    r    a    m     i     d

     J    a    w    s

     V     C

     R    a    p     t    o    r

     C    u     b     i     k

     F     i    x    e

   F  o  r  c  e   M  u

   l   t   i  p   l   i  e  r

10.8 mm

9.9 mm9.4 mm

8.1mm

Belay Device FMF ValuesBlack Diamond Test Data

Page 36: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 36/48

35

Friction Device Force Multiplier Values (10.8mm rope)

Variation with Hand Force - (HF side of variable devices)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

     A     T     C

     A     t    o    g    a

     S     h    e    r     i     f     f

     B    u    g

     A     i    r     b    r    a     k    e

     A     i    r    s     t    y     l    e

     M    u    n     t    e    r

     P    y    r    a    m     i     d

     J    a    w    s

     V     C

     R    a    p     t    o    r

     C    u     b     i     k

     F     i    x    e

   F  o  r  c  e   M

  u   l   t   i  p   l   i  e  r

1.0 lb

18.4 lb

37.7 lb

Belay Device FMF ValuesBlack Diamond Test Data

Page 37: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 37/48

36

Comparison to Rigging for Rescue Drop-Test Data

• Measured values:5,626 N Peak Force, 184 cm slide distance, 231 cm FAS Extension

• Model values:

3003 N Peak Force, 184 cm slide distance, 219 cm FAS extension

Rigging for Rescue Drop-Test #2

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Time (s)

   F  o  r  c  e   (   N   )

0.0

0.5

1.0

1.5

2.0

2.5

   D   i  s   t  a  n  c  e   (  m   )

Rope Load

Climber position (m)

Slide Distance (m)

• Brake BarFMF determinedby trial anderror.

• FMF = 14.3gives a slidedistance equalto the measuredvalue

• Thisunderpredictsthe measuredpeak force

RFR Drop #2

1m drop3m rope length

200 kg test mass

210N hand setting

7/16 Sterling SS rope

RFR Drop #2200 mc

90 θ0.001 dt

3.00 L1.00 h366035 B

318 A10000 λ 

 _ra o

1 #_knots1,154,688 E

0 D783 C0.20 r

14.3 FMF

210 grip

Page 38: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 38/48

37

"Two Rope Mech Hand" set at 210 N

80kg mass 0 cm drop of 11 mm Sterling

Superstatic straightline pull through hand

0

100

200

300

400

500

0 0.4 0.8 1.2 1.6 2.0 2.4

Time (s)

   F  o

  r  c  e

   (   N   )

Rigging for Rescue

3/5/05: DT-62 Hand

Average 299 N

Comparison to Rigging for Rescue Drop-Test Data

• Slide distance is afunction of the average

mechanical hand force.

• Peak rope tension is afunction of the peakmechanical hand force.

• Any spikes in themechanical hand forcewill cause highermeasured peak forcevalues.

Rigging for Rescue Data – ITRS 2005

Page 39: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 39/48

38

Brake Bar FMF - 5 bars - Function of Hand Force

0

10

20

30

40

50

60

0 100 200 300 400 500

Hand Force (N)

   F   M   F

RFR Drop Tests - peak force

RFR Drop Tests - slide distance

Comparison to Rigging for Rescue Drop-Test DataBrake Bar FMF varies with Hand Force

Page 40: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 40/48

39

Brake Bar FMF Testing at

Black Diamond

   M

  o   t   i  o  n

Page 41: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 41/48

40

Brake Bar FMF Testing at Black Diamond

Brake Bar FMF - 5 bars - Function of Hand Force

0

10

20

30

40

50

60

0 100 200 300 400 500

Hand Force (N)

   F   M   F

RFR Drop Tests - peak force

RFR Drop Tests - slide distance

SMC slow pull tests - 11mm

Slow Pull Tests

Page 42: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 42/48

41

Brake Bar FMF - function of # of bars

at 223N (50 lb) Hand Force

4.0

6.0

8.0

10.0

12.0

14.0

16.0

3 4 5 6 7

# of bars

   F   M

   F

Brake Bar FMF Testing at Black Diamond

Page 43: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 43/48

42

Back to the Original Question

How do TTRL belays compareto climbing belays?

Gripping Ability Required for

Page 44: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 44/48

43

Required Gripping Ability

for Different Belay Scenarios

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 50 100 150 200 250 300 350 400

Gripping Ability (N)

   S   l   i   d  e   D   i  s   t  a  n  c

  e   (  m   )

Vertical TTRL, 5 bars, 200 kg, h=1, L=3

Toprope, ATC, ff0, L=45

UIAA fall, ATC, ff1.71, L=2.8

Low Angle TTRL, 6 bars, 600 kg,

preloaded drop, L=3Petzl Rope Burn

Gripping Ability Required forClimbing and Rescue Scenarios

How much slip is too much?

• BCCTR belay standard, 1mmaximum total extension.

• Petzl rope burn warning, 1800J

• Some belay device slip is good -

reduces peak force.

• Too much sliding increaseschance of collisions.

• A reasonable limit might be slidedistance less than fall height.

Averagehuman

gripping ability

Rope Stretch

Page 45: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 45/48

44

Rope Stretch

• Rope stretch is very important at longer rope lengths

• A preloaded rope is much better

Rope Elongation in Rescue Belay ScenariosLocked Belay - Sterling Superstatic Rope

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 10 20 30 40 50 60

Rope Length (m)

   T  o   t  a   l  r  o

  p  e  e   l  o  n  g  a   t   i  o  n   (  m   )

Low Angle Belay

Vertical Belay

Low Angle TTRL

Vertical TTRL

Edgetransition

1 m extension

Page 46: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 46/48

45

• The hand is preloaded in a TTRL belay• A TTRL belayer can optimize brake bar setup

• Reaction time may be longer for a TTRL belay.• TTRL belay may already be sliding.

• TTRL belayers typically wear gloves.

• TTRL belayers are not expecting to catch falls.

Differences Between Rescue Belaysand Climbing Belays

Page 47: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 47/48

46

• TTRL grip requirements are similar to climbing.

• Teams who prohibit manual devices should alsoprohibit them for lead climbing and rappelling.

• Brake bars are not very high friction devices.

• Unlikely that TTRL belay would ever meet 1mextension limit in the BCCTR test.

• The ideal rescue belay would be autolocking,force limiting and preloaded.

Conclusions

Page 48: Simulation of Climbing and Rescue Belays

8/2/2019 Simulation of Climbing and Rescue Belays

http://slidepdf.com/reader/full/simulation-of-climbing-and-rescue-belays 48/48

47

• Chuck Weber – PMI

• Paul Tusting and Kolin Powick – Black Diamond Equipment

• Carlo Zanantoni - CMT

• Mike Gibbs – Rigging for Rescue• Dave Custer – UIAA

• Steve Achelis – RescueRigger

• Garin Wallace – SMC• Marc Beverly and Steve Attaway

Thank You