Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic...

8
Simulation of A Rotary Magnetorheological Fluid Damper D. Harder, M.Sc. Prof. Dr. rer. nat. L. Fromme Prof. Dr.-Ing. R. Naumann

Transcript of Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic...

Page 1: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

Simulation of A Rotary MagnetorheologicalFluid Damper

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann

Page 2: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 2

Motivation• Design a speed-proportional rotary damper with magnetorheological fluid (MRF)

inside the damper.

• Create a model to analyze the behavior of the damper. Mathematical description of the MRF

Hysteresis modeling of the magnetization with the Jiles-Atherton model

Page 3: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 3

Fundamentals of MRF• MRF described as Bingham model

• 𝜏 = 𝜏𝐻sgn 𝛾 + 𝜂 𝛾

Newtonian fluid behavior

η – dynamic viscosity

𝛾 −shear rate

• 𝜏𝐻 = 𝐶 ∙ 271700 ∙ Φ1,5239 ∙ tanh 6,33 ∙ 10−6𝐻

C – constant for different carrier liquid

Φ – particle volume fraction

Page 4: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 4

Fundamentals of MRF• B – H curves of MRF

• 𝐵 = 1,91 ∙ Φ1,133 1 − exp 1 − 10,97𝜇0𝐻 + 𝜇0𝐻

Φ – particle volume fraction

𝜇0 − vacuum permeability

• 𝐻 =1

𝜇0 0,0911577 ∙ 𝑊 20,9527 ∙

𝑒−10,97 𝐵−1,91∙Φ1,133∙ Φ1,133 +

𝐵 − 1,91 ∙ Φ1,133

W – Lambert W function

Page 5: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 5

Model of the rotary damper• The shaft and the ring around the coil are

modeled as non magnetic material.

• The disk and the casing material was defined

as steel with two different cases.

– Without hysteresis

– With hysteresis

Page 6: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 6

Model of the rotary damper• Calculating the braking torque

𝑇 = 𝑇𝐻sgn 𝛾 + 𝑇𝜂 𝛾

with 𝑇𝐻 = 2𝜋𝑁𝑑𝑖𝑠𝑘 𝑅𝑖

𝑅𝑎 𝑟2 𝜏𝐻 𝑑𝑟

and 𝑇𝜂 = 2𝜋𝑁𝑑𝑖𝑠𝑘 𝑅𝑖

𝑅𝑎 𝑟2 𝜂 𝛾 𝑑𝑟

• Calculating the shear rate

𝛾 =𝑟𝜔

𝑔

with 𝜔 = 𝑀𝑎−𝑇 𝛾

𝐽𝑠𝑑𝑡

Page 7: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 7

Simulation Results• Design a speed-proportional rotary damper with magnetorheological fluid inside the

damper

• Create a model to analyze the behavior of the damper. Mathematical description of the MRF

Hysteresis modeling of the magnetization with the Jiles-Atherton model

Page 8: Simulation of A Rotary Magnetorheological Fluid Damper...Newtonian fluid behavior η–dynamic viscosity 𝛾 −shear rate • 𝜏𝐻= ∙271700∙Φ1,5239∙tanh6,33∙10−6𝐻

D. Harder, M.Sc.Prof. Dr. rer. nat. L. FrommeProf. Dr.-Ing. R. Naumann 8

Conclusion and Outlook• Create a model to analyze the behavior of the rotary damper.

Mathematical description of the MRF

Different MRFs can quickly implemented by changing only two variables

Hysteresis modeling of the magnetization with the Jiles-Atherton model

• In future projects this simulation model can be used to study different scenarios in more detail.