Simple ORC Model SQ110918

download Simple ORC Model SQ110918

of 9

description

Simple ORC Model SQ110918

Transcript of Simple ORC Model SQ110918

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 1EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    This simple model of an Organic Rankine Cycle is designed for a quick evaluation of the cycle performance with imposedheat source and heat sink conditions and different working fluids. It is suitable for the 'screening method' describe in Chapter5.3. For realistic performance prediction of an ORC, more advanced models must be used (such a the one proposed in Chapter4).

    Some inputs are commented. These inputs can be used provided some other inputs are removed (eg. the heat temperature canbe imposed if the equation imposing its flow rate of the working fluid rate is removed).This model is designed for subcritical operating conditions and azeotropic working fluids only.The model includes a recuperator, that can be removed by setting its effectiveness to zero.Thermodynamic digrams can be built by plotting the thermodynamic states recorded in the array table.

    This code is provided for educational purpose. It can be freely used and reproduced as long as full credit to the original sourceis provided:Quoilin, S. (2011). Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solarapplications. Unpublished doctoral thesis, University of Lige, Lige, Belgium.

    Sylvain Quoilin, 18 September 2011

    Nomenclature:cp heat capacity (j/kgK)E exergy flow rate (W)h specific enthalpy, J/(kg K)M mass flow rate, kg/sp pressure, Papinch pinch point value, KQ Heat power, Wq specific heat flux, W/kgr ratio, -s specific entropy, J/(kg K)T temperature, Cw specific work, J/kgW mechanical or electrical power, Wx vapor quality, -

    Greek symbols effectiveness differential efficiency density, kg/m3

    Subscripts and superscripts0 Reference conditionscd Condensercf Cold fluidev Evaporatorex Exhaustexp Expanderl Liquidpp Pumprec Recuperators Isentropicsf Secondary fluidsu Supplytp Two-phasev Vapor

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 2EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    Inputs and parameters :

    fluid$ = 'r245fa'

    M = 1

    T0 = 20

    pressures :

    Tev = 130

    Tcd = 30

    pinchev = 10

    pinchcd = 10

    heat source :

    hf$ = 'airha'

    phf;ev = 100000

    Mhf = 5

    heat sink :

    cf$ = 'airha'

    pcf;cd = 100000

    Mcf = 10

    Pressure drops in the heat exchangers :

    pev = 0

    pcd = 0

    Overheating and subcooling :

    Tex;ev = 5

    Tex;cd = 5

    Effectivenesses :

    exp = 0,8

    pp = 0,8

    rec = 0

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 3EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    rp = psu;exppex;exp

    rv = su;expex;exp

    First processing :

    Saturation pressures :

    Tev = Tsat fluid$ ; P =psu;ev

    Tcd = Tsat fluid$ ; P =pex;cd

    pev = psu;ev psu;exp

    pcd = pex;exp pex;cd

    pev = psu;ev + psu;exp

    2

    pcd = pex;exp + pex;cd

    2

    Tex;ev = Tsu;exp Tsat fluid$ ; P =psu;exp

    Tex;cd = Tsat fluid$ ; P =pex;cd Tex;cd

    Expansion :

    hsu;exp = h fluid$ ; T =Tsu;exp ; P =psu;exp

    ssu;exp = s fluid$ ; T =Tsu;exp ; P =psu;exp

    exp = hsu;exp hex;exphsu;exp hex;exp;s

    hex;exp;s = h fluid$ ; P =pex;exp ; s =ssu;exp

    tex;exp = T fluid$ ; P =pex;exp ; h =hex;exp

    ex;exp = fluid$ ; P =pex;exp ; T =tex;exp

    su;exp = fluid$ ; P =psu;exp ; T =Tsu;exp

    Condenser :

    hypothesis : the pressure drop is distributed in the heat exchanger proportionaly to the enthalpy change :

    hsu;cd = hex;vap;rec

    Tsu;cd = Tex;vap;rec

    hex;cd = h fluid$ ; P =pex;cd ; T =Tex;cd

    hcd;v = h fluid$ ; P =pcd;v ; x =1

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 4EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    hcd;l = h fluid$ ; P =pcd;l ; x =0

    pcd;v = pex;exp pcd hex;exp hcd;vhex;exp hex;cd

    pcd;l = pex;exp pcd hex;exp hcd;l

    hex;exp hex;cd

    Tcd;v = T fluid$ ; P =pcd;v ; x =1

    Tcd;l = T fluid$ ; P =pcd;l ; x =0

    hcf;su;cd = h cf$ ; T =tcf;su;cd ; P =pcf;cd

    Mcf hcf;ex;cd hcf;su;cd = M hsu;cd hex;cd

    Mcf hcf;su;tp hcf;su;cd = M hcd;l hex;cd

    Mcf hcf;ex;tp hcf;su;cd = M Min hcd;v ; hsu;cd hex;cd

    Tcf;ex;cd = T cf$ ; h =hcf;ex;cd ; P =pcf;cd

    Tcf;su;tp = T cf$ ; h =hcf;su;tp ; P =pcf;cd

    Tcf;ex;tp = T cf$ ; h =hcf;ex;tp ; P =pcf;cd

    Tcf;cd = Tcf;ex;cd tcf;su;cd

    pinchcd = Min Tex;cd tcf;su;cd ; Tcd;v Tcf;ex;tp ; Tsu;cd Tcf;ex;cd

    Pump :

    hsu;pp = hex;cd

    vsu;pp = v fluid$ ; P =pex;cd ; h =hex;cd

    ssu;pp = s fluid$ ; P =pex;cd ; h =hex;cd

    hex;pp = hsu;pp + vsu;pp psu;ev pex;cd

    pp

    Second method:

    hex;pp;s = h fluid$ ; s =ssu;pp ; P =psu;ev

    pp = hex;pp;s hsu;pp

    hex;pp;bis hsu;pp

    tex;pp = T fluid$ ; h =hex;pp ; P =psu;ev

    Recuperator :

    Pressure drop :

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 5EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    pvap;rec = pcd hex;exp hex;vap;rec

    hex;exp hex;cd

    pex;vap;rec = psu;vap;rec pvap;rec

    psu;vap;rec = pex;exp

    hsu;liq;rec = hex;pp

    Tsu;liq;rec = tex;pp

    p liq;rec = psu;ev

    Hsu;vap;rec = hex;exp

    Tsu;vap;rec = tex;exp

    pvap;rec = psu;vap;rec + pex;vap;rec

    2

    cp liq;rec = Cp fluid$ ; T =Tsu;liq;rec ; P =p liq;rec

    cpvap;rec = Cp fluid$ ; T =Tsu;vap;rec ; P =pvap;rec

    C liq;rec = M cp liq;rec

    Cvap;rec = M cpvap;rec

    Cmin;rec = Min C liq;rec ; Cvap;rec

    Cmax;rec = Max C liq;rec ; Cvap;rec

    Q rec = rec Cmin;rec Tsu;vap;rec Tsu;liq;rec

    Q rec = M Hsu;vap;rec hex;vap;rec

    Q rec = M hex;liq;rec hsu;liq;rec

    Tex;vap;rec = T fluid$ ; h =hex;vap;rec ; P =pvap;rec

    Tex;liq;rec = T fluid$ ; h =hex;liq;rec ; P =p liq;rec

    Evaporator :

    hsu;ev = hex;liq;rec

    Tsu;ev = Tex;liq;rec

    hex;ev = hsu;exp

    hev;l = h fluid$ ; P =pev;l ; x =0

    hev;v = h fluid$ ; P =pev;v ; x =1

    pev;l = psu;exp + pev hex;ev hev;l

    hex;ev hsu;ev

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 6EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    pev;v = psu;exp + pev hex;ev hev;vhex;ev hsu;ev

    Tev;l = T fluid$ ; x =0 ; P =pev;l

    Tev;v = T fluid$ ; x =1 ; P =pev;v

    secondary fluid :

    hhf;su;ev = h hf$ ; T =thf;su;ev ; P =phf;ev

    Mhf hhf;su;ev hhf;ex;ev = M hex;ev hsu;ev

    Mhf hhf;su;ev hhf;ex;tp = M hex;ev hev;l

    Mhf hhf;su;ev hhf;su;tp = M hex;ev hev;v

    Thf;ex;ev = T hf$ ; h =hhf;ex;ev ; P =phf;ev

    Thf;ex;tp = T hf$ ; h =hhf;ex;tp ; P =phf;ev

    Thf;su;tp = T hf$ ; h =hhf;su;tp ; P =phf;ev

    Thf;ev = thf;su;ev Thf;ex;ev

    pinchev = Min Thf;ex;ev Tsu;ev ; Thf;ex;tp Tev;l ; Thf;su;tp Tsu;exp

    T-s diagram :

    s1 = s fluid$ ; T =tex;pp ; P =psu;ev

    t1 = tex;pp

    p1 = psu;ev

    h1 = hex;pp

    s2 = s fluid$ ; T =Tex;liq;rec ; P =psu;ev

    t2 = Tex;liq;rec

    p2 = psu;ev

    h2 = hex;liq;rec

    s3 = s fluid$ ; P =pev;l ; x =0

    t3 = Tev;l

    p3 = pev;l

    h3 = hev;l

    s4 = s fluid$ ; P =pev;v ; x =1

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 7EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    t4 = Tev;v

    h4 = hev;v

    p4 = pev;v

    s5 = ssu;exp

    t5 = Tsu;exp

    h5 = hsu;exp

    p5 = psu;exp

    5 = Visc fluid$ ; T =Tsu;exp ; P =psu;exp

    k5 = k fluid$ ; T =Tsu;exp ; P =psu;exp

    s6 = s fluid$ ; h =hex;exp ; P =pex;exp

    t6 = tex;exp

    h6 = hex;exp

    p6 = pex;exp

    6 = Visc fluid$ ; T =tex;exp ; P =pex;exp

    k6 = k fluid$ ; T =tex;exp ; P =pex;exp

    6 = fluid$ ; T =tex;exp ; P =pex;exp

    s7 = s fluid$ ; h =hex;vap;rec ; P =pex;vap;rec

    t7 = Tex;vap;rec

    h7 = hex;vap;rec

    p7 = pex;vap;rec

    s8 = Min s5 ; s fluid$ ; P =pcd;v ; x =1

    t8 = Tcd;v

    h8 = Min hex;exp ; hcd;v

    p8 = Min pex;exp ; pcd;v

    s9 = s fluid$ ; P =pcd;l ; x =0

    t9 = Tcd;l

    h9 = hcd;l

    p9 = pcd;l

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 8EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    MM = MolarMass 'Toluene'

    s10 = s fluid$ ; h =hex;cd ; P =pex;cd

    t10 = Tex;cd

    h10 = hex;cd

    p10 = pex;cd

    s11 = s1

    t11 = t1

    h11 = h1

    p11 = p1

    T profile in heat exhangers :

    Thf;2 = Thf;ex;ev

    Thf;3 = Thf;ex;tp

    Thf;4 = Thf;su;tp

    Thf;5 = thf;su;ev

    Tcf;7 = Tcf;ex;cd

    Tcf;8 = Tcf;ex;tp

    Tcf;9 = Tcf;su;tp

    Tcf;10 = tcf;su;cd

    Efficiency :

    wexp = hsu;exp hex;exp

    wpp = hex;pp hsu;pp

    wnet = wexp wpp

    qev = hex;ev hsu;ev

    cycle = wexp wpp

    qev

    W net = wnet M

    W exp = wexp M

    W pp = wpp M

    Second law efficiency:

  • File:Z:\labo\these\final\modeles\simple_ORC_model.EES 24/02/2012 14:45:05 Page 9EES Ver. 8.940: #1206: Jean Lebrun, Laboratoire de Thermodynamique, Univ. Liege

    Ehf = Mhf hhf;su;ev hhf;0 T0 shf;su;ev shf;0

    shf;su;ev = s hf$ ; h =hhf;su;ev ; P =phf;ev

    hhf;0 = h hf$ ; T =T0 ; P =phf;ev

    shf;0 = s hf$ ; T =T0 ; P =phf;ev

    II = W netEhf

    Fluid quality at the end of the expansion :

    x = x fluid$ ; h =hex;exp ; P =pex;exp

    1000 1250 1500 1750 2000

    -50

    0

    50

    100

    150

    s [J/kg-K]

    T [C

    ]

    0,2 0,4 0,6 0,8

    R245fa