sihp7n60e

download sihp7n60e

of 8

Transcript of sihp7n60e

  • 8/17/2019 sihp7n60e

    1/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 1 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

    E Series Power MOSFET

    FEATURES

    • Low figure-of-merit (FOM) Ron x Qg

    • Low input capacitance (Ciss )

    • Reduced switching and conduction losses• Ultra low gate charge (Qg )

    • Avalanche energy rated (UIS)

    • Material categorization: for definitions of complianceplease see www.vishay.com/doc?99912 

     APPLICATIONS

    • Server and telecom power supplies

    • Switch mode power supplies (SMPS)

    • Power factor correction power supplies (PFC)

    • Lighting

    - High-intensity discharge (HID)

    - Fluorescent ballast lighting• Industrial

    - Welding

    - Induction heating

    - Motor drives

    - Battery chargers

    - Renewable energy

    - Solar (PV inverters)

    Notes

    a. Repetitive rating; pulse width limited by maximum junction temperature.b. VDD = 50 V, starting TJ = 25 °C, L = 13.8 mH, Rg = 25 Ω, I AS = 2.5 A.c. 1.6 mm from case.d. ISD ≤ ID, dI/dt = 100 A/µs, starting TJ = 25 °C.

    PRODUCT SUMMARY 

     VDS (V) at TJ max. 650

    RDS(on) max. at 25 °C ( Ω ) VGS = 10 V 0.6

    Qg max. (nC) 40

    Qgs (nC) 5

    Qgd (nC) 9

    Configuration Single

    N-Channel MOSFET

    G

    D

    S

    TO-220AB

    GDS

    Available

    ORDERING INFORMATION

    Package TO-220AB

    Lead (Pb)-free SiHP7N60E-E3

    Lead (Pb)-free and Halogen-free SiHP7N60E-GE3

     ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)

    PARAMETER SYMBOL LIMIT UNIT

    Drain-Source Voltage VDS

    600

     VDrain-Source Voltage TC = - 25 °C, ID = 250 µA 575

    Gate-Source Voltage VGS  ± 30

    Continuous Drain Current (TJ = 150 °C) VGS at 10 VTC = 25 °C

    ID7

     A TC = 100 °C 5

    Pulsed Drain Current a IDM  18

    Linear Derating Factor 0.63 W/°C

    Single Pulse Avalanche Energy b E AS 43 mJ

    Maximum Power Dissipation PD 78 WOperating Junction and Storage Temperature Range TJ, Tstg -55 to +150 °C

    Drain-Source Voltage Slope TJ = 125 °CdV/dt

    70 V/ns

    Reverse Diode dV/dt d 3

    Soldering Recommendations (Peak Temperature) c for 10 s 300 °C

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    2/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 2 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

    Notes

    a. Coss(er) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 % to 80 % VDSS.

    b. Coss(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 % to 80 % VDSS.

    THERMAL RESISTANCE RATINGS

    PARAMETER SYMBOL TYP. MAX. UNIT

    Maximum Junction-to-Ambient RthJA  - 62°C/W

    Maximum Junction-to-Case (Drain) RthJC - 1.6

    SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)

    PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

    Static

    Drain-Source Breakdown Voltage VDS  VGS = 0 V, ID = 250 µA 609 - - V

     VDS Temperature Coefficient ∆ VDS /TJ  Reference to 25 °C, ID = 1 mA  - 0.68 -  V/°C

    Gate-Source Threshold Voltage (N) VGS(th)  VDS = VGS, ID = 250 µA 2 - 4 V

    Gate-Source Leakage IGSS  VGS = ± 20 V - - ± 100 nA

     VGS = ± 30 V - - ± 1 µA

    Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 1

    µA VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 10

    Drain-Source On-State Resistance RDS(on)  VGS = 10 V ID = 3.5 A - 0.5 0.6 Ω

    Forward Transconductance gfs  VDS = 50 V, ID = 3.5 A - 1.9 - SDynamic

    Input Capacitance Ciss  VGS = 0 V, VDS = 100 V,

    f = 1 MHz

    - 680 -

    pF

    Output Capacitance Coss  - 39 -

    Reverse Transfer Capacitance Crss  - 5 -

    Effective Output Capacitance, EnergyRelated a

    Co(er) 

     VDS = 0 V to 480 V, VGS = 0 V

    - 34 -

    Effective Output Capacitance, TimeRelated b

    Co(tr) - 100 -

    Total Gate Charge Qg 

     VGS = 10 V ID = 3.5 A, VDS = 480 V

    - 20 40

    nCGate-Source Charge Qgs  - 5 -

    Gate-Drain Charge Qgd  - 9 -

    Turn-On Delay Time td(on) 

     VDD = 480 V, ID = 3.5 A, VGS = 10 V, Rg = 9.1 Ω

    - 13 26

    nsRise Time tr - 13 26

    Turn-Off Delay Time td(off)  - 24 48

    Fall Time tf  - 14 28

    Gate Input Resistance Rg f = 1 MHz, open drain - 1.1 - Ω

    Drain-Source Body Diode Characteristics

    Continuous Source-Drain Diode Current ISMOSFET symbol

    showing the

    integral reverse 

    p - n junction diode

    - - 7

     A 

    Pulsed Diode Forward Current ISM - - 18

    Diode Forward Voltage VSD TJ = 25 °C, IS = 3.5 A, VGS = 0 V - - 1.2 V

    Reverse Recovery Time trrTJ = 25 °C, IF = IS = 3.5 A,dI/dt = 100 A/µs, VR = 20 V

    - 230 - ns

    Reverse Recovery Charge Qrr - 1.9 - µC

    Reverse Recovery Current IRRM - 14 - A  

    S

    D

    G

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    3/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 3 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

    TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

     Fig. 1 - Typical Output Characteristics

     Fig. 2 - Typical Output Characteristics

     Fig. 3 - Typical Transfer Characteristics

     Fig. 4 - Normalized On-Resistance vs. Temperature

     Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

     Fig. 6 - Coss and Eoss vs. V DS

    VDS, Drain-to-Source Voltage (V)

       I   D ,

       D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e

      n   t   (   A   )

    0

    4

    8

    12

    16

    20

    0 5 10 15 20 25 30

    TOP 15 V14 V13 V12 V11 V10 V

    9 V8 V7 V

     

    6 V

    BOTTOM 5 V

    TJ = 25 °C

    3

    6

    9

    12

    VDS, Drain-to-Source Voltage (V)

       I   D ,

       D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e  n   t   (   A   )

    00 5 10 15 20 25 30

    TJ = 150 °C

    5 V

    TOP 15 V

    14 V

    13 V

    12 V

    11 V

    10 V

    9 V

    8 V

    7 VBOTTOM 6 V

    VGS, Gate-to-Source Voltage (V)

       I       D ,

       D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e  n   t   (   A   )

    0

    4

    8

    12

    16

    20

    0 5 10 15 20 25

    TJ = 25 °C

    TJ = 150 °C

    TJ, Junction Temperature (°C)

       R   D      S   (  o  n   ) ,   D  r  a   i  n  -   t  o  -      S  o  u  r  c

      e

    - 60 - 40 - 20 0 20 40 60 80 100 120 140 160

       O  n   R  e    s   i    s   t  a  n  c  e   (   N  o  r  m  a   l   i  z  e   d   )

    0

    0.5

    1

    1.5

    2

    2.5

    3

     VGS

     = 10 V

    ID = 3.5 A 

     VDS, Drain-to-Source Voltage (V)

       C  a  p  a  c   i   t  a  n  c  e   (  p   F   )

    100

    10

    0 200 400

    10 000

    1

    1000

    100 300 500 600

    Ciss

    Coss

    Crss 

     VGS

     = 0 V, f = 1 MHzCiss = Cgs + Cgd, Cds Shorted

    Crss = CgdCoss = Cds + Cgd

     

    0

    1

    2

    3

    4

    5

    6

     5

     50

     500

    0 100 200 300 400 500 600

       E

      o    s    s

       (  µ   J   )

       C  o    s    s

       (  p   F   )

     VDS

    Coss

    Eoss

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    4/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 4 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

     Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

     Fig. 8 - Typical Source-Drain Diode Forward Voltage

     Fig. 9 - Maximum Safe Operating Area

     Fig. 10 - Maximum Drain Current vs. Case Temperature

     Fig. 11 - Temperature vs. Drain-to-Source Voltage

    Qg, Total Gate Charge (nC)

       V      G      S ,

          G  a   t  e  -   t  o  -      S  o  u  r  c  e   V  o   l   t  a  g  e   (   V   )

    16

    4

      0

    24

    20

    12

    8

    0 10 20 30 40

     VDS = 480 V

     VDS = 300 V

     VDS = 120 V

     VSD, Source-Drain Voltage (V)

       I      S   D ,

       R  e  v  e  r    s  e   D  r  a   i  n   C  u  r  r  e  n   t   (   A   )

    0.1

    1

    10

    100

    0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    TJ = 150 °C TJ = 25 °C

     VGS

     = 0 V

     

     VDS, Drain-to-Source Voltage (V)

       I   D ,

       D  r  a   i  n   C  u  r  r  e  n   t   (   A   )

    * VGS

     > minimum VGS

     at which RDS(on) is specied

    IDM

     = Limited

    BVDSS Limited

    Operation in this AreaLimited by R

    DS(on)

    100 µs

    1 ms

    10 msTC = 25 °C

    TJ = 150 °C

    Single Pulse

    SLimited by R

    D (on)*

    0.01  

    0.1  

    1  

    10  

    100  

    1 10 100 1000

     

    TC, Case Temperature (°C)

       I   D ,

       D  r  a   i  n   C  u  r  r  e  n

       t   (   A   )

    25 50 75 100 125 150

    2

    4

    6

    8

    0

    TJ, Junction Temperature (°C)

       V   D   S ,

       D  r  a   i  n  -   t  o  -   S  o  u  r  c  e

    - 60 0 160

       B  r  e  a   k   d  o  w  n   V  o   l   t  a  g  e   (   V   )

    - 40 - 20 20 40 60 80 100 120 140

    525

    550

    575

    600

    625

    650

    675

    700

    725

    750

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    5/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 5 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

     Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case

     Fig. 13 - Switching Time Test Circuit

     Fig. 14 - Switching Time Waveforms

     Fig. 15 - Unclamped Inductive Test Circuit

     Fig. 16 - Unclamped Inductive Waveforms

     Fig. 17 - Basic Gate Charge Waveform

     Fig. 18 - Gate Charge Test Circuit

    0.01

    0.1

    1

    0.0001 0.001 0.01 0.1 1

       N  o  r  m  a   l   i  z  e   d   E   f   f  e  c   t   i  v  e   T  r  a  n       s   i  e  n   t

       T   h  e  r  m  a   l   I  m  p  e   d

      a  n  c  e

    Pulse Time ( s )

    Duty Cycle = 0.5

    0.2

    0.1

    Single Pulse

    0.05

    0.02

    Pulse width ≤ 1 µsDuty factor ≤ 0.1 %

    RD

    VGS

    RG

    D.U.T.

    10 V

    +-

    VDS

    VDD

    VDS

    90 %

    10 %

    VGS

    td(on)   tr   td(off)   tf

    RG

    IAS

    0.01 Ωtp

    D.U.T

    LVDS

    +

    - V

    DD

    10 V

    Vary tp to obtain

    required IAS

    IAS

    VDS

    VDD

    VDS

    tp

    QGS QGD

    QG

    VG

    Charge

    10 V

    D.U.T.

    3 mA

    VGS

    VDS

    IG ID

    0.3 µF

    0.2 µF

    50 kΩ

    12 V

    Current regulator

    Current sampling resistors

    Same type as D.U.T.

    +

    -

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    6/8

    SiHP7N60Ewww.vishay.com  Vishay Siliconix

     

    S15-0291-Rev. C, 23-Feb-15 6 Document Number: 91508

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

     Fig. 19 - For N-Channel

     

    Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon

    Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and

     reliability data, see www.vishay.com/ppg?91508 .

    P.W.Period

    dI/dt

    Diode recoverydV/dt

    Ripple ≤ 5 %

    Body diode forward drop

    Re-applied

    voltage

    Reverse

    recoverycurrent

    Body diode forwardcurrent

     VGS = 10 V

    ISD

    Driver gate drive

    D.U.T. lSD waveform

    D.U.T. VDS waveform

    Inductor current

    D =P.W.

    Period

    +

    -

    +

    +

    +-

    -

    -

    Peak Diode Recovery d V/ dt Test Circuit

     VDD

    •  dV/dt controlled by Rg•  Driver same type as D.U.T.

    • IS

    D

     controlled by duty factor “D”

    • D.U.T. - device under test

    D.U.T.Circuit layout considerations

    •  Low stray inductance

    •  Ground plane•  Low leakage inductance

    current transformer

    Rg

    Note

    a. VGS

     = 5 V for logic level devices

     VDD

    http://www.vishay.com/

  • 8/17/2019 sihp7n60e

    7/8

    Package Informationwww.vishay.com  Vishay Siliconix

     

    Revison: 14-Dec-15   1 Document Number: 66542

    For technical questions, contact: [email protected]

    THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

    TO-220-1

    Note

    • M* = 0.052 inches to 0.064 inches (dimension includingprotrusion), heatsink hole for HVM

    M*

    321

         L

         L      (     1      )

         D

         H      (     1      )

      Q

    Ø P

     A 

    F

    J(1)

    b(1)

    e(1)

    e

    E

    bC

    DIM.MILLIMETERS INCHES

    MIN. MAX. MIN. MAX.

     A 4.24 4.65 0.167 0.183

    b 0.69 1.02 0.027 0.040

    b(1) 1.14 1.78 0.045 0.070

    c 0.36 0.61 0.014 0.024

    D 14.33 15.85 0.564 0.624

    E 9.96 10.52 0.392 0.414

    e 2.41 2.67 0.095 0.105

    e(1) 4.88 5.28 0.192 0.208

    F 1.14 1.40 0.045 0.055

    H(1) 6.10 6.71 0.240 0.264

    J(1) 2.41 2.92 0.095 0.115

    L 13.36 14.40 0.526 0.567

    L(1) 3.33 4.04 0.131 0.159

    Ø P 3.53 3.94 0.139 0.155Q 2.54 3.00 0.100 0.118

    ECN: X15-0364-Rev. C, 14-Dec-15

    DWG: 6031

    Package Picture

     A SE Xi’an

  • 8/17/2019 sihp7n60e

    8/8

    Legal Disclaimer Noticewww.vishay.com  Vishay

     

    Revision: 02-Oct-12 1 Document Number: 91000

    Disclaimer

     ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE

    RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

     Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other

    disclosure relating to any product.

     Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or

    the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all

    liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,

    consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular

    purpose, non-infringement and merchantability.

    Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical

    requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements

    about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular

    product with the properties described in the product specification is suitable for use in a particular application. Parameters

    provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All

    operating parameters, including typical parameters, must be validated for each customer application by the customer’s

    technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,

    including but not limited to the warranty expressed therein.

    Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining

    applications or for any other application in which the failure of the Vishay product could result in personal injury or death.

    Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please

    contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

    No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by

    any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

    Material Category Policy  Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the

    definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council

    of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

    (EEE) - recast, unless otherwise specified as non-compliant.

    Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that

    all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

     Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free

    requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference

    to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21

    conform to JEDEC JS709A standards.