Signed edge domination numbers of complete tripartite graphs

46
Abdollah Khodkar Department of Mathematics University of West Georgia www.westga.edu/~akhodkar Joint work with Arezoo N. Ghameshlou, University of Tehran Signed edge domination numbers of complete tripartite graphs

description

Signed edge domination numbers of complete tripartite graphs. Abdollah Khodkar Department of Mathematics University of West Georgia www.westga.edu/~akhodkar Joint work with Arezoo N. Ghameshlou, University of Tehran. Overview. 1. Signed edge domination. 2. Previous Results. 3. New Result. - PowerPoint PPT Presentation

Transcript of Signed edge domination numbers of complete tripartite graphs

Page 1: Signed edge domination numbers of complete tripartite graphs

Abdollah KhodkarDepartment of Mathematics

University of West Georgia

www.westga.edu/~akhodkar Joint work with Arezoo N. Ghameshlou, University of Tehran

Signed edge domination numbers of complete tripartite graphs

Page 2: Signed edge domination numbers of complete tripartite graphs

2

Overview

2. Previous Results

1. Signed edge domination

3. New Result

Page 3: Signed edge domination numbers of complete tripartite graphs

3

e1 e2

e3

e6 e4

e5

Graph G = (V(G), E(G))

Closed neighborhood of e1 = N[e1] = {e1, e2, e3, e6}

Closed neighborhood of e5 = N[e5] = {e4, e5, e6}

Page 4: Signed edge domination numbers of complete tripartite graphs

4

Signed Edge Dominating Functions

B. Xu (2001): f : E(G) → {-1, 1}

∑y in N[x] f(y) ≥ 1, for every edge x in E(G).

1 1 11

1 -1

Weight of f = w(f) = 1+1+1=3 Weight of f = w(f) = 1+1+(-1)=1

γ′s (G) = Minimum weight for a signed edge dominating function

Page 5: Signed edge domination numbers of complete tripartite graphs

Signed Edge Domination Number of Complete Graph of Order 8

+1

-1

γ′s1(K8)=16-12=4

Max number of -1 edges:⌊(2n-2)/4 =⌋ ⌊(2(8)-2)/4⌋ =3

Page 6: Signed edge domination numbers of complete tripartite graphs

6

Best Lower Bound

B. Xu (2005)

Let G be a graph with δ(G) ≥ 1, then

γ′s (G) ≥ |V(G)| - |E(G)| = n - m.

This bound is sharp.

Problem: (B. Xu (2005))

Classify all graphs G with

γ′s (G) = n - m.

Page 7: Signed edge domination numbers of complete tripartite graphs

7

Karami, Khodkar, Sheikholeslami (2006) Let G be a graph of order n ≥ 2 with m edges. Then γ′s (G) = n - m if and only if 1. The degree of each vertex is odd;2. The number of leaves at vertex v = L(v) ≥ (deg(v) - 1 )/2.

n = 22

m = 24

γ′s (G) = -2 1

1

-1

-1

-1

1

-1

-11

1

1 -1

1

1

1

-1-1-1

1

-1-11

-1-1

Page 8: Signed edge domination numbers of complete tripartite graphs

8

Signed Edge k-Dominating Functions

A.J. Carney and A. Khodkar (2009): f : E(G) → {-1, 1}, k is a positive integer

∑y in N[x] f(y) ≥ k, for every edge x in E(G).

1 1 11

1 -1

Weight of f = w(f) = 1+1+1=3 Weight of f = w(f) = 1+1+(-1)=1

k=3, γ′s3(K3)=3 k=1, γ′s1(K3)=1

Page 9: Signed edge domination numbers of complete tripartite graphs

Signed Edge 1-Domination Numbers

+1

-1

k=1, γ′s1(K8)=16-12=4

Max number of -1 edges:⌊(2n-1-k)/4⌋

⌊(2(8)-1-1)/4⌋ =3

Page 10: Signed edge domination numbers of complete tripartite graphs

Signed Edge 3-Domination Numbers

+1

-1

k=3, γ′s3(K8)=18-10=8

Max number of -1 edges:⌊(2n-1-k)/4⌋

⌊(2(8)-1-3)/4⌋ =3

Page 11: Signed edge domination numbers of complete tripartite graphs

11

Signed Edge 5-Domination Numbers

+1

-1

k=5, γ′s5(K8)=20-8=12

Page 12: Signed edge domination numbers of complete tripartite graphs

12

A sharp lower bound for signed edge k-domination number

B. Xu (2005)Let G be a simple graph with no isolated vertices. Then

γ′s (G) ≥ |V (G)| − |E(G)|

A. J. Carney and A. Khodkar (2009)Let G be a simple graph with no isolated vertices and let G admit a SEkDF. Then

γ′sk (G) ≥ |V (G)| − |E(G)| + k -1

When k ≥ 2 the equality holds if and only if G isa star with k + b vertices, where b is a positive odd integer.

Page 13: Signed edge domination numbers of complete tripartite graphs

13

Upper Bounds

Conjecture: (B. Xu (2005))

γ′s (G) ≤ |V(G)| - 1 = n – 1,

where n is the number of vertices.

Trivial upper bound

γ′s (G) ≤ m,

where m is the number of edges

Page 14: Signed edge domination numbers of complete tripartite graphs

14

The conjecture is true for trees, because γ′s (G) ≤ m=n-1.

B. Xu (2003)

Let n ≥ 2 be an integer. Then

γ′s (Kn) = n/2 if n is even

and

γ′s (Kn) = (n − 1)/2 if n is odd.

Page 15: Signed edge domination numbers of complete tripartite graphs

15

S. Akbari, S. Bolouki, P. Hatami and M. Siami (2009)

Let m and n be two positive integers and m ≤ n. Then

(i) If m and n are even, then γ′(Km,n) = min(2m, n),

(ii) If m and n are odd, then γ′(Km,n) = min(2m − 1, n),

(iii) If m is even and n is odd, then

γ′(Km,n) = min(3m, max(2m, n + 1)),

(iv) If m is odd and n is even, then

γ′(Km,n) = min(3m − 1, max(2m, n)).

Page 16: Signed edge domination numbers of complete tripartite graphs

16

Alex J. Carney and Abdollah Khodkar (2010)Calculated the signed edge k-domination number for Kn and Km,n .

Page 17: Signed edge domination numbers of complete tripartite graphs

17

Signed edge domination numbers of complete tripartite graphs

The weight of vertex v V ∈ (G) is defined by f(v) =Σe E∈ (v) f(e), where E(v) is the set of all edges at vertex v.

Let f : E(G) → {-1, 1} be a SEDF of G : that is; ∑y∈ N[x] f(y) ≥ 1, for every edge x in E(G).

Page 18: Signed edge domination numbers of complete tripartite graphs

18

Our Strategy

Step 1: We find minimum weight for SEDFs of complete tripartite graphs that produce vertices of negative weight.

There is a vertex v of the graph Km,n,p such that f(v) < 0.

Step 2: We find minimum weight for SEDFs of complete tripartite graphs that do not produce vertices of negative weight.

For all vertices v of the graph Km,n,p, f(v) ≥ 0.

Page 19: Signed edge domination numbers of complete tripartite graphs

19

m=6

p=12

n=8

An example

-2

Assume f is a SEDF of K6,8,12 such that f(w) = -2.

w

Page 20: Signed edge domination numbers of complete tripartite graphs

20

m=6

p=12

n=8

An example

-2

Page 21: Signed edge domination numbers of complete tripartite graphs

21

m=6

p=12

n=8

-2

2 2

2 2

2

2

2

2

Page 22: Signed edge domination numbers of complete tripartite graphs

22

m=6

p=12

n=8

-2

2 2

4

4

4

4

4

4

-2 -2-2-2-2-2-2

Page 23: Signed edge domination numbers of complete tripartite graphs

23

m=6

p=12

n=8

-2

2 2

2

2

2

2

2

2

-2 -2-2-2-2-2-2

Page 24: Signed edge domination numbers of complete tripartite graphs

24

m=6

p=12

n=8

-2

2 2

2

2

2

2

2

2

-2 -2-2-2-2-2-2 0

Page 25: Signed edge domination numbers of complete tripartite graphs

25

m=6

p=12

n=8

-2

2 2

2

2

2

2

2

2

-2 -2-2-2-2-2-2 0

12 12 12 12 12 10

2 2 2

w(f)=38

Page 26: Signed edge domination numbers of complete tripartite graphs

26

m=6

p=12

n=8

An example

-4

w

Page 27: Signed edge domination numbers of complete tripartite graphs

27

m=6

p=12

n=8

-4

Page 28: Signed edge domination numbers of complete tripartite graphs

28

m=6

p=12

n=8

-4

4 4

4 4

4

4

4

4

-4 -2-4-4-4-4-4

4

Page 29: Signed edge domination numbers of complete tripartite graphs

29

m=6

p=12

n=8

-4

4 4

4 4

4

4

4

4

-4 -2-4-4-4-4-4

4

4 4 4 4

8 8 10 10 10

w(f)=34

Page 30: Signed edge domination numbers of complete tripartite graphs

30

m=6

p=12

n=8

An example

0

0

0

0 0

0

0

0 0 0 0 0 0

Let f be a SEDF of K6,8,12 such that f(v)≥ 0 for every vertex v.

Page 31: Signed edge domination numbers of complete tripartite graphs

31

m=6

p=12

n=8

0

0

0

0 0

0

0

0 0 0 0 0 0 2

2

2 4 2 2 2

2

2

2

2

2 2

w(f)=14

Page 32: Signed edge domination numbers of complete tripartite graphs

32

Lemma 1: Let m, n and p be all even and 1 ≤ m ≤ n ≤ p ≤ m+n. Let f be a SEDF of Km,n,p such that f(a) < 0 for some vertex a V ∈ (G). Then

If m ≠ 2, thenw(f) ≥ m2 − 5m + 3n + 4 if 2(m − 2) ≤ nw(f) ≥ −n2+4 + mn − m + n if 2(m − 2) ≥ n + 2 and n ≡ 0 (mod 4)w(f) ≥ −n2+4 + mn − m + n + 1 if 2(m − 2) ≥ n + 2 and n ≡ 2 (mod 4)

If m = 2, then w(f) ≥ n + 4. In addition, the lower bounds are sharp.

Page 33: Signed edge domination numbers of complete tripartite graphs

33

m

p

n

Sketch of Proof: m, n p are all even

-2k

w

Page 34: Signed edge domination numbers of complete tripartite graphs

34

m

p

n

-2k

There are (m+n+2k)/2 negative one edges at vertex w.

w

Page 35: Signed edge domination numbers of complete tripartite graphs

35

m

p

n

-2k

2k 2k

2k 2k

2k

2k

2k

2k

v

w

u

There are at most (n+p-2k)/2 negative one edges at u.

There are at most (m+p-2k)/2 negative one edges at v.

There are (m+n+2k)/2 negative one edges at w.

Page 36: Signed edge domination numbers of complete tripartite graphs

36

m

p

n

-2k

2k 2k

2k 2k

2k

2k

2k

2k

-2k-2k -2k-2k-2k-2k

There are (m+n+2k)/2 negative one edges at w.

There are at most (n+p-2k)/2 negative one edges at u.

There are at most (m+p-2k)/2 negative one edges at v.

-2k

Page 37: Signed edge domination numbers of complete tripartite graphs

37

m

p

n

-2k

2k 2k

2k 2k

2k

2k

2k

2k

-2k-2k -2k-2k-2k-2k -2k

w1

-2k+2

If 2k≤m-2, then (n-m)/2 vertices in W can have weight -2k+2 andthe remaining vertices in W can be joined to the remaining vertices in V.

Page 38: Signed edge domination numbers of complete tripartite graphs

38

When 2k≤m-2

Page 39: Signed edge domination numbers of complete tripartite graphs

39

Hence,w(f) ≥ mn + mp + np - 2 [m (n + p - 2k)/2 + ((n - m + 2k)/2) (m + p - 2k)/2 + ((n - m)/2) (n - m + 2k-2)/2 + ((p - n + 2k)/2) (m + n - 2k)/2] = 4k2 - 2nk + mn – m + n

We minimize 4k2 -2nk + mn-m+n subject to m ≤ n and 2 ≤ 2k ≤ m-2.

w(f) ≥ m2 − 5m + 3n + 4 if 2(m − 2) ≤ nw(f) ≥ −n2+4 + mn − m + n if 2(m − 2) ≥ n + 2 and n ≡ 0 (mod 4)w(f) ≥ −n2+4 + mn − m + n + 1 if 2(m − 2) ≥ n + 2 and n ≡ 2 (mod 4)

Page 40: Signed edge domination numbers of complete tripartite graphs

40

If m ≠ 1, then

if 2(m − 1) ≤ n − 1, then w(f) ≥ m2 − 3m + 2n + 1

if 2(m − 1) ≥ n + 1, thenw(f) ≥ (−n2 + 1)/4 + mn − m + n.

If m = 1, then w(f) ≥ 2n + 1.In addition, the lower bounds are sharp.

Lemma 2: Let m, n and p be all odd and 1 ≤ m ≤ n ≤ p ≤m+n. Let f be a SEDF of Km,n,p such that f(a) < 0 for some vertex a V ∈ (G).

Page 41: Signed edge domination numbers of complete tripartite graphs

41

m

p

n

m, n and p are all even and m + n + p ≡ 0 (mod 4)

0

0

0

0 2

0

0

0 0 0 0 2

0

2 2 2 2 2

2

2

2

2

2 2

w(f)=(m+n+p)/2

Page 42: Signed edge domination numbers of complete tripartite graphs

42

m

p

n

m, n and p are all even and m + n + p ≡ 2 (mod 4)

0

0

0

0 2

0

0

0 0 0 0 2

0

2 4 2 2 2

2

2

2

2

2 2

w(f)=(m+n+p+2)/2

Page 43: Signed edge domination numbers of complete tripartite graphs

43

A. Let m, n and p be even.

1. If m + n + p ≡ 0 (mod 4), then γ′s (Km,n,p) = (m + n + p)/2.

2. If m + n + p ≡ 2 (mod 4), then γ′s (Km,n,p) = (m + n + p+ 2)/2.

Main Theorem

B. Let m, n and p be odd.

1. If m + n + p ≡ 1 (mod 4), then γ′s (Km,n,p) = (m + n + p + 1)/2.

2. If m + n+ p ≡ 3 (mod 4), then γ′s (Km,n,p) = (m + n + p + 3)/2.

Let m, n and p be positive integers and m ≤ n ≤ p ≤ m+ n.

Page 44: Signed edge domination numbers of complete tripartite graphs

44

C. Let m, n be odd and p be even or m, n be even and p be odd.

1. If m + n ≡ 0 (mod 4), then γ′s (Km,n,p) = (m + n)/2 + p + 1.

2. If (m + n) ≡ 2 (mod 4), then γ′s (Km,n,p) = (m + n)/2 + p.

Main Theorem (Continued)

D. Let m, p be odd and n be even or m, p be even and n be odd.

1. If m + p ≡ 0 (mod 4), then γ′s (Km,n,p) = (m + p)/2 + n + 1.

2. If m + p ≡ 2 (mod 4), then γ′s (Km,n,p) = (m + p)/2 + n.

Page 45: Signed edge domination numbers of complete tripartite graphs

45

Thank You

Page 46: Signed edge domination numbers of complete tripartite graphs

46

Example

: People

: A and B are working on a taskA B

Proposal

-1

11

-1

-1

-1

-1

-1

1 1

Votes: Yes = 1 No = -1

Should the proposalbe accepted?