siemens DCB library

64
  Applications & Tools  Answers for industry. Cover GMC library for motion control  Sinamics DCC Application May 2013

Transcript of siemens DCB library

Page 1: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 1/64

 

 Applications & Tools Answers for industry.

Cover

GMC library for motion control 

Sinamics DCC

Application May 2013

Page 2: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 2/64

– 

2DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Siemens Industry Online Support

This article is taken from the Siemens Industry Online Support. The following linktakes you directly to the download page of this document:

http://support.automation.siemens.com/WW/view/en/72839973 

CautionThe functions and solutions described in this article confine themselves to therealization of the automation task predominantly. Please take into accountfurthermore that corresponding protective measures have to be taken up in thecontext of Industrial Security when connecting your equipment to other parts of theplant, the enterprise network or the Internet. Further information can be foundunder the Item-ID 50203404.

http://support.automation.siemens.com/WW/view/en/50203404 

Page 3: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 3/64

 

DCC GMC Library1.0, Item-ID: 72839973 3

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

s

SINAMICS

GMC Library

DCC block extension for motion control

Introduction 1

Block description of theGMC library 2

Installation 3

Requirements 4

Related literature 5

Contact 6

History 7

Page 4: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 4/64

–  Warranty and liability

4DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Warranty and liability

Note 

The Application Examples are not binding and do not claim to be completeregarding the circuits shown, equipping and any eventuality. The ApplicationExamples do not represent customer-specific solutions. They are only intendedto provide support for typical applications. You are responsible for ensuring thatthe described products are used correctly. These application examples do notrelieve you of the responsibility to use safe practices in application, installation,operation and maintenance. When using these Application Examples, yourecognize that we cannot be made liable for any damage/claims beyond theliability clause described. We reserve the right to make changes to these

 Application Examples at any time without prior notice.If there are any deviations between the recommendations provided in theseapplication examples and other Siemens publications – e.g. Catalogs – thecontents of the other documents have priority.

 

We do not accept any liability for the information contained in this document.

 Any claims against us – based on whatever legal reason – resulting from the use ofthe examples, information, programs, engineering and performance data etc.,described in this Application Example shall be excluded. Such an exclusion shallnot apply in the case of mandatory liability, e.g. under the German Product Liability

 Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,body or health, guarantee for the quality of a product, fraudulent concealment of adeficiency or breach of a condition which goes to the root of the contract(“wesentliche Vertragspflichten”). The damages for a breach of a substantialcontractual obligation are, however, limited to the foreseeable damage, typical forthe type of contract, except in the event of intent or gross negligence or injury to

life, body or health. The above provisions do not imply a change of the burden ofproof to your detriment.

 Any form of duplication or distribution of these Application Examples or excerptshereof is prohibited without the expressed consent of Siemens Industry Sector.

Page 5: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 5/64

–  Preface

DCC GMC Library1.0, Item-ID: 72839973 5

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Preface

Objective of the Application

The GMC library extends the standard library of Sinamics DCC. The containedblocks are freely interconnectable to realize different drive functions.

Main Contents of the library

•  positioning

•  compensating motions (master value switchover, offset, catch-up,synchronization)

•  electronic gearbox

•  cam

•  additional logic-, arithmetic- and system functions

Page 6: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 6/64

–  Table of contents

6DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Table of contentsWarranty and liability ................................................................................................... 4 

Preface .......................................................................................................................... 5 

Introduction ........................................................................................................ 7 

1.1  Introduction to the Drive Control Chart (DCC) ..................................... 7 

1.2  Libraries ................................................................................................ 8 

1.3 

Glossary for blocks ............................................................................... 9 

1.4 

Block connections .............................................................................. 11 

1.5  Byte Ordering ..................................................................................... 11 

1.6 

Direct interconnection of different data types ..................................... 11 

1.7 

Initialization of the blocks ................................................................... 12 

Block description of the GMC library ............................................................ 13 

2.1   ADDAZ ............................................................................................... 13 

2.2 

SPLINE ............................................................................................... 14 

2.3 

CAMD ................................................................................................. 16 

2.4  POSMC .............................................................................................. 19 

2.5  OFSSAV ............................................................................................. 23 

2.6 

OFSGEN ............................................................................................ 24 

2.7  GEAR ................................................................................................. 27 

2.8  INT_MR .............................................................................................. 29 

2.9 

WEBSFT............................................................................................. 31 

2.10 

MDCMP .............................................................................................. 33 

2.11  COUPLE ............................................................................................. 38 

2.12  SHEAR ............................................................................................... 49 

2.13 

EDC1 .................................................................................................. 52 

2.14  SAMP_TIME ....................................................................................... 57 

2.15  NOP_18 .............................................................................................. 58 

2.16 

 AND_W............................................................................................... 59 

2.17 

OR_W ................................................................................................. 60 

Installation ........................................................................................................ 61 

Requirements ................................................................................................... 62 

5  Related literature ............................................................................................. 63 

5.1 

Bibliography ........................................................................................ 63 

5.2  Internet l ink specifications .................................................................. 63 

6  Contact.............................................................................................................. 63 

History............................................................................................................... 64 

Page 7: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 7/64

1 Introduction

DCC GMC Library1.0, Item-ID: 72839973 7

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

1 Introduction

1.1 Introduction to the Drive Control Chart (DCC)

Drive Control Chart (DCC) for SINAMICS and SIMOTION means graphicconfiguration and expansion of the device functionality by means of freelyavailable control, calculation and logic blocks

Drive Control Chart (DCC) expands the facility for the simplest possible configuringof technological functions both for the SIMOTION motion control system and theSINAMICS drive system. This opens up a new dimension for users for adapting thespecified systems to the specific functions of their machines. DCC has norestriction with regard to the number of usable functions; this is only limited by theperformance capability of the target platform.

Figure 1-1

DCC comprises the DCC editor and the DCB library (block library withstandard DCC blocks).

The user-friendly DCC editor enables easy graphic configuration and a clearrepresentation of control loop structures as well as a high degree of reusability ofexisting charts.

The open-loop and closed-loop control functionality is defined by usingmultiinstance capable blocks (Drive Control Blocks, DCBs) from a pre-definedlibrary (DCB library) that are selected and graphically linked by dragging anddropping. Test and diagnostic functions allow verification of program behavior orthe identification of causes in the event of errors.

The block library contains a large selection of control, arithmetic and logic blocksas well as extensive open-loop and closed-loop control functions.

 All commonly used logic functions are available for selection (AND, XOR, On/Offdelay, RS flipflop, counters, etc.) for the logic operation, evaluation and acquisition

of binary signals. Numerous calculation functions, such as summation, division and

Page 8: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 8/64

1 Introduction

8DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

minimum/maximum evaluation are available for monitoring and evaluating numericvariables. In addition to the drive control, axial winder functions, PI controllers,ramp-function generators or sweep generators can be configured simply and

without problem. Almost unlimited programming of control structures is possible in conjunction withthe SIMOTION motion control system. These can then be combined with otherprogram sections to form an overall program.

Drive Control Chart for SINAMICS drives also provides a convenient basis forresolving drive-level open-loop and closed-loop control tasks directly in theconverter. This results in further adaptability of SINAMICS for the tasks set. Localdata processing in the drive supports the implementation of modular machineconcepts and results in an increase in the overall machine performance.

Figure 1-2

1.2 Libraries

Blocks are located in libraries that are imported as technology packages in theDCC editor.

Next to the Standard Sinamics DCC library there is the GMC library.

NOTE To use the GMC library the Standard library also has to be imported to the DCC-Editor!

Page 9: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 9/64

1 Introduction

DCC GMC Library1.0, Item-ID: 72839973 9

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

1.3 Glossary for blocks

 A block is displayed as follows:

ADDAZ

 Axis cycle DI AZ YP R Position value shifted

Position actual value 1 R XP1

Position actual value 2 R XP2

1

1

2

2

3

3

Block designator

Connection designator

Connection data type

 

It is identified using the following attributes:

Block designator

Each data type has its own block type. To simplify differentiation between theblocks for various data types with the same functionality, these are provided with aPostfix corresponding to the data type, whereby Postfix is not usually used for theReal and Bool data types (e.g. MUL_I: Integer-type multiplier, MUL: Real-type

multiplier). The following table lists commonly used extensions:

Table 1-1

Postfix for block designator Data type of the input/output variable

 _I Integer

 _D Double_Integer

 _W Word

 _R Real (optional)

 _B Bool (optional)

 _SI Short Integer

 _M Modulo

 _BY Byte

 _UI Unsigned Integer

 _US Unsigned Short Integer

 _UD Unsigned Double Integer

 _DW Double Word

 _LR Long Real

Page 10: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 10/64

1 Introduction

10DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

 

Connection designator

Table 1-2

Connection designator Application

X, X1, X2… Numeric input variable

Y, Y1, Y2… Numeric output variable

I, I1, I2… Binary input variable

Q, Q1, Q2… Binary output variable

IS Bitstring input (Word)

QS Bitstring outpt (Word)

If further inputs and outputs are used along with the primary input and output

variables (e.g. limit values, time data, substitute values, status displays), thedesignators from the pool of the primary input/output variables are not used. Thefollowing table shows the preferred designators for secondary variables:

Table 1-3

Connection designator Application

LU Input: High limit

LL Input: Lower limit value

SV Input: Setting value

S Input: Setting the setting value

R Input: Resetting the setting valueQU Output: Upper limit reached

QL Output: Lower limit reached

QF Output: Error indicator

QE Output: Y equals input X

QN Inverted binary variable

Connection data type

The abbreviated designators of the data types are listed in the following table.

Table 1-4

Abbreviation Bit width Data type in line

with IEC 61131-3

Description

BO 1 BOOL BOOLEAN

BY 8 BYTE Bitstring, Unsigned Integer

SI 8 SINT Signed Short Integer

DI 32 DINT Signed Double Integer

DW 32 DWORD Bitstring, Unsigned Integer

I 16 INT Signed Integer

R 32 REAL Floating Point Single Precision in line with

IEEE754

Page 11: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 11/64

1 Introduction

DCC GMC Library1.0, Item-ID: 72839973 11

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Abbreviation Bit width Data type in line

with IEC 61131-3

Description

LR 64 LREAL Floating Point Double Precision in line withIEEE754

T 32 SDTIME Floating Point Single Precision in line withIEEE754

W 16 WORD Bitstring, Unsigned Integer

 AID 32 - Larm ID

1.4 Block connections

Block connections display the interface of the DCBs, via which interconnectionbetween the blocks can be performed. A differentiation is made between

•  block output

•  block input

here, and these have the following properties:

•  Inputs are positioned on the left of the block and are the target of aninterconnection

•  Outputs are positioned on the right of the block and are the source of aninterconnection

1.5 Byte Ordering

When interconnecting the blocks, the byte ordering of the data does not have to betaken into consideration. During data type conversions and arithmetic operations,the byte ordering of the target system is implicitly taken into consideration. Anybyte swapping required for handling data beyond the system boundaries is carriedout by the system (e.g. byte swapping may have to be carried out in Big Endian

format before transferring data via Profibus).

1.6 Direct interconnection of different data types

When interconnecting blocks, the target and source must be of the same data type.

If the data types are different, there are special conversion blocks available whichallow the data type to be converted.

The following permissible implicit conversions are an exception. The table belowlists the permissible conversions.

The following data types, which can be interconnected without a conversion block,are another exception. In this case, the binary value of the output variable is

transferred unchanged as the input variable.

Page 12: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 12/64

1 Introduction

12DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Table 1-5

Input Output Description

WORD INT Interconnection of a word variable to an integer variableINT WORD Interconnection of an integer variable to a word variable

DWORD DINT Interconnection of a double word variable to a double integer

variable

DINT DWORD Interconnection of a double integer variable to a double word

variable

BYTE SINT Interconnection of a byte variable to a short integer variable

SINT BYTE Interconnection of a short integer variable to a byte variable

USINT BYTE Interconnection of an unsigned short integer variable to abyte variable 

BYTE USINT Interconnection of a byte variable to an unsigned shortinteger variable 

USINT SINT Interconnection of an unsigned short integer variable to ashort integer variable 

SINT USINT Interconnection of a short integer variable to an unsignedshort integer variable 

UINT WORD Interconnection of an unsigned integer variable to a wordvariable

WORD UINT Interconnection of a word variable to an unsigned integervariable

UINT INT Interconnection of an unsigned integer variable to an integer

variable

INT UINT Interconnection of an integer variable to an unsigned integer

variable

UDINT DWORDInterconnection of an unsigned double integer variable to adouble word variable 

DWORD UDINT Interconnection of a double word variable to an unsigneddouble integer variable 

UDINT DINT Interconnection of an unsigned double integer variable to adouble integer variable 

DINT UDINT Interconnection of a double integer variable to an unsigneddouble integer variable 

SDTIME REAL Interconnection of an SDTime variable to a real variable

1.7 Initialization of the blocks

Initialization determines the starting condition of the block. It is carried out by thesystem before the cyclical processing of the block. The sequence for initializing theindividual blocks is implemented in line with the configured priority and processsequence. At the time of initialization, the configured interconnections andconstants for a block are already active. At this point, the values from theinterconnection source are already available in a block. Should a block behave in aspecial way during initialization, this is described in the respective block descriptionunder "Initialization". In the case of initialization, the blocks must be assigned in a

time slice (SINAMICS) or to a task (SIMOTION).

Page 13: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 13/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 13

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2 Block description of the GMC library 

2.1 ADDAZ

adder with axis cycle limiting

Symbol

ADDAZ

 Axis cycle DI AZ YP R Position value shifted

Position actual value 1 R XP1

Position actual value 2 R XP2

Position actual value 3 R XP3

Position actual value 4 R XP4Position actual value 5 R XP5

Position actual value 6 R XP6

Position actual value 7 R XP7

Position actual value 8 R XP8

Brief description

The block adds 8 position values and limits the result to the specified axis cycle.

Mode of operation

The position output YP is obtained as follows

 AZ  XPiYP 

i

mod)(

8

1

∑=

=  

Output YP is limited to the range 0 ≤ YP < AZ. For a positive position overflow, YP jumps back

from a high (approx. AZ) to a low value (approx. 0).

I/O

Name Description Default

 AZ Axis cycle for the position output and all position inputs (0 means linear

axis)

36000

XP1 ... Position actual values 1 to .. 0.0

... XP8 ... position actual value 8 0.0

YP Position output value: (sum of XP1 to XP8) modulo AZO 0

Page 14: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 14/64

2 Block description of the GMC library

14DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.2 SPLINE

cam disk with 32 points (calculation)

Symbol

SPLINE

Type   I TYP FKT DI Result functions (pointer)

Start calculation   BO CAL QF BO Input error

Linear sections 1   W LM1

Linear sections 2   W LM2

 Abscissa value, point 1   R X1

Ordinate value, point 1   R Y1

 Abscissa value, point 2   R X2Ordinate value, point 2   R Y2

• • •   Abscissa value, point 31   R X31

Ordinate value, point 31   R Y31

 Abscissa value, point 32   R X32

Ordinate value, point 32   R Y32

Brief description

The SPLINE block calculates a characteristic comprising up to 32 points. The result of the

calculation is provided in tabular form as 3rd order functions. This segmentation means that the

complicated calculation can be calculated in slow time sectors, while curve values are accessed

in fast time sectors.

The functions can be evaluated by a type CAMD block. This block accesses up to 31 curve

segments, which are defined by points 1 to 32.

Mode of operation

Up to 32 points along a curve are defined at inputs X1, Y1 to X32, Y32. The X values must be in

an increasing sequence. The first point, whose X value is less than/equal to the X value of the

previous point, defines the number of points which are used. All additional points are ignored.

Example: X5 = 10.0; X6 = 0.0; → 5 points are evaluated.

The block calculates the curves, which connect the points, using a rising edge at input CAL. The

curve order number is defined by the value at input TYP:

Type Curve sections

0 3rd order. The gradient at point Xi is the same as the gradient between the

adjacent points = (Yi+1 - Yi-1) / (Xi+1 - Xi-1 )

1 1st order (straight line)

2 2nd order

3 3rd order. The gradient at point Xi is the same as the average value of the

gradients of the adjacent segments.

Page 15: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 15/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 15

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Individual sections can then be defined as straight line using inputs LM1 and LM2, if TYP is not

set to 1. In this case, LM1 and LM2 are evaluated bitwise. Each bit is assigned another curve

section. If the bit is set, then the section is shown as a straight line.

 Assignment: For example: Section 7 is the section between points (X7,Y7) and (X8,Y8).

Bit of LM1 or LM2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Section assigned to LM1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Section assigned to LM2 - 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

I/O

Name Description Default

CAL The calculation is started with a rising edge. The curve which has beenused up until now remains valid until the calculation has been completed. 0

LM1 Linear section 1. To specify individual straight line sections. 0

LM2 Linear section 2. To specify individual straight line sections. 0

X1,Y1

...

X32,Y32

32 points to specify the curve.

FKT Result function for SPLFKT. This output may only be connected with the

input of block type SPLFKT with the same name. This signals CAMD the

curve specification.

QF Input error. QF is set if X2 <= X1, or if there is not sufficient memory

available.

Page 16: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 16/64

2 Block description of the GMC library

16DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.3 CAMD

cam disk

Symbol

CAMD

Reference position   R XP YP R Position reference value

Reference velocity   R XV YV R Velocity setpoint

Calculation function   DI FKT COR DI Correction value

 Axis cycle length, input  DI AZI POV BO Positive position overflow

 Axis cycle length, output  DI AZO NOV BO Negative position overflow

Scaling, input (X axis)   R SCX QST BO Stopped for YP = AZO

Scaling, output (Y axis)   R SCY QF BO Group errorScaling, derivation   R SCV

 Absolute output   BO ABS

Stop for YP = AZO   BO STP

Restart after YP = AZO   BO TRG

Enable   BO EN

Brief description

The block calculates the ordinate value YP of a cam disk, associated with input quantity XP,

using mathematical functions.

The input position value represents the reference position of a master axis. The output position

YP is the position reference value for a slave drive. Position steps at the input are transferred, in

the absolute output  mode, to the slave. In the relative output  mode, the slave remains at the

actual position value for a master axis position jump.

Mode of operation

The cam disk function is configured from block SPLI32 from up to 32 points, and provides this

as mathematical functions at output FKT. This output is connected with input FKT of block

SPLFKT.

If another cam disk is to be selected in operation, then this is realized by changing-over input

FKT to another SPLI32 calculation block. In this case, changeover switches or multiplexers are

used.

The input and output position value are normalized using input quantities SCX and SCY

according to the following diagram. The derivative of the curve is output with the actual velocity

XV and the weighting factor SCV as reference velocity YV.

Page 17: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 17/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 17

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

XP

SCX

SCY

XV

SCV

YV

YP

POV

NOV

COR

 AZO

 

Absolute output

There is a clear assignment between the input and output position values, according the

characteristic of the curve, in the absolute output  mode (ABS = 1):

YP = characteristic(XP) modulo AZO

The absolute output  is only practical, if:

•  • The input and output are systems with linear axis (AZO = AZI = 0)

•  • The characteristic values for XP = 0 and XP = AZI are the same.

In both cases, position overflows (position jumps) only occur at position output YP, if it involves

a characteristic value less than 0 or greater than AZO.

Examples for absolute output

Characteristic Y(X)

 AZI0

 AZI

t

YP

XP

YP

XP AZI

 AZO

 AZO = 0 or AZO >>YP

t

Special case: YP is limited by AZO

X

Y

YP

XP AZI

 AZO

t

Special case: STP = 1 (stop for YP = AZO)

TRGPOV

NOV 

Relative output

For the relative output  of a curve, the return jump of the input position reference value XP

(sawtooth) is not transferred to the slave axis. This means that it is possible to attach original

characteristics seamlessly together ( i.e.:Y(0) = 0 ).

Example of relative output:

Page 18: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 18/64

2 Block description of the GMC library

18DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

When the sawtooth jumps back, the characteristic is attached, offset by the value Y(AZI). This

means, that at each cycle, YP grows by the value Y(AZI). If the range 0 ≤ YP < AZO is

exceeded or fallen below, a modulo AZO correction is made, which is designated with outputs

POV or NOV.

Characteristic Y(X)

 AZI0 X

Y  AZO

t

YP

XP

POV

Y(AZI)

 

I/O

Name Description Default

XP Reference position of a master axis 0.0

XV Reference velocity of a master axis 0.0

FKT Link to characteristic definition (block type SPLI32) 0

 AZI Axis cycle for the reference position (O = linear axis) 36000

 AZ0 Axis cycle for the output position reference value (O = linear axis) 36000

SCX Reference position scaling ( characteristic: X = XP / SCX ). 1.0

SCY Position reference value YP scaling ( characteristic: YP = Y(X) ⋅ SCY ) 1.0

SCV Scaling the derivative of the curve ( YV = dy/dx ⋅ XV ⋅ SCV ) 1.0

 ABS Absolute output of the curve: 0 = relative output; 1 = absolute output 0STP Stop for YP = AZO. For STP = 1 0

TRG Restart after the axis cycle limit AZO has been reached for STP = 1 0

EN Enable. For EN = 0 (not enabled), YP = 0 and YV = 0 1

YP Position reference value 0.0

YV Velocity setpoint 0.0

COR Correction value for jumps at YP due to limiting to the axis cycle for rotary

axis systems.

0

POV For the position correction YP = YP - COR, POV is set to 1 for the duration

of a processing cycle (position overflow for a positive direction of rotation).

0

NOV For the position correction YP = YP + COR, NOV is set to 1 for the

duration of a processing cycle (position overflow for a negative direction ofrotation).

0

QST Indicates that a stop was made for YP = AZO (to continue: TRG = 0 →1). 0

QF Group error : Not sufficient memory space or curve not valid 0

Page 19: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 19/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 19

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.4 POSMC

positioning block

Symbol

POSMC

Position actual value   R XP YP R Reference position

Velocity actual value   R XV YV R Reference velocity

Target position   R XPD YA R Reference acceleration

Following error window   R DXE COR DI Correction value

Target window   R DYE POV BO Positive position overflow

Max. velocity   R VMX NOV BO Negative position overflow

Max. acceleration   R AMX QP BO Positioning activeJerk   R JRK DON BO Position actual value in the target window

Position normalization   R NFX QXE BO Following error exceeded

Velocity normalization   R NFV QF BO Group error

 Axis cycle  DI AZ

Forwards   BO FWD

Backwards   BO BWD

 Absolute/relative positioning  BO ABS

Start   BO STR

Stop   BO HLT

 Accept actual values  BO SET

Enable   BO EN

Brief description

The POSMC block is a setpoint generator for position and velocity for positioning with either

linear or rotary axes. The setpoint characteristics are obtained as a result of the target position,

maximum velocity, maximum acceleration and their derivatives (jerk). The velocity and position

are calculated, under this secondary condition so that when the target position is reached,

velocity and acceleration go to zero.

The positioning operation within an axis cycle can either be absolute or, over any distances,

relative.

The acceleration parameters AMX and JRK should be selected, so that the drive can follow the

setpoints with the minimum following error. Under this prerequisite, precision positioning is

possible without overshoot.

Mode of operation

The block is de-activated for EN = 0; outputs YP and YV are zero. For SET = 1, the block is

transparent, i.e.: YP = XP and

YV = XV. The acceleration is calculated from the change of XV.

Every positioning operation starts with a 0→1 edge at start input STR (start pulse). YP is set to

XP by the start pulse. Positioning starts with the actual velocity and acceleration values.

Page 20: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 20/64

2 Block description of the GMC library

20DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Absolute positioning

For the absolute positioning, the position reference value YP runs from the initial value XP to the

target position XPD. The distance moved through is always less than the axis cycle length. Thedirection of motion for rotary axis systems is defined by inputs FWD and BWD:

AZ FWD BWD Direction of motion ( ABS = 1; * means any)

> 0 0 0 Shortest distance (when position from the motion, the next

possible standstill position is decisive)

> 0 0 1 Backwards

> 0 1 * Forwards

0 * * No alternatives, as it involves a linear axis

Relative positioning

For relative positioning, the position reference value YP changes by XPD with respect to the

initial value. XDP can be any size, which also means that positioning operations can be

executed over several axis cycles. The direction of motion is obtained from the sign of XPD. The

inputs FWD and BWD are not effective for relative positioning!.

Position overflows (YP > AZ) or underflows (YP < 0) are displayed at outputs POV and NOV,

and are corrected by the modulo AZ calculation in the range 0 ≤ YP < AZ.

t

Reference position YP

Ref. speed YV

dt

Reference

acceleration

 AMX

VMX

Rounding-off (da/dt)=

dt

 AMX

 

Changes during positioning

The input quantities can change during positioning. In this case, a new start pulse must be

generated. After this, an equalization operation takes place as transition into the new positioning

operation.

Jogging

Jogging mode is activated using inputs JGF or JGB. Positioning is not possible while jogging.

I/O

Name Description Default

Page 21: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 21/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 21

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

XP Position actual value (normalization NFX). This is transferred, for SET=1,

to output YP. This is used when starting positioning as initial position of

YP.

0.0

XV Velocity actual value. Accepted at output YV for SET=1. When starting

positioning, XV is the initial velocity.

0.0

XPD Absolute positioning: Target position

Relative positioning: Positioning distance

0.0

DXE Following error window (refer to QXE) 100

DYE Target window (refer to DON) 10.0

VMX Maximum velocity when positioning. This value must be > 0. Normalization

NFV applies. If the initial velocity is greater than VMX, an equalization

operation takes place. YV is > VMX during this operation.

10.0

 AMX Max. acceleration. Value must be > 0.

Units: Rotary axis [1/s²]; linear axis [m/s²]

10.0

Jerk = change in the acceleration per unit time for equalization.This value must be ≥ 0. JRK = 0 means that there is no rounding-off.

Units: Rotary axis [1/s³] linear axis [m/s³]

1000.0

NFX Position normalization:

Rotary axis: Number of LU per revolution

Linear axis: Number of LU per meter

Detailed description refer to Normalization NFX 

36000

NFV Velocity normalization: Factor to convert the user-specific speed

normalization into [rev./min] for a rotary axis or [m/min] for a linear axis.

This means that NFV is the speed in [RPM], which is to be displayed as

1.0. Examples:

User normalization Conversion NFV

1/s 60 s/min 60.0

mm/s 0.001 m/mm ⋅ 60 s/min 0.06

Detailed description refer to Normalization NFV 

1.0

 AZ Axis cycle for input and output position value 36000

VJG Velocity for jogging operation 0.0

JGF Jogging forwards (YV = VJG) 0

JGB Jogging backwards (YV = -VJG). JGB is only effective for JGF = 0. 0

FWD Forwards motion for absolute positioning and rotary axis (refer to the table

above)

1

BWD Backwards motion for absolute positioning, rotary axis and FWD = 0 0

 ABS 0: Relative positioning

1: Absolute positioning

0

STR Positioning start with a positive edge 0

SET For SET = 1, YP is set to XP and YV is set to XV. Any positioning

operation running is immediately cancelled. If SET = 0, positioning is not

continued.

0

EN Enable input. For EN = 0, YP = 0 and YV = 0. 1

YP Output, reference position 0.0

YV Output, reference velocity 0.0

YA Output, reference acceleration

Rotary axis: in [1/s²]; linear axis: in [m/s²]

0.0

COR Correction values for jumps in the position reference value 0

POV Positive position reference value overflow (COR was subtracted) 0

NOV Negative position reference value overflow (COR was added) 0

Page 22: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 22/64

2 Block description of the GMC library

22DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

QP 0: Positioning completed (YP = target position; YV = YA = 0)

1: Positioning

0

DON 0: Positioning or position actual value outside the target window

1: Positioning completed and the position actual value in the target

window

0

QXE 1: Setpoint/actual value deviation greater than the following error

window ( |XP - YP| > DXE )

0

QF Group error: Initialization: Not sufficient working memory; during operation:

Inputs VMX, AMX, NFX, NFV must be > 0; JRK must be ≥ 0

0

Page 23: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 23/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 23

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.5 OFSSAV

offset calculation

Symbol

OFSSAV

Position actual value   R XP YPD R Position difference XPS - XP

Position reference value   R XPS YPM R Shortest path

 Axis cycle  DI AZ

Save offset   BO S

Brief description

The block is used to sense the position offset. It generates the deviation between the reference

and actual position and the shortest path between two position values for rotary axis systems.

Mode of operation

The difference between the reference and actual position is calculated with a rising edge at

input S

( 0 → 1).

YPD = XPS - XP for S = 0 → 1

 At the same time, the shortest position change is calculated, in order to reach the reference

position from the actual position.

Examples ( AZ = 360 ):

XPS XP YPD YPM

350 10 340 -20

190 270 -90 -90

10 340 -330 30

I/O

Name Description Default

XP Position actual value 0.0

XPS Position reference value 0.0

 AZ Axis cycle for input and output position values 36000

S Calculate offset with rising edge 0

YPD Position difference (this is saved for S = 0 → 1) 0.0

YPM Shortest path between the position actual value and position reference

value.

0.0

Page 24: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 24/64

2 Block description of the GMC library

24DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.6 OFSGEN

offset input

Symbol

OFSGEN

Offset setpoint   R XP YP R Offset / position offset

Velocity for compensation   R VMX YV R Reference velocity

 Acceleration for compensation   R AMX COR DI Corrective value

Jerk   R JRK POV BO Positive position overflow

Position normalization   R NFX NOV BO Negative position overflow

Velocity normalization   R NFV DON BO Compensation ended

 Axis cycle  DI AZ QF BO Group error

Setting value   R SV Accept setting value  BO S

Start offset change   BO STR

 Absolute / relative offset   BO ABS

Compensation using forwards motion   BO FWD

Compensation using backwardsmotion

  BO BWD

Enable   BO EN

Brief description

The block is used to generate or change a position offset in the setpoint (reference value)

channel. The position offset is used to offset position reference values of other synchronous

operation functions.

Mode of operation

Compensation is started with a rising edge at start input STR. In this case, the position offset

output YP is transitioned to the new offset value, comparable with a positioning operation. The

characteristic for the compensation operation is specified by the maximum velocity VMX, the

maximum acceleration AMX and jerk JRK.

Absolute (ABS = 1)

In the ‘absolute’ mode (ABS =1), for compensation, the offset YP changes towards the new

offset setpoint XP. For rotary-axis systems, the absolute offset is limited to the axis cycle (XP

modulo AZ is used).

Page 25: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 25/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 25

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

For applications with rotary axis (AZ > 0) and ‘absolute’ operating mode (ABS = 1), there are

three compensation versions which can be selected:

AZ FWD BWD Direction of motion ( * means any)

> 0 0 0 Shortest distance

> 0 0 1 Backwards

> 0 1 * Forwards

0 * * Shortest distance

Relative (ABS = 0)

In the ‘relative’ mode (ABS = 0), the new offset value is given by

YP(new) = YP(old) + XP

taking into account the axis cycle for rotary axis systems. If a new compensation operation is

started during compensation which is already running, then the old operation is extended by the

value XP. For the relative mode, XP is not restricted by the axis cycle.

I/O

Name Description Default

XP Offset setpoint (absolute or relative) 0.0

VMX Maximum velocity for compensation. 1.0

 AMX Maximum acceleration for compensation.

Units: Rotary axis [1/s²] linear axis [m/s²]

1.0

JRK Jerk = change in the acceleration per unit time for compensation.

Units: Rotary axis [1/s³] linear axis [m/s³]

JRK = 0 means no rounding-off.

10.0

NFX Position normalization:

Rotary axis: Number of LU per revolution

Linear axis: Number of LU per meter

Detailed description refer to Normalization NFX 

36000

NFV Velocity normalization: Factor to convert the application-specific

speed normalization into [rev./min] for a rotary axis or [m/min] for a

linear axis. This means that NFV is the speed in [RPM], which is to be

displayed as 1.0. Examples:

User normalization Conversion NFV1/s 60 s/min 60.0

mm/s 0.001 m/mm ⋅ 60 s/min 0.06

Detailed description refer to Normalization NFV 

1.0

 AZ Axis cycle for input and output offset values 36000

SV Setting value for the offset 0.0

S For S = 1, the offset is set to the setting value. A compensation operation

which is already running, is cancelled. The setting function is also effective

for EN = 0.

0

STR The offset change is started with a 0→1 edge at STR 0

FWD Compensation operation always forwards; dominant over BWD 1

BWD Compensation operation always backwards 0

Page 26: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 26/64

2 Block description of the GMC library

26DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

EN 1: Enable offset input

0: No offset compensation for S = 0: YP = 0; YV = 0 for S = 1: YP = SV;

YV = 0

1

YP Position offset, added in the setpoint channel 0.0

YV Output, velocity setpoint during compensation 0.0

COR Correction value for steps/jumps in the position reference value 0

POV Positive position reference value overflow (COR was subtracted) 0

NOV Negative position reference value overflow (COR was added) 0

DON 0: Compensation operation running

1: Compensation operation completed

0

QF Group error: Initialization: Not sufficient working memory; during operation:

Inputs VMX, AMX, NFX, NFV must be > 0; JRK must be ≥ 0

0

Page 27: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 27/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 27

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.7 GEAR

gearbox block

Symbol

GEAR

Reference position   R XP YP R Position reference value

Reference velocity   R XV YV R Reference velocity

YV correction factor   R CYV COR DI Correction value

 Axis cycle, input   DI AZI POV BO Positive position overflow

 Axis cycle, output   DI AZO NOV BO Negative position overflow

Ratio, numerator   DI NM QF BO Group error

Ratio, denominator   DI DNSetting value   R SV

Set position   BO S

Enable   BO EN

Brief description

The gearbox block is used to convert speeds and/or axis cycles.

Mode of operationThe output speed YV (gradient of YP) is obtained from:

YV = XV ⋅ CXV ⋅ NM / DN

The ratio and axis cycles can be changed in operation. When changing the ratio, the output

speed jumps according to the formula shown above. If this is to be prevented, the ratio must be

varied via a ramp-function generator.

AZI AZO

CautionFor the case AZI ≠ AZO, the normalization for the reference velocity can change.

This depends on the interpretation of the position values, and is therefore

application-specific.

Example: DN = NM = 1; AZI = 360; AZO = 720

Page 28: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 28/64

Page 29: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 29/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 29

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.8 INT_MR

virtual master

Symbol

INT_MR

Reference velocity   R XV YP R Position reference value

Position normalization   R NFX YV R Reference velocity

Velocity normalization   R NFV COR DI Correction value

 Axis cycle  DI AZ POV BO Positive position overflow

Setting value   R SV NOV BO Negative position overflow

Set position   BO S QF BO Group error

Hold position   BO HLDEnable   BO EN

Brief description

The virtual master generates a position reference value for linear or rotary axis systems from a

specified reference velocity (which is entered via a ramp-function generator!).

Mode of operation

The inter-relationship between position and velocity is specified using the normalization inputsNFX and NFV.

I/O

Name Description Default

XV Reference velocity of the master axis 0.0

NFX Position normalization:

Rotary axis: Number of LU per revolution

Linear axis: Number of LU per meter

Detailed description refer to Normalization NFX 

36000

NFV Velocity normalization: Factor to calculate the user-specific speed

normalization into [rev./min] for a rotary axis or [m/min] for a linear axis.

This means that NFV is the speed in [RPM], which is to be displayed as

1.0. Examples:

User normalization NFV

1/s 60.0

mm/s 0.06

Detailed description refer to Normalization NFV 

1.0

 AZ Axis cycle for an output position reference value (O = linear axis) 36000

SV Setting value for the position output YP 0.0

S Set position YP (level-active) 0

HLT Hold position (level-active) 0

Page 30: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 30/64

2 Block description of the GMC library

30DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

EN Enable. For EN = 0 (not enabled), YP = 0 and YV = 0 1

YP Position reference value 0.0

YV Velocity reference value 0.0COR Correction value for jumps at YP due to limiting to the axis cycle for rotary-

axis systems.

0

POV For the position correction YP = YP - COR, POV is set to 1 for the duration

of a processing cycle (position overflow for a positive direction of rotation).

0

NOV For the position correction YP = YP + COR, NOV is set to 1 for the

duration of a processing cycle (position overflow for a negative direction of

rotation).

0

QF Group error : Not sufficient memory space available 0

Page 31: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 31/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 31

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.9 WEBSFT

measured value offset

Symbol

WEBSFT

Position actual value R XP YP R Measured value offset (shift)

Measured value 1 R XM1 QV BO Output YP valid (pulse)

Measured value 2 R XM2 QF BO Group error

Position offset R DX YPD R Difference of measured values

Max. measured value number I NMX MWY R average of measured values

 Axis cycle DI AZ

Save measured value BO SAVDelete measured value memory BO CLR

Enable BO EN

Brief description

The WEBSFT block is used for material tracking, especially to track measured offset values. In

this case, the measured value is first saved, and after the material web has been moved

through the required distance, is output again.

Mode of operation

The difference (XM1 - XM2) is saved as the measured value. This means, e.g. that a offset

actual value is formed from a reference and actual position.

This is saved with the rising edge at input SAV. After the position XP has changed by more than

DX, the measured value is output at YM. At the same time, QV is set to 1 for one processing

cycle.

This block can save up to NMX measured values. If more than NMX values are saved within the

shift range, then measured values are lost!

If the position offset DX is changed, this also affects the already saved measured values.

Measured values are output in the same sequence in which they were saved. This guarantees

the consistency of the output data.

Measured values should only be saved, as long as the machine moves in the same direction. In

all of the other cases, no values should be saved, or values, which are of no practical use,

should be deleted by deleting the measured value memory (CLR).

 At the output YPD the block gives the difference to the last measured value (new value – old

value).

 At the output MWY the block gibes the mean value of all measured values.

Page 32: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 32/64

2 Block description of the GMC library

32DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

I/O

Name Description Default

XP Position actual value 0.0

XM1 Measured value 1 0.0

XM2 Measured value 2 0.0

DX Position offset (shift) 0.0

NMX Maximum number of measured values (initialization input) 32

 AZ Axis cycle for output position reference value (O = linear axis) 36000

SAV Save measured value (edge-active; with an increasing edge at input SAV) 0

CLR Delete measured value memory (level-active) 0

EN Enable. For EN = 0 (not enabled), YP = 0.0. 1

YP Position reference value 0.0

YPD Difference: new value – old value 0.0

MWY Mean value of all measurements 0.0

QV Output YP valid. QV is set to 1 for one cycle for a valid YP value. 0

QF Group error : Not sufficient memory space available or more measured

values saved than specified with NMX

0

Page 33: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 33/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 33

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.10 MDCMP

basic and equalization functions for Motion Control

Symbol

MDCMP1

1. Position ref. value R XP1 YP R Reference position

1. Velocity setpoint R XV1 YV R Reference velocity

2. Position ref. value R XP2 COR DI Correction value

2. Velocity setpoint R XV2 POV BO Positive position overflow

Channel selection BO SEL NOV BO Negative position overflow

Setting value, position R SV DON BO Equalization completed

Dynamic position offset R OFS QRF BO ReferencedCorrection value for the position act.

valueR XCP QER BO Enable referencing

Relative velocity for equalization R VMX QST BO Standstill

Relative acceleration for equalization R AMX QF BO Group fault

Jerk R JRK

Position normalization R NFX

Velocity normalization R NFV

 Axis cycle DI AZ

Set position BO S

Correct position actual value BO CP

Static offset compensation BO SOC

Equalization using forwards motion BO FWD

Equalization using reverse motion BO BWD

Hold BO HLT

Jog velocity R VJG

Jogging forwards BO JGF

Jogging backwards BO JGB

Referencing velocity R VRF

Referencing mode I MDR

Referencing BO REF

Reference point detected BO SYN

Initial position R XHM

Traverse to the initial position BO POS

Brief description

This block generates the setpoint/reference values for various basic functions for closed-loop

position controlled operation of a drive. In this case, this includes the "local operating modes" -

 jogging, referencing and positioning, to an output position.

In addition to the local mode, there is also a synchronous operation mode, where, the position

reference value and speed setpoint at the block input (if required, with constant offset) are

switched through to the output. The setpoints can be switched-over, jerk-free to each of the two

external sources.

Page 34: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 34/64

2 Block description of the GMC library

34DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

 All transition functions are subject to the specified velocity and acceleration values.

Mode of operation

To select the actual block mode, the following priority list applies (* = any; DOC and SOC can

occur simultaneously):

Priority S HLT JGF JGB REF POS SOC Operating mode

1 1 * * * * * * Setting function

2 0 1 * * * * * Stopping

3 0 0 1 * * * * Jog with speed VRF

4 0 0 0 1 * * * Jog with speed -VRF

5 0 0 0 0 1 * * Referencing

6 0 0 0 0 0 1 * Position after XHM7 0 0 0 0 0 0 0→1 Static offset compensation for synchronous operation

(aligning)

8 0 0 0 0 0 0 0 Synchronous operation (if require with internal offset

between YP and XP)

Local operation

For HLT = 1, the reference (setpoint) velocity is ramped-down to standstill corresponding to

 AMX, JRK. Standstill is displayed at output QST (QST=1).

In the jogging mode, for JGF = 1, the reference (setpoint) velocity is ramped-up to the values

specified at VJG; for JGB = 1 to the value -VJG. When changing the value VJG the new velocityis tracked via ramps (AMX, JRK).

For POS=1, the position reference value is positioned to the initial position XHM. The maximum

velocity for positioning is VMX. If XHM is changed, the system positions to the new output

position. When stationary, XHM should be a constant position value (i.e. not entered from an

analog channel) in order to avoid continually initiating new positioning operations. This would

result in an unnecessarily high processor loading of the module.

The referencing mode is activated by REF=1. At the start of referencing, outputs QRF=0 (not

referenced) and QER=1 (enable referencing) are set. After this, the velocity ramps-up to VRF.

When the reference point is reached, this must be displayed as rising edge at input SYN.

Output QER is then set to 0 and QRF set to 1.

There are 4 different versions of the referencing procedure which are selected at input MDR.

MDR Behavior when referencing

0 Referencing not possible. Set this mode when using absolute value encoders.

1 The reference velocity remains, also after passing the reference point to VRF to

REF=0, or another mode is activated.

2 After the reference point has been passed the drive remains stationary.

3 After passing the reference point the drive continues to traverse to the initial

position XHM where it then remains stationary.

4 After passing the reference point, the drive positions itself to the initial position

XHM. Positioning also depends on the data entered at inputs VMX, AMX, JRK,

FWD and BWD.

Page 35: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 35/64

Page 36: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 36/64

2 Block description of the GMC library

36DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Direction of the equalization operation

For rotary axis application (AZ > 0) three equalization sequence operations are available. The

inputs FWD and BWD are evaluated for static offset compensation (SOC), when the setpointchannel is changed (SEL), positioning (POS) and referencing in the mode MDR=4.

AZ FWD BWD Motion direction ( * means any)

> 0 0 0 Shortest distance

> 0 0 1 Backwards

> 0 1 * Forwards

0 * * Shortest distance

XCP, CP

If the position actual value and position reference value are changed as step function, thenconnections I/O XCP and CP become active. At the same time as the setpoint step, the position

change is entered at XCP and is transferred as correction to the position actual value with a

rising edge at CP. This function is, e.g. required, if for "flying referencing", the setpoint is to be

simultaneously adapted.

I/O

Name Description Default

XP1 1st position reference value. Evaluated when SEL=0 0.0

XV1 1st velocity setpoint. Evaluated when SEL=0 0.0

XP2 2nd position reference value. Evaluated when SEL=1 0.0

XV2 2nd velocity setpoint. Evaluated when SEL=1 0.0

SEL Selects the setpoint channel: SEL=0 selects XP1, XV1 0

SV Setting value, position 0.0

OFS Dynamic position offset 0.0

XCP Correction value for the position actual value. For a rising edge at CP, the

position actual value is increased by XCP as correction (outputs COR,

POV, NOV).

0.0

VMX Max. relative velocity for the equalization sequence (XV). The equalization

sequence is superimposed on the synchronous operation YV. This means

that the sum of XV and dv act at output YV which means that values

greater than the rated drive velocity can be obtained!

100.0

 AMX Max. relative acceleration for the equalization sequence. The effective

acceleration is the sum of the equalization and synchronous operation.

Units: Rotary axis [1/s²] Linear axis [m/s²]

100.0

JRK Jerk = Change in the acceleration per unit time for the equalization

sequence.

Units: Rotary axis [1/s³] Linear axis [m/s³]

JRK = 0 means no rounding-off.

1000.0

NFX Position normalization:

Rotary axis: Number of LU per revolution

Linear axis: Number of LU per meter

Detailed description refer to Normalization NFX 

36000

Page 37: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 37/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 37

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

NFV Velocity normalization: Factor to convert the application-specific speed

normalization in [RPM] for the rotary axis or [m/min] for the linear axis. NFV

is the velocity in m/min (rotary axis: Speed in RPM), which should be

displayed as 1.0. This is effective for connections I/O XV, YV, VJG, VRF,VMX.

Examples:

User normalization Conversion NFV

1.0 = 11/s  1

1/s = 60

1/min  60.0

1.0 = 1mm

/s  1mm

/s  = 0.06m/ min  0.06

Detailed description refer to Normalization NFV 

1.0

 AZ Axis cycle for the input and output position value 36000

S Set position. For S = 1, equalization sequences which have not been

completed, are cancelled.

0

CP Correct the position actual value. The position actual value is increased by

XCP with a rising edge.

0

SOC Static offset compensation, edge triggered 0

FWD Equalization sequence, always forwards; dominant with respect to BWD 1

BWD Equalization sequence, always backwards 0

HLT Hold. For HLT=1, the reference velocity goes to zero. 0

VJG Velocity for jogging 0.0

JGF Jogging with velocity VJG 0

JGB Jogging with velocity - VJG 0

VRF Velocity for referencing 0.0

MDR Mode for the behavior after passing the reference point (refer to the table

above)

0

REF Enable referencing 0

SYN A rising edge at SYN signals that the reference point is passed in the

referencing mode.

0

XHM Initial position. This position is approached when positioning or when

referencing (MDR=3 or MDR=4).

0.0

POS Positioning as long as POS = 1, the initial position XHM is approached. 0

YP Output, position reference value 0.0

YV Output, velocity setpoint 0.0

COR Correction value for steps in the position reference value 0

POV Positive overflow of the position setpoint (COR is subtracted) 0

NOV Negative overflow of the position reference value (COR is added) 0

DON 0: Equalization sequence (dynamic or static offset compensation or modechangeover active)

1: Equalization sequence completed

0

QRF Referenced. This is used, for example, to enable a position controller. 1

QER Enable referencing. This is used, e.g. to enable synchronization

(input SP at block NAVMC)

0

QST Standstill: Indicates that the reference speed YV=0. 0

QF Group fault: Initialization: Insufficient working memory; during operation:

Inputs VMX, AMX, NFX, NFV must be > 0; JRK must be ≥ 0.

0

Page 38: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 38/64

2 Block description of the GMC library

38DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.11 COUPLE

engage/disengage (coupling)

Symbol

COUPLE

Reference position   R XP YP R Position setpoint

Speed actual value   R XV YV R Setpoint speed

Stall position   R XPS YDT R Transient duration

Position offset setpoint   R DYP COR DI Positioning correction value

Local speed   R VLC POV BO Positive overflow

Transient speed   R VMX NOV BO Negative overflow

Transient acceleration   R AMX QSY BO Synchronous operationJerk   R JRK QLC BO Local operation

Normalization factor position   R NFX QST BO Stand still

Normalization faktor speed   R NFV QTR BO Transient operation

 Axis cycle  DI AZ DON BO Transient finished

axis cycle   DI CV QF BO Group error

Correction value   BO CP YF W StatusInfo Block

Set value position   R SV

Set YP=SV   BO S

Stop immediately   BO HLT

Stop at XPS   BO STP

Synchronous operation (YP=XP)   BO SYP

Speed sychronous operation   BO SYN

Local operation   BO LOC

Overdrive permitted   BO OVD

Forwards   BO FWD

Backwards   BO BWD

Enable   BO EN

Brief description

This block is used to engage or disengage a drive from a drive group. In the disengaged

condition (clutch open), the drive run with any local velocity, which can also be zero.

The transition from local operation to synchronous operation (engaging) or vice versa

(disengaging) is realized using specified jerk and acceleration values.

The block calculates the selected transitions and outputs these corresponding to its configured

sampling time. These values are used as pure setpoint values for the subordinate (lower level)

drives in open-loop controlled operation. Drive actual values that are read back are not taken

into account (closed-loop controlled operation).

The block can be operated either position or speed dependent. In the speed-dependent mode,

engaging and disengaging are realized as fast as possible. The position at standstill and the

offset between the input position XP and the output position YP are randomly obtained in

speed-dependent operation.

Page 39: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 39/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 39

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

In the position-dependent mode, the engaging and disengaging functions are superimposed

with positioning. The drive then comes to a standstill at the standstill position or after engaging,

there is offset DYP between XP and YP.

YP = XP + DYP

Every operating mode can be activated using an input, whereby the operating data are

staggered according to priority. It is not possible to re-calculate equalization motion in order to

enter changed limit values for speed (VMX), acceleration (AMX) or jerk (JRK).

The remaining duration of the actual equalization motion in seconds is calculated in advance

and is available at output YDT.

Mode of operation

The block has several operating modes. To activate a mode, the associated input should be set

to 1. The control inputs are prioritized according to the following table (* = any input; 1 has thehighest priority):

Priority S HLT STP SYP SYN LOC Operating mode Input

1 1 * * * * * Setting function: YP = SV -

2 0 1 * * * * Shutdown (as fast as possible; any position) -

3 0 0 1 * * * Hold at the shutdown position XPS XPS

4 0 0 0 1 * * Synchronous operation with YP = XP+DYP DYP

5 0 0 0 0 1 * Synchronous operation with undefined offset between XP and

YP

-

6 0 0 0 0 0 1 Operation with local velocity VLC VLC

7 0 0 0 0 0 0 Shutdown (as a mode is not active) -

For several operating modes, an associated input is continuously monitored (refer to the table

above). If this input quantity changes, a new operating point is automatically approached.

Example:

Operation in local velocity is active (LOC = 1). After VLC has been changed, the output velocity

YV transitions to the new value YV = VLC according to the specified dynamic response (AMX,

JRK).

Example – catching-up in synchronous positioning operation (SYP):

The transition from one operating mode into a closed-loop position controlled operating mode(SYP or STP) is realized in an equalization operation; this is specified by the maximum velocity

VMX, the maximum acceleration AMX and jerk JRK.

For operating modes with a defined end position, (SYP or STP) for OVD = 0, the transition state

is delayed long enough so that after the equalization operation has been completed, the

required position has been reached.

Caution! If, when catching-up in synchronous positioning operation, the leading (master) axis is

stationary then the following (slave) axis remains in the previous operating mode until the

leading (master) axis has reached a velocity that is not equal to zero.

Page 40: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 40/64

2 Block description of the GMC library

40DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

SYP = TRUE

SYP = TRUE

Position of the leading (master) axis (XP)

Position of the following (slave) axis (YP)

XP YP

tLOC = TRUE

 AZ

tLOC = TRUE

Velocity of the leading (master) axis (XV)

Velocity of the following (slave) axis (YV)

XV YV

VLC

Transition from local operation into synchronous operation with OVD = FALSE

 When overcontrol is enabled (OVD = 1) then the operating mode is changed as quickly as

possible into the new operating mode. In this particular case, speed increases of up to VMX are

possible. Further, it is also possible that during the transition operation, the axis direction

changes. Catching-up is even possible with a stationary leading (master) axis.

Page 41: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 41/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 41

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Position of the leading (master) axis (XP)

Position of the following (slave) axis (YP)

XP YP

tLOC = TRUE SYP = TRUE

 AZ

tLOC = TRUE SYP = TRUE

Velocity of the leading (master) axis (XV)

Velocity of the following (slave) axis (YV)

XV YV

VLC

Transition from local operation into synchronous operation with OVD = TRUE

 

Data at connections BDW and FWD have no significance for pure catching-up in synchronous

positioning operation (SYP).

Example – offset change in synchronous positioning operation (SYP):

If, in synchronous operation, the value at input DYP changes, then equalization motion takes

place; after this has been completed, the new offset DYP is present between YP and XP.

The values at inputs FWD and BWD are only effective for a transition at a rotary axis (AZ not

equal to 0), where the velocity beforehand and afterwards remains the same (positioning from

standstill after standstill; offset change DYP in synchronous positioning operation).

Page 42: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 42/64

2 Block description of the GMC library

42DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

  A  c

   t  u  a   l

   p  o  s   i   t   i

  o  n

  a   t    t   h  e   s   t  a  r   t   o

   f

   t   h  e    t  r  a

  n  s   i   t   i

  o  n

S  e  t   p  o  i  n  t    p  o  s  i  t  i  o  n  

a  t   t  h  e   e  n  d   o  f    t  h  e  

t  r  a  n  s  i  t  i  o  n  

  A  c   t  u  a   l   p

  o  s   i   t   i

  o  n

  a   t    t   h

  e   s   t  a  r   t   o

   f

   t   h  e    t  r  a

  n  s   i   t   i

  o  n

S  e  t   p  o  i  n  t    p  o  s  i  t  i  o  n  

a  t   t  h  e   e  n  d   o  f    t  h  e  

t  r  a  n  s  i  t  i  o  n  

Offset equalization backwards (BWD=1) Offset equalization forwards (FWD=1)

90°270°

180°

90°270°

180°

 The travel direction for forwards (FWD) and backwards (BWD) is defined as follows:

FWD = positive velocity

BWD = negative velocity

If both inputs (FWD and BWD) are TRUE, then the travel direction forwards (FWD) is dominant.

Overdrive OVD=1 disables the FWD / BWD evaluation and searches for the shortest distance

from the actual position to the setpoint position - i.e. the fastest possible transition.

Example – stopping at the stopping position (XPS) from synchronous operation:  

In synchronous operation, the drive should be held at position XPS. The drive continues to run

in synchronous operation until the distance to the target is precisely the same as the braking

travel. It then brakes and remains stationary at XPS.

Page 43: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 43/64

Page 44: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 44/64

2 Block description of the GMC library

44DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Position of the leading (master) axis (XP)

Position of the following (slave) axis (YP)

XP YP

tSYP = TRUE STP = TRUE

 AZ

t

SYP = TRUE STP = TRUE

Velocity of the leading (master) axis (XV)

Velocity of the following (slave) axis (YV)

XV YV

XV

XPS

Transition, stopping at the stopping position with OVD = TRUE

 

Example:

The system should change from the disengaged mode to the synchronous mode. However, the

master axis (XP, XV) is presently at a standstill. For OVD = 0, the system waits (any length of

time!), until the master axis starts. The drive is only synchronized after the standstill position has

Page 45: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 45/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 45

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

been exceeded. However, for OVD = 1, the drive is immediately positioned to the stationary

master axis.

Maximum velocity VMX

When changing the operating mode from the closed-loop speed controlled mode (HLT, SYN,

LOC) into the closed-loop position controlled mode (STP, SYP), the equalization velocity (YV) is

limited to the maximum velocity (VMX). Further, the maximum velocity limit is effective for

equalization operations in the closed-loop position controlled mode (STP, SYP) – e.g. an offset

change. However, the following two exceptions must be taken into account:

4. 1. The max. velocity can only be maintained if, during equalization, the leading (master)

axis does not accelerate any further (XV = constant or lower).

5. 2. The max. velocity can only be maintained if the velocity of the leading (master) axis is

less than the maximum velocity (VMX) of the following (slave) axis.

In the closed-loop speed controlled operating modes, the output velocity YP is not limited by the

maximum velocity (VMX).

VMX not relevant

V  M  X   n o t   r  e l  e v  a n t  

VMX not relevant

Vmax = f(VMX, XV)

Closed-loop speed controlled

Closed-loop position

controlled

VMX not relevant

Vmax = f(VMX, XV) = max{VMX, XV + 0.05*VMX}

Vmax = f(VMX, XV)

V   m  a  x   =   f   

(   V   M  X    , X   V    )  

Vmax = f(VMX, XV)

  V  M  X  n o t  r

 e  l e v a n

 t

LOC

SYNHLT

SYPSTP

          V       m       a       x       =

          f         (             V          M          X

  ,            X          V          )   V         

m      a      x      =      f           (         V         

M         X           , 

X         V            )        

         V        M        X

      n      o        t

      r     e        l     e

      v      a      n        t

   V    M   X   n   o   t   r   e   l   e   v   a   n   t

VMX not relevant

 

Page 46: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 46/64

2 Block description of the GMC library

46DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Behavior for non-specific dynamic values / Emergency Stop when there is a fault

 As soon as the block identifies a fault, then it signals this at its QF output. At the same time, a

fault cause is signaled at output YF. The fault identification is deleted (cleared) if the cause ofthe fault has been removed. It is not necessary to acknowledge the fault.

CAUTION The dynamics of the motion with which the block executes changes in thevelocity and acceleration are defined using the characteristic quantities ofJRK, AMX, VMX and normalization factors NFV and NFX. If one of theparameters is not valid due to an incorrect entry, then this automaticallymeans that the complete dynamics of the motion are undefined. As aconsequence - if characteristic quantities are incorrectly entered, operatingsituations can arise in which the block outputs a setpoint so that the drivecontinues to accelerate – even beyond the corresponding limits - ordoesn’t come to a standstill at the required position.

This is the reason that the block includes an emergency strategy that must be initiated by the

user program: If a stop command is to be initiated (HLT = 1) during an identified fault situation,

then the block immediately and suddenly stops any motion (issues a setpoint of zero). When

there is a fault there is no complete information about the required dynamics of the motion. This

is the reason that a stop - initiated by the block’s emergency strategy - is executed without

taking into account the specified dynamic parameters! 

 After an Emergency Stop has been executed the block enable MUST BE withdrawn. When the

block is re- enabled it is in a clearly defined state.

Fehlercodes YF

Value (hex) Description

0001 Velocity VMX is exceeded

0002 Incorrect parameterization at AMX

 AMX must be greater than zero. Please check the value at AMX

0004 Incorrect parameterization at JRK

JRK must be greater or equal than zero. Please check the value at JRK

0008 Incorrect parameterization at NFX

NFX may neither be zero nor negative. Please check the value at NFX

0010 Incorrect parameterization at NFVNFV may neither be zero nor negative. Please check the value at NFV

I/O

Name Description Default

XP Reference position 0.0

XV Referencing velocity 0.0

XPS Shutdown position (disengaging position) for disengaging in position-

controlled operation (PN = 1)

0.0

DYP Offset reference value for synchronous operation in the closed-loopposition controlled mode (PN = 1) 0.0

Page 47: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 47/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 47

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

VLC Local reference velocity for the local operation. When changed, output YV

tracks the ramp, defined by AMX and JRK.

0.0

VMX Maximum velocity when equalizing the offset. 100

 AMX Maximum acceleration/deceleration for the transition states.

Units: Rotary axis [1/s²] Linear axis [ m/s²]

100

JRK Jerk (da/dt time derivative of the acceleration)

Units : Rotary axis 1/s³] Linear axis [m/s³]).

3

2

200025

50

 s

m

ms

 s

m

dt 

da==

 Example: This means that for JRK = 2000, an acceleration of 50m/s² is

reached after 25 ms.

JRK equal zero means infinite jerk 

1000

NFX Position normalization:Rotary axis: Number of LU per revolution

Linear axis: Number of LU per meter

Changes are only take over at non - enabled status (EN = 0)

Detailed description refer to Normalization NFX 

360000

NFV Velocity normalization: Factor to convert the application-specific speed

normalization in [RPM] for a rotary axis or [m/min] for a linear axis. NFV is

the velocity in m/min (rotary axis: Speed in RPM), which should be

displayed as 1.0. This is effective for connections I/O XV, YV, VMX.

Examples:

User normalization Conversion NFV

1.0 = 11/s  1

1/s = 60

1/min  60.0

1.0 = 1mm

/s  1mm

/s  = 0.06m/ min  0.06

Changes are only take over at non - enabled status (EN = 0)Detailed description refer to Normalization NFV 

1.0

 AZ Axis cycle for the input and output position value (O = linear axis) 36000

SV Setting value for the position. This is accepted for S = 1. 0.0

CV Correction value for position correction 0

CP Correct the position by the position correction value (CV) 0

S Setting position YP = SV. 0

HLT Stopping as quickly as possible: For HLT=1 the speed setpoint is ramped

down to zero.

0

STP Hold at XPS: For STP = 1 the reference position remains stationary at

XPS.

For OVD = 1, the axis positions to XPS.

0

SYP Synchronous operation with a defined offset (DYP) between YP and XP.

When the mode is activated, ramp-up is delayed until YP can "engage"

with the required offset.

0

SYN Synchronous operation for undefined offset between YP and XP. When the

operating mode is activated, YV immediately ramps-up to XV.

0

LOC Local velocity input VLC. When VLC is changed, the setpoint speed follows

via ramps.

0

OVD Overcontrol permitted. For OVD = 1, the new state is approached as

quickly as possible. In this case, the equalization can be faster than the

reference velocity or opposite to the direction of motion!

For OVD = 1, positioning in the forwards and backwards direction is always

enabled – independent of how FWD and BWD are connected.

0

Page 48: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 48/64

2 Block description of the GMC library

48DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

FWD Equalization motion is made in the forwards direction (refer to the table

above)

For OVD = 1, the input value is irrelevant.

0

BWD Equalization motion is made in the backwards direction (refer to the table

above)

For OVD = 1, the input value is irrelevant.

0

EN Enable. For EN = 0 (not enabled) YP = 0 and YV = 0 1

YP Position ref. value, output quantity 0.0

YV Reference velocity, output quantity 0.0

YDT Duration of the equalization operation in seconds 0.0

COR Correction values for steps in the position reference value 0

POV Positive overflow of the position reference value (COR was subtracted) 0

NOV Negative overflow of the position reference value (COR was added) 0

QSY Synchronous operation: This is set to 1 as soon as XP and YP run in

synchronism

0

QLC Local velocity reached. 0

QST Standstill signal. 0

QTR 1: Equalization operation running 0

DON 1: Equalization operation completed 1

QF Group fault

Initialization: Not sufficient working memory during operation: Inputs VMX,

 AMX, NFX, NFV must be > 0; JRK must be ≥ 0.

0

YF Status info block (refer to the table "Fault codes YF") 0

Page 49: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 49/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 49

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.12 SHEAR

cross-cutter/cross sealer

Symbol

SHEAR

Material position   R XP YP R Position, shears

Format (product length)   R FMT YV R Speed, shears

Shears circumference   R CIR YFR R Format actual value (floating point)

Synchronous operation [degrees]   R SYR YFI DI Format actual value (integer)

Velocity normalization   R NFV COR DI Correction value

 Axis cycle output   DI AZO POV BO Positive overflow

Cut enable   BO CUT NOV BO Negative overflowEnable block   BO EN QST BO Standstill

QCO BO Cutting operation active

QF BO Group fault

Brief description

The block calculates the reference position and speed for rotary shears or a cross-sealing

device as a function of the material position and product length. During operation, the shears

can be shutdown at the quiescent position, which is located with a 180° offset with respect to

the cut/sealing position. The product length can be changed during operation.

Mode of operation

Under steady-state operating conditions, the block behaves like a characteristic which emulates

the material position with respect to the position of the shears. The cut is made at position XP =

0 (this corresponds to XP = FMT). The gradient (rate of rise) within the cutting range is 1, i.e.

the circumferential velocity of the shears is the same as the material velocity. In the cutting

range, the shears are in synchronism with the material. The synchronous range width is

specified in degrees at input SYR. The gradient outside the cutting range is a function of the

ratio between cross cutter circumference and the product length.

 AZO

 AZO

2

FMTXP

YP

Transfer characteristic for a large format

(FMT > CIR)

 AZO

 AZO

2

FMTXP

YP

Transfer characteristic for a small format

 (FMT < CIR)

CIR CIR

Characteristic for 

 FMT = CIRCharacteristic for 

 FMT = CIR

 

Page 50: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 50/64

2 Block description of the GMC library

50DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

For large formats, the shears brakes down to standstill (estimated value: From product lengths

FMT > 2⋅ CIR; dependent on SYR). On the other hand, for product lengths less than CIR

outside the cutting range, the speed of the shears is higher than the material velocity.

Cutting is either enabled or inhibited using the CUT input. In the inhibited state, the shears are

in the quiescent position and ½ AZO. If cutting is then enabled with CUT = 1, the shears

accelerate up to the material velocity and then cut according to the selected product length.

XP(t)

XP

Behavior when cutting is enabled

YP(t)

t

CUT

YV

t

t

Cut

Cut range

YP

FMT AZO

 

Format change

If the cut format is changed (product length), then this only becomes effective after the next cut.

The change must be synchronized with the axis cycle for the material position. XP must

maintain the old axis cycle limits until the new format has been accepted (old value of FMT)

 AZO

 AZI

GEAR

YPXP

SHEAR

XP

FMT

YP

YFIFormat

 

For practical purposes, the format change is made as follows. In this case, output YFI (currently

valid format length) is used to define the axis cycle for the material position, by entering the axis

cycle of a gearbox block or a virtual master (INT_MR).

I/O

Name Description Default

Page 51: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 51/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 51

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

XP Material position. Position actual value of the products or the endless

material which is either cut using the shears or is transversely sealed using

the sealing device. (Position normalization as FMT)

0.0

FMT Cutting format. Clearance between two products. The material position

must have axis cycle FMT. XP, FMT and CIR must have the same position

normalization!

20000.0

CIR Circumferential scope of the shears/sealing device. (Position

normalization: As for FMT)

50000.0

SYR Synchronous range in degrees. 10.0

NFV Speed normalization for the shears speed YV.NFV is the reference speed,

i.e. the speed in RPM, which should be displayed as YV = 1.0.

(NFV must be > 0 )

Detailed description refer to Normalization NFV 

1.0

 AZO Axis cycle for the shears position. This means a default value of 36000

increments per revolution. (AZO must be > 0)

36000

CUT Enables cutting operation. For CUT = 0 the shears come to a standstill at

 AZO/2

0

EN Block enable 1

YP Position of the shears ( 0 ... AZO) 0

YV Speed of the shears (normalization according to NFV) 0.0

YFR Actually used format length as floating-point value. 0.0

YFI Actually used format length as 32-bit integer value. 0

COR Correction value through which YP jumps if the range 0 ≤ YP < AZ is to be

exceeded or fallen below

0

POV For a positive position overflow, POV is set to 1 for one processing cycle. 0

NOV For a negative position overflow, NOV is set to 1 for one processing cycle. 0QST Shears standstill 0

QCO Cutting operation active. After the cut enable has been withdrawn

(CUT = 0), QCO is set to 0 when the shears come to a standstill.

0

QF Group fault: Invalid values for inputs CIR, FMT, SYR, AZO or NFV 0

Page 52: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 52/64

2 Block description of the GMC library

52DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.13 EDC1

engager/disengager

Symbol

EDC1

Reference position   R XP YP R Position reference value, slave

Referencing velocity   R XV YV R Reference velocity, slave

 Axis cycle, input   DI AZI COR DI Correction value

 Axis cycle, output   DI AZO POV BO Positive position overflow

Coupling position   R XCP NOV BO Negative position overflow

Engage/disengage length   R DXL QSY BO Synchronous operation

Ramp length 

R RMP QST BO StandstillRounding-off (percentage)   R DRP QF BO Group fault

Position setting value   R SV

Set position   BO S

Start/stop trigger   BO SST

Start/stop continuous   BO SSC

Engage/disengage   BO ED

Enable   BO EN

Brief descriptionThis block is used to couple-in or couple-out a drive from a drive group, as a function of the

position, when a trigger condition is available. The position actual value XP at the input

represents the reference position of a master drive. Output YP is the position reference value for

a slave drive.

Engaged operation

In the engaged mode, the initial slave status is standstill. Engaging (coupling-in) is activated

using a trigger signal (SST or SSC). If the master XP has the coupling position XCP, the slave

(YP) moves through the engaging length (coupling-in length) DXL and it then remains

stationary.

Page 53: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 53/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 53

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

SST

XVYV

Engaging operation

YP

Post trigger range

DXL

SST

YV XV

ngag ng operat on w t post

triggering

YP

Post trigger range

2 ⋅ DXL

 

The engaging sequence can be extended by one or several additional engaging lengths if there

are additional trigger edges (SST = 0 → 1) during triggering. The trigger edges must lie within

the post trigger range. After the start of the deceleration operation, the trigger event is only

effective after passing-over the next coupling position, whereby a new coupling position is only

taken into account after standstill has been reached.

During the engaging operation, the master axis (reference position) moves through the distance

given by

dXP = engaging length + ramp length = DXL + RMP

Disengaging operation

For disengaging operation, the slave is initially in synchronous operation with the master drive.If, after the trigger event, the master goes past the coupling position, the slave decelerates and

then re-accelerates back to the synchronous velocity. After each disengaging operation

(coupling-out) the offset between the master and slave increases by the disengaging length

DXL.

Post triggering is possible up to the start of the synchronizing operation in order to implement an

offset by additional disengaging lengths.

SST

XVYV

Disengaging operation

YP

Post trigger range

DXL

SST

YVXV

Disengaging operation with post triggering

YP

Post trigger range

2 ⋅ DXL

 

Page 54: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 54/64

2 Block description of the GMC library

54DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

During disengaging, the master axis travels through a distance given by

dXP = disengaging length + ramp length = DXL + RMP

Negative speed

Engaging and disengaging operation is also possible when reversing the drive (negative

speeds). In this case, the operation is started when the coupling position is not reached. In this

case, the engaging/disengaging length acts in the opposite direction. This means that for XV < 0

and for

DXL = 90°, the slave moves through -90° when engaging.

Continuous operation

In addition to the previously-described edge-triggered operation (with SST), continuous

operation is also possible. Continuous operation is active as long as SSC is set to 1.Furthermore, the following prerequisites must be fulfilled:

    • a system with linear axis is involved,

    • or, the coupling position is passed a second time before the engaging/disengaging

operation has been completed.

In both of these cases, the engaging/disengaging operation is continually extended by the value

DXL until SSC is set to 0.

0

YV

0 0XCP XCP XCP

SSC

Continuous engaging operation

XP

 

0

YV

0 0XCP XCP XCP

SSC

Intermittent engaging operation

 

For systems with rotary axis and one engaging/disengaging length

Intermittent operation

DXL < AZ - RMP

intermittent operation is involved. This means that the engaging/disengaging operation has

been completed before the coupling position is again passed. In this particular case, a

sequence of individual engaging/disengaging operations is obtained which always start when

the coupling position is exceeded. The sequence is continued as long as SSC = 1.

Page 55: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 55/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 55

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

Ramp length and rounding-off YP

YV

dYV

dt

RMP

2

RMP

2

DRP

Rounding-off DRP

DRP = 0 %

DRP = 50 %

DRP = 100 %

 

Ramps, rounding-off

The signal characteristics of YP and YV are dependent on input quantities XP and XV (distance

dependent; not time dependent!). This means that acceleration and rounding-off are defined as

distant-dependent quantities. The acceleration ramp specifies the component of the distance

where the slave drive accelerates or decelerates (ramp length). The rounding-off defines what

percentage of the acceleration ramp is used to establish the torque.

I/O

Name Description Default

XP Reference position 0.0

XV Referencing velocity 0.0

 AZI Axis cycle for the input position value (0 = linear axis) 36000

 AZO Axis cycle for the output position value (0 = linear axis) 36000

XCP Coupling position. An engaging/disengaging operation is started if XP

exceeds these position values (or falls below, for a negative speed)

0.0

DXL Engaging/disengaging length. Engaging operation: For each engaging

operation, the slave is moved through DXL in the actual direction of

motion. Disengaging operation: The offset between master and slave

increases by DXL.

36000

RMP Component of the distance which is used for acceleration or deceleration.

For each acceleration/deceleration operation, the master moves through

distance RMP; the slave only moves through the half, RMP/2.

(Caution: Occurs twice per engaging/disengaging operation)

12000

DRP Component of the acceleration/deceleration ramp as a percentage, which

is used to establish and reduce to the maximum acceleration.

Permissible range 0 ≤ DRP ≤ 100

10 %

SV Position setting value 0.0

S Set position reference value YP to SV 0

SST Edge-triggered starting of an engaging or disengaging operation. This can

be used to extend the operation if a new 0→1 edge is output within the

post trigger range.

0

Page 56: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 56/64

2 Block description of the GMC library

56DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

SSC Level-dependent starting of an engaging or disengaging operation for

continuous or intermittent operation.

0

ED Mode selection:

0: Disengaging

1: Engaging

0

EN Enabled. For EN = 0 (not enable) YP = 0 and YV = 0 1

YP Position reference value for the slave drive 0.0

YV Reference velocity for the slave drive 0.0

COR Correction value for steps at YP due to limiting the axis cycle for systems

with rotary axis.

0

POV For the position correction YP = YP - COR, POV is set to 1 for the duration

of a processing/machining (position overflow for positive direction of

rotation).

0

NOV For the position correction YP = YP + COR, NOV is set to 1 for the

duration of a processing/machining (position overflow for negativedirection of rotation).

0

QSY Synchronous operation: This signal indicates that the master axis and

slave axis are operating in angular synchronism with respect to one

another

0

QST Standstill: Indicates that the slave velocity YV = 0. 0

QF Group fault; this is always set if YFC is not equal to zero. 0

Page 57: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 57/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 57

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.14 SAMP_TIME

Sample time

Symbol

Brief description

The block gives the sampling time in which it is calculated in milliseconds.

Name Description Default

TIME Sample time in ms 0.0

Page 58: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 58/64

2 Block description of the GMC library

58DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.15 NOP_18

blind block for 18 values of different data types

Symbol

NOP_18

Input variable 1..8 (BOOL) BO BOOL_ IN1..8

BOOL_ OUT1..

8

R Output variable 1..8 (BOOL)

Input variable 1..5 (REAL) R REAL_IN1..5

REAL_ OUT1..

5

DI Output variable 1..5 (REAL)

Input variable 1..5 (DINT) DI DINT_IN1..5

DINT_ OUT1..

5

DI Output variable 1..5 (DINT)

Brief description

The block gives the input values directly to the output Pins.

There are:

•  8 boolean values

•  5 REAL values

•  5 DINT values

Connections

Name Description Default

BOOL_I

N1..8

8 Boolean inputs 0

REAL_IN

1..5

5 inputs of Type REAL 0.0

DINT_IN

1..5

5 inputs of Type DINT 0

BOOL_OUT1..8

8 Boolean outputs 0

REAL_O

UT1..5

5 outputs of Type REAL 0.0

DINT_O

UT1..5

5 outputs of Type DINT 0

Page 59: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 59/64

2 Block description of the GMC library

DCC GMC Library1.0, Item-ID: 72839973 59

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.16 AND_W

wordwise and

Symbol

AND_W

Input word W I QS W Output word

Q BO Feedback

Brief description

The block is anding up to 4 words bit by bit and gives the result to the output word QS.

If at least one bit of the result has the value “1”, the output bit Q is set to “1”. 

Connections

Name Description Default

I 2 up to 4 input words 0

QS Output word; result of anding the input words 0

Q Feedback; is 1, if a least one bit of the result is 1 0

Page 60: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 60/64

2 Block description of the GMC library

60DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

2.17 OR_W

wordwise OR

Symbol

OR_W

Input word W I QS W Output word

Q BO Feedback

Brief description

The block links up to 4 input words bit by bit with logical OR and gives the result to the outputword QS.

If at least one bit of the result has the value “1”, the output bit Q is set to “1”. 

Connections

Name Description Default

I 2 up to 4 input words 0

QS Output word; result of the ORing of all input words 0

Q Feedback; is 1 if at least one bit of the result is 1 0

Page 61: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 61/64

3 Installation

DCC GMC Library1.0, Item-ID: 72839973 61

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

3 Installation

Installation of the library

The .zip file of the GMC library has to be installed in STARTER.

Therefor all projects have to be closed. Under “Options -> Installation of librariesand technology packages…” please choose under “Add…” the .zip file of thelibrary. The installation will start automatically. This can take several minutes.

Loading the library onto the drive

Go online with the drive and choose in the context menue “Select technologypackages…”.

Select “Load in target system” and execute the action.

Usage of the library in DCC-Editor

Import the GMC library when inserting a drive control chart. The standard library

also has to be imported!

Page 62: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 62/64

4 Requirements

62DCC GMC Library

1.0, Item-ID: 72839973

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

4 Requirements

Hardware requirements:

•  Control Unit CU3x0-2 with FW 4.6 HF3 or higher

License requirements:

•  SINAMICS DCB Extension (MLFB: 6SL3077-0AA00-0AB0)

NOTE To use the library a runtime license is necessary. If there is no license and thelibrary is loaded onto the target a warning will appear.

Page 63: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 63/64

5 Related literature

DCC GMC Library1.0, Item-ID: 72839973 63

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

5 Related literature

5.1 Bibliography

This list is not complete and only represents a selection of relevant literature.

Table 5-1

Subject Title

/1/ SINAMICS S120

Drive functions

Function Manual “SINAMICS S120 Drive Functions”Edition 01/2013

6SL3097-4AB00-0BP3

/2/ SINAMICS S120/S150

Parameters, functiondiagrams, faults andalarms

“SINAMICS S List Manual” Edition 01/2013

6SL3 097-4AP00-0BP3

/3/ Programming withDCC, integrating DCCin SINAMICS S120

Programming and operating manual “SINAMICS /SIMOTION Editor Description DCC”

Edition 02/2012

6SL3097-4AN00-0BP1

/4/ Block description forDCC blocks

Function Manual “SINAMICS/SIMOTION

Description of DCC standard blocks”

Edition 02/2012

6SL3097-4AQ00-0BP2

5.2 Internet link specifications

This list is not complete and only represents a selection of relevant information.

Table 5-2

Subject Title

\1\ Reference to theentry

http://support.automation.siemens.com/WW/view/en/72839973 

\2\ Siemens IndustryOnline Support

http://support.automation.siemens.com 

6 Contact

Siemens AG

Industry SectorI DT MC PMA APCFrauenauracher Straße 80D - 91056 Erlangenmailto: [email protected] 

Page 64: siemens DCB library

7/25/2019 siemens DCB library

http://slidepdf.com/reader/full/siemens-dcb-library 64/64

7 History

   C  o  p  y  r   i  g   h   t         S

   i  e  m  e  n  s   A   G    2

   0   1   3   A   l   l  r   i  g   h   t  s  r  e  s  e  r  v  e   d

7 History

Table 7-1

Version Date Modifications

V1.0 05/2013 First version