Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S...

28
University of Rostock Faculty of Mechanical Engineering and Marine Technology Ship Theory I (ship manoeuvrability) Prof. Dr.- Ing. Nikolai Kornev Rostock 2010

Transcript of Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S...

Page 1: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

University of Rostock Faculty of Mechanical Engineering and Marine Technology

Ship Theory I (ship manoeuvrability)

Prof. Dr.- Ing. Nikolai Kornev

Rostock

2010

Page 2: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

1. Ship motion equations in the inertial reference system

k k k

x y z

k k k

x y z

E E EP i j k ,

V V V

E E ED i j k .

(1.3)

2 2 2k

m m m

2E (V r) dm mV 2V ( r)dm ( r) dm

(1.4)

y z z x x yr i ( z y) j( x z) k( y x)

(1.5)

2 2 2

k x y z

x y x z

m m

y z y x

m m

z x z y

m m

2 2 2 2y y z z

m m m

2 2 2 2z z x x

m m m

2 2 2 2x x y y

m m m

2E (V V V )m

2[V zdm V ydm

V xdm V zdm

V ydm V xdm]

z dm 2 yzdm y dm

x dm 2 xzdm z dm

y dm 2 xydm x dm

(1.6)

2 2 2k x y z

x y z x z y y z x y x z z x y z y x

2 2 2x xx y yy z zz

x y xy z x xz y z yz

2E (V V V )m

2[V S V S V S V S V S V S ]

I I I

2 I 2 I 2 I

(1.7)

Page 3: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

y yx z zz y y z x

y z x x zx z z x y

y yz x xy x x y z

y yx z zx x y z x y x z

y x yx x zx z y y

d d Sd V d d Sm S S F ,

d t d t d t d t d td V d d d S d S

m S S F ,d t d t d t d t d t

d d Sd V d d Sm S S F ,

d t d t d t d t d td V dd d V d

I S S I Id t d t d t d t d t

d S d Id I d SV V

d t d t d t

x zz x

y x z x zy y z x x y y z

y y x y y zz xy x z x z y

y yz x xz z x y x z y z

y y zz z x x zz y x x y z

d IM ,

d t d td d V d V d d

I S S I Id t d t d t d t d t

d I d I d Id S d SV V M ,

d t d t d t d t d td V dd d V d

I S S I Id t d t d t d t d t

d S d Id I d S d IV V M .

d t d t d t d t d t

(1.8)

2 Ship motion equations in the ship-fixed reference system

Fig.1 Change of the linear and angular momentums due to displacement of the origin

of the ship fixed reference system from the point O to the point /O .

Fig.2 Change of the linear and angular momentums due to rotation at the angle t .

Page 4: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

dP P F

dtd

D V P D Mdt

(1.11)

yxz y z y x z y z x x z x

y z xx z z x y z x z y x y

yzx x y z x x z y x y z z

yx zxx z xz y y x z z x x z

y

ddVm S (mV S ) (mV S S ) F ,

dt dtdV d d

m S S (mV S ) (mV S ) F ,dt dt dt

ddVm S (mV S S ) (mV S ) F ,

dt dtdVd d

I S I V S V ( S S )dt dt dt

(

z zz y x x xz z y yy x z z x x

y x zyy z x z y z x y x

z x xx y z z xz x z zz y x x xz y

yz xzz x xz x z x x z y y z

x y yy x z z x y x xx

I V S I ) ( I V S V S ) M ,

d dV dVI S S V S V S

dt dt dt

( I V S I ) ( I V S I ) M ,

dVd dI S I V ( S S ) V S

dt dt dt

( I V S V S ) ( I

y z z xz zV S I ) M .

(1.13)

3 Ship motion equations in the ship-fixed coordinates with principle axes

xz y y z x

yx z z x y

zy x x y z

xxx y z zz yy x

yyy x z xx zz y

zzz x y yy xx z

dVm( V V ) F ,

dtdV

m( V V ) F ,dt

dVm( V V ) F ,

dtd

I (I I ) M ,dt

dI (I I ) M ,

dtd

I (I I ) M .dt

(1.16)

4 Forces and moments arising from acceleration through the water

6 6

Fl1 1

1

2 i k ik

i k

E V V m (1.17)

Page 5: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

dSn

m k

S

iik

(1.19)

Fl Fl FlFl

x y z

Fl Fl FlFl

x y z

E E EP i j k ,

V V V

E E ED i j k .

(1.39)

5 Ship motion equations in the ship-fixed reference system.

Fl Fl

Fl Fl Fl

d(P P ) (P P ) F

dtd

(D D ) V (P P ) (D D ) Mdt

(1.41)

6 6 6yx

z y z y x z y z x x z 1k k y 3k k z 2k k xk 1 k 1 k 1

6 6 6y z x

x z z x y z x z y x 2k k z 1k k x 3k k yk 1 k 1 k 1

yzx x

ddV dm S (mV S ) (mV S S ) m V m V m V F ,

dt dt dt

dV d d dm S S (mV S ) (mV S ) m V m V m V F ,

dt dt dt dt

ddVm S (m

dt dt

6 6 6

y z x x z y x y z 3k k x 2k k y 1k k zk 1 k 1 k 1

yx zxx z xz y y x z z x x z y z zz y x x xz z y yy x z z x

6 6 6

4k k y 3k k z 2k k yk 1 k 1 k 1

dV S S ) (mV S ) m V m V m V F ,

dt

dVd dI S I V S V ( S S ) ( I V S I ) ( I V S V S )

dt dt dtd

m V V m V V m Vdt

6 6

6k k z 5k k xk 1 k 1

y x zyy z x z y z x y x z x xx y z z xz x z zz y x x xz

6 6 6 6 6

5k k z 1k k x 3k k z 4k k x 6k k yk 1 k 1 k 1 k 1 k 1

yz xzz x xz

m V m V M ,

d dV dVI S S V S V S ( I V S I ) ( I V S I )

dt dt dtd

m V V m V V m V m V m V M ,dt

dVd dI S I

dt dt

x z x x z y y z x y yy x z z x y x xx y z z xz

6 6 6 6 6

6k k x 2k k y 1k k x 5k k y 4k k zk 1 k 1 k 1 k 1 k 1

V ( S S ) V S ( I V S V S ) ( I V S I )dt

dm V V m V V m V m V m V M .

dt

(1.42)

6. Coordinate system, Aims of the ship manoeuvring theory, Main assumptions of the theory

Page 6: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2x11 22 y z z 26 x x

y z22 11 x z 26 x y

yzzz 66 x y 22 11 26 x x z z

dV(m m ) (m m )V (m S ) F ,

dtdV d

(m m ) (m m )V (m S ) F ,dt dt

dVd(I m ) V V (m m ) (m S )( V ) M .

dt dt

(2.1)

7. Equations in the ship-fixed coordinates with principle axes

26 xm S 0 (2.2)

2

/ ( ),

cos( , ) ( ),

cos( , ) (1),

/ (1),

(1).

y L O

n x O

n y O

x L O

O

(2.3)

2

2 2

2

2

( ) cos( , ) ( ) 0

cos( , ) cos( , ) 0

cos( , )

cos( , )

g gS m

gS m S m

m Sg

S

x x n y dS x x dm

x n y dS xdm x n y dS dm

xdm x n y dS

xm n y dS

/ //22

22g

x m x mx

m m

(2.5)

x11 22 y z x

y22 11 x z y

zzz 66 x y 22 11 z

dV(m m ) (m m )V F ,

dtdV

(m m ) (m m )V F ,dt

d(I m ) V V (m m ) M .

dt

(2.6)

Page 7: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

x11 22 y z x

y22 11 x z y

zzz 66 z x y 22 11

t

0 0

0

t

0 0

0

t

z

0

dV(m m ) (m m )V F ,

dtdV

(m m ) (m m )V F ,dt

d(I m ) M V V (m m ),

dt

x (t) x (0) V cos( )dt,

y (t) y (0) Vsin( )dt,

(t) (0) dt.

(2.9)

8 Munk moment

11 22 z x

22 11 z y

zzz 66 z

(m m )(V cos V sin ) (m m )V sin F ,

(m m )( Vsin V cos ) (m m )V cos F ,

d(I m ) M .

dt

(2.11)

Fig.6. Illustration of the Munk moment. a)-inviscid fluid, b) viscous fluid.

9 Equations in terms of the drift angle and trajectory curvature

x

y

dV dV dcos Vsin V cos V sin ,

dt dt dtdV dV d

sin V cos Vsin V cos ,dt dt dt

(2.12)

z

V LtV / L, L / V L / R,

R V (2.14)

Page 8: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2 2 /

/

2 2 2 //z

z

dV V dV V 1 dV V VV ,

dt L d L V d L V

d V d V,

dt L d L

d V d V V d V 1 dV V V.

dt L d L L d L V d L V

(2.15)

zz 6611 22x y

3L L L

I mm m m m, , .

A L A L A L2 2 2

(2.16)

/

/x x y x

//

y y x y

//

z

Vcos sin sin C ,

V

Vsin cos cos C ,

V

Vm .

V

(2.17)

10. Determination of added mass.

dSn

m k

S

iik

(3.1)

MN ii i 2

MNS

1 cos(n, R ) qV q dS 0

4 R 2 (3.2)

1 2 3

4 5

6

cos( , ), cos( , ), cos( , ),

cos( , ) cos( , ), cos( , ) os( , ),

cos( , ) cos( , )

V n x V n y V n z

V y n z z n y V z n x xc n z

V x n y y n x (3.3)

ii 2 2 2

S

1 q ( , , )(x, y,z) dS

4 (x ) (y ) (z )

(3.4)

11. Added mass of the slender body.

/22 2 2 22

0 0

cos( , ) cos( , )L L

S C

m n y dS n y dCdL m dL (3.6)

66 6 60

( cos( , ) cos( )) cos( , )L

S C

m x n y y nx dS x n y dCdL (3.7)

26 2 2

S S

62 26 6 2

S S

6 2

m (x cos(n, y) ycos(n, x))dS x cos(n, y)dS,

m m cos(n, y)dS x cos(n, y)dS

x

(3.8)

Page 9: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2 2 2 /66 2 2 22

0 0 0

cos( , ) cos( , )L L L

C C

m x n y dCdL x n y dC dL x m dL

(3.9)

L/

26 2 2 22

S S 0

m (x cos(n, y) y cos(n, x))dS x cos(n, y)dS xm dx (3.10)

12. Added mass of the slender body at small Fn numbers.

3

a bz

z z , (3.11)

/22

2

mC

T (3.12)

Fig. 8 Lewis coefficients depending on H 2T / B and spA /(BT) , where spA

is the frame area (taken from [1])

/ 222 22

0 0

( ) ( ) L L

m m dL C x T x dL , 2 / 2 266 22

0 0

( ) ( ) L L

m x m dL x C x T x dL , (3.13)

/ 226 22

0 0

( ) ( ) L L

m xm dL xC x T x dL

22 2 22 _ 66 3 66 _

2 22 _ 22 _ _

3 66 _ 66 _ _

( , ) , ( , ) ,

( , ) / ,

( , ) / .

slender slender

ellipsoid slender ellipsoid

ellipsoid slender ellipsoid

m R a b m m R a b m

R a b m m

R a b m m (3.14)

11 1 22 _( , ) slenderm R a b m . (3.15)

Page 10: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

222 _ _

366 _ _

4,

34

15

slender ellipsoid

slender ellipsoid

m ab

m ab (3.16)

Fig. 9 Munk’s correction factors.

L

211 1

0

L2

22 2

0

L2 2

66 3

0

1m R C(x)T (x)dx,

2

1m R C(x)T (x)dx,

2

1m R C(x)T (x)x dx.

2

(3.17)

13. Steady manoeuvring forces. Representation of forces

x y z x y z

j

n x y z x y z k nj 0 k V V,V V 0

1F (V ,V ,V , , , ) V F

j! x

, (4.1)

where n x y z x y zF (V ,V ,V , , , ) is the force component1, n=1,2,…,6,

,…., 4 x y z x y z x x y z x y zF (V ,V ,V , , , ) M (V ,V ,V , , , ) ,.,

1 x 2 y 5 yV V V, V V ,..., V ,... .

As a rule the force coefficient are calculated through the coefficients

x y z x y zC ,C ,C ,M ,M ,M

1 For the sake of brevity both force and moment are meant here and further under the term “force”

Page 11: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

Hypothesis of quasi steady motion. Truncated forms. Cross flow drag principle.

Fig. 10. Typical dependence of the transverse force on the drift angle, q is the nonlinear part of the force.

y y yC ( ) C C (4.4)

2 2 2

//, .

2 4

z

y z

dM ddY dC m

V TL V TL (4.5)

3y y 3

y 3

dC d C1C ( ) ...

d 6 d

(4.6)

2y yC C (4.7)

y y yC ( ) C C (4.8)

14. The planar motion mechanism (PMM)

2 2 2

2 2x x xxi xi yi zi yi zi xi2 2

y z y z

F F F1F (V ,0,0,0,0,0) V V F

2 V V

(4.13)

2 2 2 3y y y y yi y 2

yi zi yi zi yi yi zi zi yi zi yi2 2 2yi z y z y z y z

F F F F F F1 1V V V V V F

V 2 V V 6 V

(4.14) 2 2 2 3

2z z z z z zyi zi yi zi yi yi zi zi yi zi2 2 2

y z y z y z y z

zi

M M M M M M1 1V V V V V

V 2 V V 6 V

M

(4.15)

1 2 1 0 2 0Y(t) a V a a V sin t a cos t (4.16)

Page 12: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

15. Rotating-arm basin

Fig. 12 Sketch of the rotating-arm facility [5].

16. Identification method

Page 13: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2 2 22 2x x x

xi xi yi zi yi zi2 2y z y z

11 i i i i i 22 i zi i

2 2 2y y y y yi

yi zi yi zi yi yi zi zi2 2yi z y z y z

F F F1F (V ,0,0,0,0,0) V V

2 V V

(m m )(V cos V sin ) (m m )V sin ,

F F F F F1V V V V

V 2 V V

i

3y 2

yi zi2y z

22 i i i i i 11 i zi i

2 2 2 32z z z z z z

yi zi yi zi yi yi zi zi yi zi2 2 2y z y z y z y z

zzz 66

F1V

6 V

(m m )(V sin V cos ) (m m )V cos ,

M M M M M M1 1V V V V V

V 2 V V 6 V

d(I m )

dt

(4.18) 17 Calculation of steady manoeuvring forces using slender body theory

222 yP m V C(x)T (x)V sin x (5.1)

Fig.20 Active cross section along the ship length

ad( P)Y

dt

(5.2)

ad( P) d( P) dxY

dt dx dt

(5.3)

22d( P) dx d(C(x)T (x))

Y V sin cos xdx dt dx

(5.4)

22dY Y d(C(x)T (x))

V sin cosdx x dx

(5.5)

22dY d(C(x)T (x))

Vdx dx

(5.6)

Page 14: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

Fig.21 Distribution of 2C(x)T (x) and of the transverse force (5.6) along the ship

length

B Bx x 22 2 2

x x

dY d(C(x)T (x))Y(x) dx V dx V C(x)T (x)

dx dx (5.7)

B B B

H H H

x x x22 2 2 2

22

x x x

dY d(C(x)T (x))xdx xdxV C(x)T (x)dxV m V

dx dx (5.8)

222 11 22( )Munk x yM V V m m V m (5.9)

Y xx x V

R L (5.10)

y

x xV (x) Vsin V V( ) V (x)

L L (5.11)

22

2 2

2 22 2

xd(C(x)T (x)( ))dY d(C(x)T (x) (x)) LV V

dx dx dx

d(C(x)T (x)) d(C(x)T (x)) xV C(x)T (x)

dx dx L L

(5.12)

B B B Bx x x x2 2

2 2

x x x x

2 2 2

dY d(C(x)T (x)) d(C(x)T (x)) xY(x) dx V dx dx C(x)T (x)dx

dx dx dx L L

xV C(x)T (x) C(x)T (x)

L

(5.13)

Page 15: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

Fig.22 Distribution of the transverse force components proportional to terms

2d(C(x)T (x)) x

dx L and 2C(x)T (x) along the ship length

18. Improvement of the slender body theory. Kutta conditions 19. Forces on ship rudders

2eff

R XR R

2eff

R yR R

2eff

ZR ZR R

VX C A ,

2

VY C A ,

2

VM m A C.

2

(6.1)

2eff 2

yR ReffR R

YR yR2 2L

L L

VC A VY A2C C

V V V AA A

2 2

(6.2)

2eff 2

XR ReffR R

XR XR2 2L

L L

VC A VX A2C C

V V V AA A

2 2

(6.3a)

2eff 2

ZR ReffZR R

ZR ZR2 2L

L L

Vm A C VM A C2m m

V V V A LA L A L

2 2

(6.3b)

2

eff RYR R YR

L

V AC ( ) C

V A

(6.4)

ZR R R R

LM ( ) Y ( ).

2 (6.5)

Page 16: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

ZR R YR R

1m ( ) C ( ).

2 (6.6)

R

R,eff R

x( )

L (6.7)

RR,eff R

x( )

L (6.8)

20 Interaction between the rudder and propeller

2 2A B

B

point A point B

V Vp p

2 2

(6.10)

Page 17: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

22CD

C

point D point C

VVp p

2 2

(6.11)

Figure 30: The streamline ABCD

2 2 2

2D A AC B A 2

A

V V (V u)p p V 1

2 2 2 V

(6.12)

S2A 0

Tc

V A2 (6.13)

eff A A SV V u V 1 c (6.15)

AV (1 w)V (6.16)

eff SV (1 w) 1 c V (6.17)

21 Yaw stability

/O( ), O( ),V / V O( ) (7.2) /

/x x y x

//

y y x y

//

z

Vcos sin sin C ,

V

Vsin cos cos C ,

V

Vm .

V

(7.3)

2 22

// 2 2

x x y x x

O( ) O( )O( )O( )

Vcos sin sin C C ....

V

22

//

y y x y y y y YR

O( ) O( )O( ) O( ) O( )O( )

Vsin cos cos C C C C .... C

V

Page 18: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2

2

//

z z z z zR

O( ) O( ) O( )O( )O( )

Vm m m m .... m

V

/

x

/x y y y

/z z

Vcos 0,

VC C ,

m m .

(7.4)

/ *y y y

/z z

C C 0,

m m 0.

(7.6)

/ / // /y y y y* *

y y

1 1C C

C C (7.7)

// / /zy y y y z* *

y y

*y y z y z z y// /

y y

mC C m 0

C C

C m C m m C0

// /2a b 0 (7.8)

where *

y y z y z z y

y y

C m C m m C2a , b

.

// /2a b 0 (7.9)

1 2

1 2

p p1 2

p p1 2

( ) e e ,

( ) e e .

(7.10)

1 2 1 2

1 2 1 2

p p p p/ // 2 21 1 2 2 1 1 2 2

p p p p/ // 2 21 1 2 2 1 1 2 2

( ) p e p e ( ) p e p e

( ) p e p e ( ) p e p e

(7.11)

1 2 *

1 2 */

1 1 2 2/

1 1 2 2

(0) ,

(0) ,

(0) p p 0,

(0) p p 0.

(7.12)

,1 2p p2 2 2

1 1 1 2 2 2 2

2 21 1 2 2

e (p 2ap b) p e (p 2ap b) 0

p 2ap b 0, p 2ap b 0.

(7.13)

1 2p p2 2 21 1 1 2 2 2 2

2 21 1 2 2

e (p 2ap b) p e (p 2ap b) 0,

p 2ap b 0, p 2ap b 0

(7.14)

2p 2ap b 0 2

1,2p a a b (7.15)

Page 19: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

2 2 *y y z y y z y y z y z y2

2y

2 2 2* *y y z y y z y z y y y z y z y

2 2y y

C m 2C m 4 C m 4 m Ca b

4( )

C m 2C m 4 m C C m 4 m C0

4( ) 4( )

(7.16)

* *y z z y y z z y *

y z z yy y

C m m C C m m C0 0 C m m C 0

(7.19)

*

z y y zm C C m 0 (7.20)

*

z y y zm C C m (7.21)

z z*y y

m m

C C

(7.22)

z z*y y

m m

C C

(7.23)

or X X (7.24)

22 Influence of ship geometric parameters on the stability

B

C B C C CC 0

4 T 4 8 2

(7.25)

11x B

L L

m m m BC

TA L A L2 2

BC B1

2 CT (7.26)

23 Trajectory of a stable ship after perturbation

1 2 1 2p p p p1 21 2

1 20 0

( ) d ( e e )d (e 1) (e 1)p p

(7.27)

Page 20: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

1 2 1 2

0

0

0

0 0

p p p p1 2 1 2 1 22 2

1 2 1 2 1 2

xcos( )d ,

L

ysin( )d ( )d

L

(e 1) (e 1) (e 1) (e 1)p p p p p p

(7.28)

0

0 1 2 1 2 1 22 2

1 2 1 2 1 2

x,

L

y.

L p p p p p p

(7.29)

1 2

1 2

( )p p

(7.30)

Figure 7.1: The trajectory of the stable ship after perturbation

24 Steady ship motion in turning circle

x y y YR

z z zR

C C C ,

0 m m m .

(7.31)

*y zR z YR y zR z YR

c c* *z y z y z y z y

C m m C C m m C, .

m C m C m C m C

(7.32)

zc c

c c c

L V L L LR

V R V R

(7.33)

25 Regulation of the stability

cD Dc c

c

x xV( ) 0

L L

(7.34)

Page 21: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

* By zcD B

c y z

B C CC

C 2mx C BT 4 4C CL C 2m CT2 2

2 (7.35)

Dx 1

L 2 (7.36)

Dx0.3 0.4

L (7.37)

26 Diagram

x y y YR

z z zR

C C C ,

0 m m m .

y YRf * *

y y

C C

C C

from the first equation for the y- force (8.3)

z zRm

z z

m m

m m

from the second equation for the z- moment

(8.4)

YRf *0

y

C0

C for positive rudder angles R 0 (8.5)

YRf *0

y

C0

C for negative rudder angles R 0 (8.6)

zRm 0

z

m0

m for positive rudder angles R 0 (8.7)

zRm 0

z

m0

m for negative rudder angles R 0 (8.8)

.

2 x B

BC

T . Please prove!

Page 22: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy
Page 23: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

27 Manoeuvrability diagram

Figure 8.5: Manoeuvrability diagram

28. Experimental manoeuvring tests

Page 24: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

29 Forces due to non-uniformity of the ship wake.

. 2 2 x1 x

1 y x x1 0

u UAY C (V (U u ) )( )

2 V

(9.1)

2 2 x2 x2 y x x2 0

u UAY C (V (U u ) )( )

2 V

(9.2)

Page 25: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

x1,2uO( )

V

2 2x x x1

1 y 0

A(V U ) U uY C ( )

2 V V

(9.3)

2 2x x x2

2 y 0

A(V U ) U uY C ( )

2 V V

(9.4)

2 2x x x1

1 y 0 0

A(V U ) U uY C ( )sin

2 V V

(9.5)

2 2x x x2

2 y 0 0

A(V U ) U uY C ( )sin

2 V V

(9.6)

2 2 2 2x x1 x2 x x2 x1

1 2 y 0 0 0 y 0

A(V U ) u u A(V U ) u uY Y C ( )sin C sin

2 V V 2 V

(9.7)

30 Forces due to oblique flow.

2D

1

C AY ( r Vsin )

2 (9.8)

2D2

C AY ( r Vsin )

2 (9.9)

Page 26: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

1 2 DY Y 2C AVsin ( r) 0 (9.10)

31. Shallow water effect. Influence of the wall on a mooring ship. Influence of the inclined wall or of inclined bottom

Page 27: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

32 Criterion of the static stability of airplanes.

0zm

/0

/z

a

m

C

0X

33 CFD Calculation of yaw ship motion

1 2 31 2 3

0

1 2 31 2 3( ) ( ) ( )

dV dV dV dV di dj dki j k V V V

dt dt dt dt dt dt dt

dV dV dVi j k V i V j V k

dt dt dt

dVV

dt

(10.33)

00

dx dxx u u x

dt dt

(10.34)

20 0

0 20

2 ( )du du d x dx d

u x xdt dt dt dt dt

(10.35)

( )du u

u udt t

(10.36)

2

2

1( ) 2 ( )

u d x dx du u f p u x x

t dt dt dt

(10.37)

1( ) 2 ( )

uu u f p u u x

t

(10.38)

34. Overset or Chimera grids

Page 28: Ship Theory I - lemos.uni-rostock.de · xxx y yy z zz xyxy z xxz y zyz 2E (VVV)m 2[VSV S V S VS V S V S] II I 2I2 I2 I (1.7) xzzyy zy y z x y zx x z xz z x y zx xyy yx x y z xz zyy

Fig. 10.6 Chimera grid for tanker KVLCC2. Propeller is modeled using body forces distributed

along the propeller disc.

Fig. 10.7 Chimera grid for a container ship with propeller and rudder.

35 Morphing grids

1( )g

uu U u f p u

t

(10.39)

0g

U S

dU U ndSt

(10.40)

17-34 21-32