Sheet 1 PDF

1
Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225, 1–888–ASK–USGS Digital files available at http://pubs.usgs.gov/sim/3316/ Suggested citation: Hare, T.M., Hayward, R.K., Blue, J.S., Archinal, B.A., Robinson, M.S., Speyerer, E.J., Wagner, R.V., Smith, D.E., Zuber, M.T., Neumann, G.A., and Mazarico, E., 2015, Image mosaic and topographic map of the moon: U.S. Geological Survey Scientific Investigations Map 3316, 2 sheets, http://dx.doi.org/10.3133/sim3316. Printed on recycled paper ISSN 2329-1311 (print) ISSN 2329-132X (online) http://dx.doi.org/10.3133/sim3316 Image Map of the Moon By Trent M. Hare, 1 Rosalyn K. Hayward, 1 Jennifer S. Blue, 1 Brent A. Archinal, 1 Mark S. Robinson, 2 Emerson J. Speyerer, 2 Robert V. Wagner, 2 David E. Smith, 3 Maria T. Zuber, 3 Gregory A. Neumann, 4 and Erwan Mazarico 4 2015 1 U.S. Geological Survey; 2 Arizona State University; 3 Massachusetts Institute of Technology; 4 NASA Goddard Space Flight Center Prepared for the National Aeronautics and Space Administration U.S. Department of the Interior U.S. Geological Survey Scientific Investigations Map 3316 Sheet 1 of 2 MAP DESCRIPTION This image mosaic is based on data from the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC; Robinson and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The WAC is a seven band (321 nanometers [nm], 360 nm, 415 nm, 566 nm, 604 nm, 643 nm, and 689 nm) push frame imager with a 90° field of view in monochrome mode, and 60° field of view in color mode. From the nominal 50-kilometer (km) polar orbit, the WAC acquires images with a 57-km swath-width and a typical length of 105 km. At nadir, the pixel scale for the visible filters (415–689 nm) is 75 meters (Speyerer and others, 2011). Each month, the WAC provided almost complete coverage of the Moon. PROJECTION The Mercator projection is used between latitudes ±57°, with a central meridian at 0° longitude and latitude equal to the nominal scale at 0°. The Polar Stereographic projection is used for the regions north of the +55° parallel and south of the –55° parallel, with a central meridian set for both at 0° and a latitude of true scale at +90° and -90°, respectively. The adopted spherical radius used to define the maps scale is 1737.4 km (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). In projection, the pixels are 100 meters at the equator. COORDINATE SYSTEM The Wide Angle Camera images were referenced to an internally consistent inertial coordi- nate system, derived from tracking of the LRO spacecraft and crossover-adjusted Lunar Orbiter Laser Altimeter (LOLA) data that were used together to determine the orbit of LRO in inertial space (Smith and others, 2011). By adopting appropriate values for the orientation of the Moon, as defined by the International Astronomical Union (IAU; Archinal and others, 2011), the images were orthorectified into the planet-fixed coordinates (longitude and latitude) used on this map. The coordinate system defined for this product is the mean Earth/polar axis (ME) system, sometimes called the mean Earth/rotation axis system. The ME system is the method most often used for cartographic products of the past (Davies and Colvin, 2000). Values for the orientation of the Moon were derived from the Jet Propulsion Laboratory Developmental Ephemeris (DE) 421 planetary ephemeris (Williams and others, 2008; Folkner and others, 2008; 2009) and rotated into the ME system. The LOLA-derived crossover-corrected ephemeris (Mazarico and others, 2012) and an updated camera pointing provide an average accuracy of ~1 km in the horizontal position (Scholten and others, 2012). Longitude increases to the east and latitude is planetocentric, as allowed in accordance with current NASA and U.S. Geological Survey standards (Archinal and others, 2011). The intersec- tion of the lunar equator and prime meridian occurs at what can be called the Moon’s “mean sub-Earth point.” The concept of a lunar “sub-Earth point” derives from the fact that the Moon’s rotation is tidally locked to the Earth. The actual sub-Earth point on the Moon varies slightly due to orbital eccentricity, inclination, and other factors. So a “mean sub-Earth point” is used to define the point on the lunar surface where longitude equals 0°. This point does not coincide with any prominent crater or other lunar surface feature (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). MAPPING TECHNIQUES The WAC global mosaic shown here is a monochrome product with a normalized reflec- tance at 643 nm wavelength, and consists of more than 15,000 images acquired between Novem- ber 2009 and February 2011 (Sato and others, 2014) using revised camera pointing (Wagner and others, 2015). The solar incidence angle at the Equator changes ~28° from the beginning to the end of each month. To reduce these incidence angle variations, data for the equatorial mosaic were collected over three periods (January 20, 2010 to January 28, 2010, May 30, 2010 to June 6, 2010, and July 24, 2010 to July 31, 2010). The South Pole mosaic images were acquired from August 10, 2010 to September 19, 2010, and the North Pole images were acquired from April 22, 2010 to May 19, 2010. Remaining gaps were filled with images acquired at other times with similar lighting conditions (Robinson and others, 2012). There is a brightness difference where the polar mosaics meet the equatorial mosaics because the polar images were acquired in a different season than the equatorial images, and the lunar photometric function is not perfectly known (Sato and others, 2014). The equatorial WAC images were orthorectified onto the Global Lunar Digital Terrain Mosaic (GLD100, WAC-derived 100 m/pixel digital elevation model; Scholten and others, 2012) while the polar images were orthorectified onto the lunar LOLA polar digital elevation models (Neumann and others, 2010). To create the final base image, the original WAC mosaic that was produced by the Lunar Reconnaissance Orbiter Camera team in a Simple Cylindrical projection with a resolution of 100m/pixel was projected into the Mercator and Polar Stereographic pieces. The images were then scaled to 1: 10,000,000 for the Mercator part and 1:6,078,683 for the two Polar Stereo- graphic parts with a resolution of 300 pixels per inch. The two projections have a common scale at ±56° latitude. NOMENCLATURE Feature names on this sheet are approved by the IAU. All features greater than 85 km in diameter or length were included unless they were not visible on the map due to the small scale used for printing. However, some selected well-known features less that 85 km in diameter or length were included. For a complete list of the IAU-approved nomenclature for the Moon, see the Gazetteer of Planetary Nomenclature at http://planetarynames.wr.usgs.gov. For lunar mission names, only successful landers are shown, not impactors or expended orbiters. ACKNOWLEDGMENTS This map was made possible with thanks to NASA, the LRO mission, and the Lunar Recon- naissance Orbiter Camera team. The map was funded by NASA's Planetary Geology and Geophys- ics Cartography Program. REFERENCES Archinal, B.A. (Chair), A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushim, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G.A., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Report of the IAU Working Group on cartographic coordinates and rotational elements—2009: Celestial Mechanics and Dynamical Astronomy, v. 109, no. 2, p. 101–135, doi:10.1007/s10569-010- 9320-4. Davies, M.E., and Colvin, T.R., 2000, Lunar coordinates in the regions of the Apollo landers: Journal of Geophysical Research, v. 105, no. E8, p. 20,277–20,280. Folkner, W.M., Williams, J.G., and Boggs, D.H., 2008, The planetary and lunar ephemeris DE 421: Jet Propulsion Laboratory Memorandum IOM 343R-08-003, 31 p., at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf. Folkner, W.M., Williams, J.G., and Boggs, D.H., 2009, The planetary and lunar ephemeris DE 421: Interplanetary Network Progress Report 42-178, 34 p., at http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf. Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008, A standardized lunar coordinate system for the Lunar Reconnaissance Orbiter and lunar datas- ets: Lunar Reconnaissance Orbiter Project and Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group White Paper, v. 5, at http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf. Mazarico, E., Rowlands, D.D., Neumann, G.A., Smith, D.E., Torrence, M.H., Lemoine, F.G., and Zuber, M.T., 2012, Orbit determination of the Lunar Reconnaissance Orbiter: Journal of Geodesy, v. 86, no. 3, p. 193–207. Neumann, G.A., 2011, Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter reduced data record and derived products software interface specification, version 2.42, LRO-L-LOLA-4- GDR-V1.0, NASA Planetary Data System (PDS), at http://imbrium.mit.edu/DOCUMENT/RDRSIS.PDF Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaff- ner, J.A., Malin, M.C., Mahanti, P., Bartels, A., Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., 2010, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview: Space Science Reviews, v. 150, no. 1-4, p. 81–124, doi:10.1007/s11214-010-9634-2. Robinson, M.S., Speyerer, E.J., Boyd, A., Waller, D., Wagner, R., and Burns, K., 2012, Exploring the Moon with the Lunar Reconnaissance Orbiter Camera: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XXXIX-B4, XXII International Society for Photogrammetry and Remote Sensing Congress, Melbourne, Australia. Sato, H., Robinson, M.S., Hapke, B., Denevi, B.W., and Boyd, A.K., 2014, Resolved Hapke parameter maps of the Moon: Journal of Geophysical Research, Planets, v. 119, p. 1775- 1805, doi: 10.1002/2013JE004580. Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, M.S., 2012, GLD100 - The near-global lunar 100 m raster DTM from LROC WAC stereo image data: Journal of Geophysical Research, v. 117, no. E12, doi:10.1029/2011JE003926. Smith, D.E., Zuber, M.T., Neumann, G.A., Mazarico, E., Head, J.W., III, Torrence, M.H., and the LOLA Science Team, 2011, Results from the Lunar Orbiter Laser Altimeter (LOLA)—global, high-resolution topographic mapping of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2350. Speyerer, E.J., Robinson, M.S., Denevi, B.W., and the LROC Science Team, 2011, Lunar Recon- naissance Orbiter Camera global morphological map of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2387. Tooley, C.R., Houghton, M.B., Saylor, R.S., Peddie, C., Everett, D.F., Baker, C.L., and Safdie, K.N., 2010, Lunar Reconnaissance Orbiter mission and spacecraft design: Space Science Reviews, v. 150, no. 1, p. 23–62, doi:10.1007/s11214-009-9624-4. Wagner, R.V., Speyerer, E.J., Robinson, M.S., and the LROC Science Team, 2015, New mosaicked data products from the LROC Team [abs.]: Lunar Planetary Science Conference XLVI, Woodlands, Tex., Abstract 1473. Williams, J.G., Boggs, D.H., and Folkner, W.M., 2008, DE421 Lunar orbit, physical librations, and surface coordinates: Jet Propulsion Laboratory Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf. 55 ° 55 ° 60 ° 60 ° 70 ° 70 ° 80 ° 80 ° –55° –55° –60° –60˚ –70° –70° –80° –80° 180° 180° 180° 150°E 120°E 90°E 60°E 30°E 150°E 120°E 90°E 60°E 30°E 180° 330°E 300°E 270°E 240°E 210°E (30°W) (60°W) (90°W) (120°W) (150°W) 330°E 300°E 270°E 240°E 210°E 57° 50° 30° –30° –50° –57° 57° 50° 30° –30° –50° –57° 55° 55° 60° 60° 70° 70° 80° 80° –55° –55° –60° –70° –70° –80° –80° 180° 240°E 210°E 150°E 120°E 90°E 60°E 30°E 330°E 300°E 270°E 180° –60° 270°E 90°E 120°E 150°E 210°E 240°E 300°E 330°E 30°E 60°E –60° SCALE 1:10 000 000 (1 mm = 10 km) AT 0˚ LATITUDE MERCATOR PROJECTION 1000 KILOMETERS 500 0 500 1000 2000 1000 1000 500 500 0 2000 KILOMETERS 20° 40° 57° 90° 70° 55° 90° 70° 55° 1000 KILOMETERS 500 0 500 1000 –90° –70° –55° –90° –70° –55° SCALE 1:6 078 683 (1 mm = 6.078683 km) AT 90° LATITUDE POLAR STEREOGRAPHIC PROJECTION NORTH POLAR REGION SCALE 1:6 078 683 (1 mm = 6.078683 km) AT -90° LATITUDE POLAR STEREOGRAPHIC PROJECTION SOUTH POLAR REGION 20° 40° 57° North South East West Montes Pyrenaeus Rima Hesiodus Rimae Plato Ri m a e Ge r a r d Rimae Sirsalis R im a G . B on d Rupes Mercator Vallis Planck Vallis Rheita V a l l i s P a l i t z s c h Vallis Inghirami Catena Gregory Catena Artamonov Catena Mendeleev Catena Lucretius (RNII) Dorsum Azara Dorsa Barlow Dorsa Ewing Vallis Bohr Montes Harbinger Mons Pico Montes Recti Mons Piton Rimae Petavius Montes Spitzbergen Mons Penck Mons Rümker Reiner Gamma R i m a S h a r p Dorsum Scilla M o n t e s J u r a Dorsum Heim Dorsum Zirkel Vallis Alpes C a t e na K ur c h a t ov Catena Leuschner (GDL) Catena Michelson (GIRD) Rima Cardanus Dorsa Burnet Montes Agricola V a ll i s S c h r ö t e r i Rima Hyginus Rima Ariadaeus D o r s u m B u c k l an d D o r s a L i s t e r D o r s a S m i rn o v R i m a C a u c h y Rimae Hypatia D o r s u m O p p e l Dorsa Tetyaev Dorsa Harker M O N T E S R O O K M O N T E S R O O K M O N T E S C O R D I L L E R A M O N T E S C O R D I L L E R A Rupes Liebig R i m a e H i p p a l u s Rupes Recta Catena Abulfeda R u p e s A l t a i Vallis Capella Dorsa Mawson D o r s a G e i k i e Catena Humboldt V a l l i s B o u v a r d Vallis Baade Rimae Janssen MARE MARE MARE MARE MARE MARE MARE MARE MARE SMYTHII NUBIUM HUMORUM COGNITUM AUSTRALE INSULARUM ORIENTALE NECTARIS MARE SERENITATIS FECUNDITATIS MONTES TAURUS MONTES CARPATUS MONTES Montes Teneriffe Montes Archimedes CAUCASUS LACUS LACUS VERIS LACUS AUTUMNI LACUS TIMORIS LACUS LACUS LACUS LACUS BONITATIS MORTIS DOLORIS SOLITUDINIS EXCELLENTIAE PALUS PALUS EPIDEMIARUM PUTREDINIS SINUS SINUS SINUS SINUS MEDII SINUS SINUS SINUS AMORIS LUNICUS HONORIS SUCCESSUS AESTUUM CONCORDIAE MARE MOSCOVIENSE MARE MARE MARE INGENII SPUMANS VAPORUM HUMBOLDTIANUM MARE MARE FRIGORIS MONTES ALPES M O NT E S A P ENNI N U S M O N TES H A EMU S MARE ANGUIS MARE UNDARUM MARE MARGINIS Montes Riphaeus SINUS RORIS SINUS IRIDUM MARE IMBRIUM LACUS SOMNIORUM LACUS TEMPORIS LACUS SPEI MARE TRANQUILLITATIS PALUS SOMNI MARE CRISIUM SINUS ASPERITATIS O C E A N U S P R O C E L L A R U M Surveyor 1 (June 2, 1966) Surveyor 3 (April 20, 1967) Surveyor 5 (Sep. 11, 1967) Surveyor 6 (Nov. 10, 1967) Surveyor 7 (Jan. 10, 1968) Luna 9 Feb. 3, 1966) Luna 21 Jan. 15, 1973) Apollo 11 (July 20, 1969) Apollo 12 (Nov. 19, 1969) Apollo 14 (Feb. 5, 1971) Apollo 15 (July 30, 1971) Apollo 16 (April 21, 1972) Apollo 17 Dec. 11, 1972) Luna 16 (Sep. 20, 1970) Luna 20 (Feb. 21, 1972) Luna 24 (Aug. 18, 1976) Luna 13 (Dec. 24, 1966) Luna 17 (Nov. 17, 1970) Abel Alphonsus Balmer Banachiewicz Barnard Aristoteles Alexander Aitken Albategnius Alden Anderson Ansgarius Arzachel Atlas Babcock Bose Bell Berkner Blackett Bolyai Brenner Brouwer Buffon Chrétien Chandler Campbell Carnot Cleomedes Cockcroft Catharina Charlier Chebyshev Compton Copernicus Coulomb Curie Cyrillus Darwin Davisson Debye Deslandres Einstein Doppler d'Alembert Eddington Herodotus Aristarchus Endymion Eötvös Fabry Fermi Fersman Fitzgerald Fleming Humboldt Fowler Fra Mauro Fracastorius Goddard Fridman Furnerius Gagarin Galois Gassendi Gauss Gemma Frisius Gerard Gerasimovich Gilbert Grimaldi Guyot H. G. Wells Hahn Heaviside Hecataeus Hedin Heraclitus Hess Hevelius Hilbert Hipparchus Hirayama Hommel Hopmann Ibn Firnas Icarus Inghirami Isaev Jules Verne Janssen Joliot Joule Keeler Kekulé Kibal'chich Koch Ryder Kondratyuk Kovalevskaya Kurchatov Kästner Mach Letronne Longomontanus Love Piccolomini Lagalla Lagrange Lamarck Lamb Landau Langemak Langmuir Langrenus Laue Lebedev Levi-Civita Lippmann Lobachevskiy Lomonosov Lundmark Lyot Maginus Mandel'shtam Maurolycus Maxwell McMath Meitner Mendel Messala Michelson Millikan Milne Minkowski Mitra Posidonius Moseley Neper Nernst Neujmin Oppenheimer Orontius Phillips Phocylides Piazzi Ostwald Papaleksi Paracelsus Paraskevopoulos Parenago Parkhurst Paschen Pasteur Pauli Pavlov Perepelkin Perrine Petavius Pitatus Plato Poynting Rayleigh Repsold Riccioli Richardson Riemann Robertson Roche Rosenberger Rowland Russell Röntgen Sacrobosco Saha Scaliger Schickard Schiller Schlesinger Schlüter Schuster Seyfert Shayn Snellius Sklodowska Spencer Jones Stefan Sternfeld Struve Stöfler Szilard Theophilus Thomson Tsander Tsiolkovskiy Tycho Van de Graaff Van der Waals Vasco da Gama Vavilov Vendelinus Vening Meinesz Ventris Vernadskiy Vestine Vetchinkin Vieta Vlacq Volta von Békésy Wegener Weyl Wiener Wilhelm Wurzelbauer Wyld Zwicky Von Kármán Ptolemaeus Purbach Regiomontanus Walther A p o l l o Harkhebi H e r t z s p r u n g K o r o l e v Lo re ntz Mendeleev Leibnitz Leeuwenhoek Lipskiy Larmor Daedalus P o i n c a r é P l a n c k Birkhoff Catena Sumner Chaplygin Vertregt Mee Leibnitz Daedalus Larmor Proclus Amundsen Shackleton Antoniadi Ashbrook Zeeman Berlage Blancanus Boguslawsky Boussingault Cabeus Clavius Casatus Crommelin Curtius Demonax Drygalski Fizeau Gruemberger Hausen Helmholtz Klaproth Le Gentil Lemaître Manzinus Minkowski Moretus Numerov Petzval Pontécoulant Pingré Prandtl Scheiner Schomberger Scott Sikorsky Minnaert B a i l l y P o i n c a r é P l a n c k S c h r ö d i n g e r Rosenberger Lippmann Shoemaker Malapert Vallis Schrödinger Vallis Planck MARE HUMBOLDTIANUM MARE FRIGORIS Catena Sylvester Barrow Arnold Avogadro Babbage Baillaud Bel'kovich Birmingham Brianchon Cremona De La Rue Gamow Gärtner Hermite Hayn J. Herschel Karpinskiy Meton Milankovi č Nansen Poczobutt Pascal Pythagoras Roberts Rowland Schwarzschild Seares Sommerfeld South Stebbins van't Hoff Xenophanes Yablochkov Emden Plaskett Rozhdestvenskiy Byrd Peary W. Bond Goldschmidt B i r k h o f f Compton Descriptions of nomenclature used on map are listed at http://planetarynames.wr.usgs.gov/ Prepared on behalf of the Planetary Geology and Geophysics Program, Solar System Exploration Division, Office of Space Science, National Aeronautics and Space Administration Edited by Kate Jacques; digital cartography by Vivian Nguyen Manuscript approved for publication October 28, 2014

Transcript of Sheet 1 PDF

Page 1: Sheet 1 PDF

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225, 1–888–ASK–USGS

Digital files available at http://pubs.usgs.gov/sim/3316/

Suggested citation: Hare, T.M., Hayward, R.K., Blue, J.S., Archinal, B.A., Robinson, M.S., Speyerer, E.J., Wagner, R.V., Smith, D.E., Zuber, M.T., Neumann, G.A., and Mazarico, E., 2015, Image mosaic and topographic map of the moon: U.S. Geological Survey Scientific Investigations Map 3316, 2 sheets, http://dx.doi.org/10.3133/sim3316.

Printed on recycled paper

ISSN 2329-1311 (print)ISSN 2329-132X (online)http://dx.doi.org/10.3133/sim3316

Image Map of the MoonBy

Trent M. Hare,1 Rosalyn K. Hayward,1 Jennifer S. Blue,1 Brent A. Archinal,1 Mark S. Robinson,2 Emerson J. Speyerer,2 Robert V. Wagner,2 David E. Smith,3 Maria T. Zuber,3 Gregory A. Neumann,4 and Erwan Mazarico4

2015

1U.S. Geological Survey;2Arizona State University;3Massachusetts Institute of Technology;4NASA Goddard Space Flight Center

Prepared for theNational Aeronautics and Space Administration

U.S. Department of the InteriorU.S. Geological Survey

Scientific Investigations Map 3316Sheet 1 of 2

MAP DESCRIPTIONThis image mosaic is based on data from the Lunar Reconnaissance Orbiter Wide Angle

Camera (WAC; Robinson and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The WAC is a seven band (321 nanometers [nm], 360 nm, 415 nm, 566 nm, 604 nm, 643 nm, and 689 nm) push frame imager with a 90° field of view in monochrome mode, and 60° field of view in color mode. From the nominal 50-kilometer (km) polar orbit, the WAC acquires images with a 57-km swath-width and a typical length of 105 km. At nadir, the pixel scale for the visible filters (415–689 nm) is 75 meters (Speyerer and others, 2011). Each month, the WAC provided almost complete coverage of the Moon.

PROJECTIONThe Mercator projection is used between latitudes ±57°, with a central meridian at 0°

longitude and latitude equal to the nominal scale at 0°. The Polar Stereographic projection is used for the regions north of the +55° parallel and south of the –55° parallel, with a central meridian set for both at 0° and a latitude of true scale at +90° and -90°, respectively. The adopted spherical radius used to define the maps scale is 1737.4 km (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011). In projection, the pixels are 100 meters at the equator.

COORDINATE SYSTEMThe Wide Angle Camera images were referenced to an internally consistent inertial coordi-

nate system, derived from tracking of the LRO spacecraft and crossover-adjusted Lunar Orbiter Laser Altimeter (LOLA) data that were used together to determine the orbit of LRO in inertial space (Smith and others, 2011). By adopting appropriate values for the orientation of the Moon, as defined by the International Astronomical Union (IAU; Archinal and others, 2011), the images were orthorectified into the planet-fixed coordinates (longitude and latitude) used on this map. The coordinate system defined for this product is the mean Earth/polar axis (ME) system, sometimes called the mean Earth/rotation axis system. The ME system is the method most often used for cartographic products of the past (Davies and Colvin, 2000). Values for the orientation of the Moon were derived from the Jet Propulsion Laboratory Developmental Ephemeris (DE) 421 planetary ephemeris (Williams and others, 2008; Folkner and others, 2008; 2009) and rotated into the ME system. The LOLA-derived crossover-corrected ephemeris (Mazarico and others, 2012) and an updated camera pointing provide an average accuracy of ~1 km in the horizontal position (Scholten and others, 2012).

Longitude increases to the east and latitude is planetocentric, as allowed in accordance with current NASA and U.S. Geological Survey standards (Archinal and others, 2011). The intersec-tion of the lunar equator and prime meridian occurs at what can be called the Moon’s “mean sub-Earth point.” The concept of a lunar “sub-Earth point” derives from the fact that the Moon’s rotation is tidally locked to the Earth. The actual sub-Earth point on the Moon varies slightly due to orbital eccentricity, inclination, and other factors. So a “mean sub-Earth point” is used to define the point on the lunar surface where longitude equals 0°. This point does not coincide with any prominent crater or other lunar surface feature (Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008; Archinal and others, 2011).

MAPPING TECHNIQUES The WAC global mosaic shown here is a monochrome product with a normalized reflec-

tance at 643 nm wavelength, and consists of more than 15,000 images acquired between Novem-ber 2009 and February 2011 (Sato and others, 2014) using revised camera pointing (Wagner and others, 2015). The solar incidence angle at the Equator changes ~28° from the beginning to the end of each month. To reduce these incidence angle variations, data for the equatorial mosaic were collected over three periods (January 20, 2010 to January 28, 2010, May 30, 2010 to June 6, 2010, and July 24, 2010 to July 31, 2010). The South Pole mosaic images were acquired from August 10, 2010 to September 19, 2010, and the North Pole images were acquired from April 22, 2010 to May 19, 2010. Remaining gaps were filled with images acquired at other times with similar lighting conditions (Robinson and others, 2012). There is a brightness difference where the polar mosaics meet the equatorial mosaics because the polar images were acquired in a different season than the equatorial images, and the lunar photometric function is not perfectly known (Sato and others, 2014).

The equatorial WAC images were orthorectified onto the Global Lunar Digital Terrain Mosaic (GLD100, WAC-derived 100 m/pixel digital elevation model; Scholten and others, 2012) while the polar images were orthorectified onto the lunar LOLA polar digital elevation models (Neumann and others, 2010).

To create the final base image, the original WAC mosaic that was produced by the Lunar Reconnaissance Orbiter Camera team in a Simple Cylindrical projection with a resolution of 100m/pixel was projected into the Mercator and Polar Stereographic pieces. The images were then scaled to 1: 10,000,000 for the Mercator part and 1:6,078,683 for the two Polar Stereo-graphic parts with a resolution of 300 pixels per inch. The two projections have a common scale at ±56° latitude.

NOMENCLATURE Feature names on this sheet are approved by the IAU. All features greater than 85 km in

diameter or length were included unless they were not visible on the map due to the small scale

used for printing. However, some selected well-known features less that 85 km in diameter or length were included. For a complete list of the IAU-approved nomenclature for the Moon, see the Gazetteer of Planetary Nomenclature at http://planetarynames.wr.usgs.gov. For lunar mission names, only successful landers are shown, not impactors or expended orbiters.

ACKNOWLEDGMENTSThis map was made possible with thanks to NASA, the LRO mission, and the Lunar Recon-

naissance Orbiter Camera team. The map was funded by NASA's Planetary Geology and Geophys-ics Cartography Program.

REFERENCESArchinal, B.A. (Chair), A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R.,

Fukushim, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G.A., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Report of the IAU Working Group on cartographic coordinates and rotational elements—2009: Celestial Mechanics and Dynamical Astronomy, v. 109, no. 2, p. 101–135, doi:10.1007/s10569-010-9320-4.

Davies, M.E., and Colvin, T.R., 2000, Lunar coordinates in the regions of the Apollo landers: Journal of Geophysical Research, v. 105, no. E8, p. 20,277–20,280.

Folkner, W.M., Williams, J.G., and Boggs, D.H., 2008, The planetary and lunar ephemeris DE 421: Jet Propulsion Laboratory Memorandum IOM 343R-08-003, 31 p., at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf.

Folkner, W.M., Williams, J.G., and Boggs, D.H., 2009, The planetary and lunar ephemeris DE 421: Interplanetary Network Progress Report 42-178, 34 p., at http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf.

Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group, 2008, A standardized lunar coordinate system for the Lunar Reconnaissance Orbiter and lunar datas-ets: Lunar Reconnaissance Orbiter Project and Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group White Paper, v. 5, at http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf.

Mazarico, E., Rowlands, D.D., Neumann, G.A., Smith, D.E., Torrence, M.H., Lemoine, F.G., and Zuber, M.T., 2012, Orbit determination of the Lunar Reconnaissance Orbiter: Journal of Geodesy, v. 86, no. 3, p. 193–207.

Neumann, G.A., 2011, Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter reduced data record and derived products software interface specification, version 2.42, LRO-L-LOLA-4-GDR-V1.0, NASA Planetary Data System (PDS), at http://imbrium.mit.edu/DOCUMENT/RDRSIS.PDF

Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaff-ner, J.A., Malin, M.C., Mahanti, P., Bartels, A., Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., 2010, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview: Space Science Reviews, v. 150, no. 1-4, p. 81–124, doi:10.1007/s11214-010-9634-2.

Robinson, M.S., Speyerer, E.J., Boyd, A., Waller, D., Wagner, R., and Burns, K., 2012, Exploring the Moon with the Lunar Reconnaissance Orbiter Camera: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XXXIX-B4, XXII International Society for Photogrammetry and Remote Sensing Congress, Melbourne, Australia.

Sato, H., Robinson, M.S., Hapke, B., Denevi, B.W., and Boyd, A.K., 2014, Resolved Hapke parameter maps of the Moon: Journal of Geophysical Research, Planets, v. 119, p. 1775-1805, doi: 10.1002/2013JE004580.

Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, M.S., 2012, GLD100 - The near-global lunar 100 m raster DTM from LROC WAC stereo image data: Journal of Geophysical Research, v. 117, no. E12, doi:10.1029/2011JE003926.

Smith, D.E., Zuber, M.T., Neumann, G.A., Mazarico, E., Head, J.W., III, Torrence, M.H., and the LOLA Science Team, 2011, Results from the Lunar Orbiter Laser Altimeter (LOLA)—global, high-resolution topographic mapping of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2350.

Speyerer, E.J., Robinson, M.S., Denevi, B.W., and the LROC Science Team, 2011, Lunar Recon-naissance Orbiter Camera global morphological map of the Moon [abs.]: Lunar Planetary Science Conference XLII, Woodlands, Tex., Abstract 2387.

Tooley, C.R., Houghton, M.B., Saylor, R.S., Peddie, C., Everett, D.F., Baker, C.L., and Safdie, K.N., 2010, Lunar Reconnaissance Orbiter mission and spacecraft design: Space Science Reviews, v. 150, no. 1, p. 23–62, doi:10.1007/s11214-009-9624-4.

Wagner, R.V., Speyerer, E.J., Robinson, M.S., and the LROC Science Team, 2015, New mosaicked data products from the LROC Team [abs.]: Lunar Planetary Science Conference XLVI, Woodlands, Tex., Abstract 1473.

Williams, J.G., Boggs, D.H., and Folkner, W.M., 2008, DE421 Lunar orbit, physical librations, and surface coordinates: Jet Propulsion Laboratory Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf.

55°

55°

60°

60°

70°

70°

80°

80°

–55°

–55°

–60°

–60˚

–70°

–70°

–80°

–80°

180° 0° 180°

180° 150°E120°E90°E60°E30°E0°

150°E 120°E 90°E 60°E 30°E

180°330°E300°E270°E240°E210°E(30°W)(60°W)(90°W)(120°W)(150°W)

330°E 300°E 270°E 240°E 210°E 57°

50°

30°

–30°

–50°

–57°

57°

50°

30°

–30°

–50°

–57°

55°

55°

60°

60°

70°

70°

80°

80°

–55°

–55°

–60°

–70°

–70°

–80°

–80°

180°

240°

E

210°E 150°E

120°E

90°E

60°E

30°E330°E

300°E

270°E

180°

–60°

270°E 90°E

120°

E

150°E210°E

240°E

300°

E

330°E 30°E

60°E

–60°

SCALE 1:10 000 000 (1 mm = 10 km) AT 0˚ LATITUDEMERCATOR PROJECTION

1000 KILOMETERS50005001000

2000 1000 1000500 5000 2000 KILOMETERS

20°

40°

57°

90°70°55°

90°70°55°

1000 KILOMETERS50005001000–90°–70°–55°

–90°–70°–55°

SCALE 1:6 078 683 (1 mm = 6.078683 km) AT 90° LATITUDEPOLAR STEREOGRAPHIC PROJECTION

NORTH POLAR REGION

SCALE 1:6 078 683 (1 mm = 6.078683 km) AT -90° LATITUDEPOLAR STEREOGRAPHIC PROJECTION

SOUTH POLAR REGION

20°

40°

57°

North

South

Eas

t

Wes

t

Mon

tes

Pyr

enae

us

Rima Hesiodus

Rimae

Plato

Rim

aeG

erar

d

Rim

ae

Sirs

alis

Rim

aG

. Bon

d

Rupes Mercator

Vall is P

lanck

Vall is

Rheita

Vallis

Palitzsch

Vall is Inghirami

Catena

Gregory

Catena

Artamonov

Cat

ena

Men

dele

ev

Catena Lucretius (RNII)

Dorsum

Azara

Dorsa

Barlo

w

Dorsa Ewing

Val

lisB

ohr

MontesHarbinger

MonsPico

MontesRecti

MonsPiton

Rimae

Petavius

MontesSpitzbergen

MonsPenck

MonsRümker

ReinerGamma

Rim

a

Sh

arp

Dorsum

Sci l la

Mon

tes

Jura

Dorsum Heim

Dorsum Zirkel

Vallis Alpes

Catena Kurchatov

Catena Leuschner (GDL)

Catena Michelson (GIRD)

Rima

Cardanus

Dorsa

Burnet

Montes Agric

ola

Vall

is Schröteri

Rima HyginusRima Ariadaeus

Dorsum BucklandD orsa L

ister

Dor

sa S

mir

nov

Rim

a Cauchy

Rimae Hypatia

Dor

sum O

ppel Dorsa

Tetyaev

Dor

saH

arke

rM

ON T E S R O

O

K

MO N T E S R O O K

MO N T E S C O R D I L L E R A

MO N T E S C O R D I L L E

RA

Rup

es

Lieb

ig

Rim

ae H

ipp

alus

Rupes R

ecta

CatenaAbulfeda

Rupes Altai

Vallis

Capella

Dorsa

MawsonDor

sa G

eik i

e

Catena

Humboldt

Vallis Bouvard

Vallis Baade

Rimae

Janss

en

MARE

MARE

MARE

MARE

MARE

MARE

MARE

MARE

MARESMYTHII

NUBIUM

HUMORUM

COGNITUM

AUSTRALE

I N S U L A R U M

ORIENTALE

NECTARIS

MARE

SERENITATIS

FECUNDITATIS

MONTES

TAURUS

MONTES CARPATUS

MO

NTE

S

MontesTeneriffe

MontesArchimedes

CAU

CAS

US

LACUS

LACU

S VERIS

LACUS

AUTUMNI

LACUS TIMORIS

LACUS

LACUS

LACUS

LACUS

BONITATIS

MORTIS

DOLORIS

SOLITUDINIS

EXCELLENTIAE

PALUS

PALUSEPIDEMIARUM

PUTREDINIS

SINUS

SINUS

SINUS

SINUSMEDII

SINUS

SINUSSINUS

AMORIS

LUNICUS

HONORIS

SUCCESSUS

AESTUUMCONCORDIAE

MARE

MOSCOVIENSE

MARE

MARE

MARE

INGENII

SPUMANS

VAPORUM

HUMBOLDTIANUM

MARE

MARE FRIGORIS

MO

NTES ALPES

MONTES A

PENNINUS

MONTES HAEMUS

MARE ANGUIS

MAREUNDARUM

MAREMARGINIS

Mon

tes

Riph

aeus

SINUS RORIS

SINUS

IRIDUM

M A R E

I M B R I U M

LACUS SOMNIORUM

LACUS TEMPORIS

LACUS SPEI

MARE

TRANQUILLITATIS

PALUSSOMNI

MARE

CRISIUM

SINUS

ASPERITATIS

OC

EA

NU

S P

RO

CE

LL

AR

UM

Surveyor 1(Ju ne 2, 1966)

Surveyor 3(April 20, 1967)

Surveyor 5(Sep. 11, 1967)Surveyor 6

(Nov. 10, 1967)

Surveyor 7(Jan. 10, 1968)

Luna 9Feb. 3, 1966)

Luna 21Jan. 15, 1973)

Apo llo 11(July 20, 1969)

Apo llo 12(Nov. 19, 1969)

Apo llo 14(Feb. 5, 1971)

Apo llo 15(July 30, 1971)

Apo llo 16(Apri l 21, 1972)

Apo llo 17Dec. 11, 1972)

Luna 16(Sep. 20, 1970)

Luna 20(Feb. 21, 1972)

Luna 24(Aug. 18, 1976)

Luna 13(Dec. 24, 1966)

Luna 17(Nov. 17, 1970)

Abe l

Alphonsus

Ba lmer

Banachiewicz

Barnard

Aristo teles

Alexander

Aitken

Alba tegnius

Alden

Anderson

Ansgarius

Arzachel

Atlas

Babcock

Bose

Be ll

Berkner

Blacke tt

Bo lya i

Brenner

Brouwer

Buffon

Chré tien

Chandler

Ca m p b e l l

Carnot

Cleomedes

Cockcroft

Catharina

Charlie r

Chebyshev

Compton

Copernicus

Coulomb

Curie

Cyri llus

Darwin

Davisson

Debye

Deslandres

E i n s t e i n

Dopple r

d'Alembert

Eddington

HerodotusAristarchus

Endymion

Eötvös

Fabry

F e r m i

Fersman

Fitzgera ld

Fleming

Humboldt

Fo wler

Fra Mauro

Fracastorius

Goddard

Fridman

Furnerius

G a g a r i n

G a l o i s

Gassendi

Gauss

Gemma Frisius

Gerard

Gerasimov ich

Gilbert

Grimaldi

Guyot

H. G.Wells

Hahn

Heav iside

Hecataeus

Hedin

Heracli tus

Hess

Heve lius

Hilbert

Hipparchus Hirayama

H o m m e l

Hopmann

Ibn Firnas

Icarus

Inghirami

Isaev

JulesVerne

Janssen

Jo lio t

Joule

Kee le r

Kekulé

Kiba l 'chich

Koch

Ryder

Kondratyuk

Kovalevskaya

Kurchatov

Kästner

Mach

Letronne

Longomontanus

Love

Picco lomini

Laga lla

Lagrange

Lamarck

Lamb

L a n d a u

Langemak

Langmuir

Langrenus

Laue

Lebedev

Lev i-Civ ita

Lippmann

Lobachevskiy

Lomonosov

Lundmark

LyotMaginus

Mandel'shtam

Mauro lycus

Maxwell

McMath

Meitner

Mende l

Messa la

Miche lson

Mil likan

M i l n e

Minkowski

Mitra

Posidonius

Mose ley

Neper

Nernst

Neujmin

Oppenheimer

Orontius

Phil l ips

Phocy l ides

Piazzi

Ostwald

Papaleksi

Paracelsus

Paraskevopoulos

Parenago

Parkhurst

Paschen

Pasteur

Pauli

Pav lov

Perepelkin

Perrine

Petavius

Pita tus

Plato

Poynting

Rayle igh

Repso ld

Riccio li

Richardson

Riemann

Robertson

Roche

Rosenberger

Rowland

Russe ll

Röntgen

Sacrobosco

Saha

Sca liger

Schickard

Schil ler

Schlesinger

Schlüter

Schuster

Sey fert

Shayn

Sne ll ius

Sklodowska

Spencer Jones

Ste fan

Sternfe ld

Struve

Stö fle r

Szila rd

Theophilus

Thomson

Tsander

Tsiolkovskiy

Tycho

Van de G

raaff

Van derWaals

Vascoda Gama

Vav ilov

Vende linus

Vening Meinesz

Ventris

Vernadskiy

Vestine

Vetchinkin

Vie ta

Vlacq

Vo lta

vonBékésy

Wegener

Wey l

Wiener

Wilhe lm

Wurzelbauer

Wyld

Zwicky

Von Kármán

Ptolemaeus

Purbach

Regiomontanus

Walther

A p o l l o

H a r k h e b i

H e r t z s p r u n g

K o r o l e v

L o r e n t z

Mendeleev

Le ibnitz

Leeuwenhoek

Lipskiy

Larmor

Daeda lus

P o i n c a r éP l a n c k

B i r k h o f f

Catena Sumner

Chaplygin

Vertregt

Mee

Le ibnitz

Daeda lus

Larmor

Proclus

Amundsen

Shackleton

Antoniadi

Ashbrook

Zeeman

Berlage

Blancanus

Boguslawsky

Boussingault

Cabeus

C l a v i u s

Casatus

Crommelin

Curtius

Demonax

Dryga lski

Fizeau

Gruemberger

Hausen

Helmho ltz

Klapro th

Le Gentil

Lemaître

Manzinus

Minkowski

Moretus

Numerov

Petzva l

Pontécoulant

Pingré

Prandtl

Scheiner

Schomberger

Scott

Sikorsky

Minnaert

B a i l l y

P o i n c a r é

P l a n c k

S c h r ö d i n g e r

Rosenberger

Lippmann

Shoemaker

Malapert

Vall isSchrödinger

V a l l i s P l a n c k

MAREHUMBOLDTIANUM

M A R E F R I G O R I S

Catena Sylvester

BarrowArno ld

Avogadro

Babbage

Ba il laud

Be l'kov ich

Birmingham

Brianchon

Cremona

De La Rue

Gamow

Gärtner

Hermite

Hayn

J. Hersche l

Karpinskiy

M e t o n

Milankovič

Nansen

P o c z o b u t t

Pascal

Py thagoras

Roberts

Rowland

S c h w ar z s c h i l d

Seares

Sommerfe ld

South

Stebbins

van'tHoff

Xenophanes

Yablochkov

Emden

Plaske tt

Rozhdestvenskiy

Byrd

Peary

W. Bond

Goldschmidt

B i r k h o f f

Compton

Descriptions of nomenclature used on map are listed athttp://planetarynames.wr.usgs.gov/

Prepared on behalf of the Planetary Geology and Geophysics Program, Solar System Exploration Division, Office of Space Science, National Aeronautics and Space AdministrationEdited by Kate Jacques; digital cartography by Vivian NguyenManuscript approved for publication October 28, 2014