Sessional of Composite Material

21
SESSIONAL OF COMPOSITE MATERIAL ON “NANO-COMPOSITES” SUBMITTED BY SUBJECT NAME : COMPOSITE MATERIAL RAJNEESH PATEL 101116018

Transcript of Sessional of Composite Material

Page 1: Sessional of Composite Material

SESSIONAL OF COMPOSITE MATERIALON

“NANO-COMPOSITES”

SUBMITTED BY

SUBJECT NAME : COMPOSITE MATERIAL RAJNEESH PATEL 101116018

CORDINATOR NAME : Dr. RAJESH PUROHIT RINKU GUPTA 101116176

DEEPESH VISHWAKARMA 101116023

NANO-COMPOSITES

Page 2: Sessional of Composite Material

The field of nanotechnology is one of the most popular areas for current research and development in basically all technical disciplines. In the area of nanotechnology, polymer matrix based Nano composites have generated a significant amount of attention in the recent literature. This area emerged with the recognition that exfoliated clays could yield significant mechanical property advantages as a modification of polymeric systems 

Nano-composite

“A nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material.”

 In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry.In mechanical terms, nanocomposites differ from conventional composite materials due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made up of particles

Page 3: Sessional of Composite Material

(e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes or electrospun fibres). The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials. The matrix material properties are significantly affected in the vicinity of the reinforcement. Ajayan et al.  note that with polymer nanocomposites, properties related to local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain conformation, degree of polymer chain ordering or crystallinity can all vary significantly and continuously from the interface with the reinforcement into the bulk of the matrix. This large amount of reinforcement surface area means that a relatively small amount of nanoscale reinforcement can have an observable effect on the macroscale properties of the composite. For example, adding carbon nanotubes improves the electrical and thermal conductivity. Other kinds of nanoparticulates may result in enhanced optical properties, dielectric properties, heat resistance or mechanical properties such as stiffness, strength and resistance to wear and damage. In general, the nano reinforcement is dispersed into the matrix during processing. The percentage by weight (called mass fraction) of the nanoparticulates introduced can remain very low (on the order of 0.5% to 5%) due to the low filler percolation threshold, especially for the most commonly used non-spherical, high aspect ratio fillers (e.g. nanometer-thin platelets, such as clays, or nanometer-diameter cylinders, such as carbon nanotubes).

Types of Nano-CompositesCeramic-matrix nanocomposites In this group of composites the main part of the volume is occupied by a ceramic, i.e. a chemical compound from the group of

Page 4: Sessional of Composite Material

oxides, nitrides, borides, silicides etc.. In most cases, ceramic-matrix nanocomposites encompass a metal as the second component. Ideally both components, the metallic one and the ceramic one, are finely dispersed in each other in order to elicit the particular nanoscopic properties. Nanocomposite from these combinations were demonstrated in improving their optical, electrical and magnetic properties  as well as tribological, corrosion-resistance and other protective properties. The binary phase diagram of the mixture should be considered in designing ceramic-metal nanocomposites and measures have to be taken to avoid a chemical reaction between both components. The last point mainly is of importance for the metallic component that may easily react with the ceramic and thereby lose its metallic character. This is not an easily obeyed constraint, because the preparation of the ceramic component generally requires high process temperatures. The most safe measure thus is to carefully choose immiscible metal and ceramic phases. A good example for such a combination is represented by the ceramic-metal composite of TiO2 and Cu, the mixtures of which were found immiscible over large areas in the Gibbs’ triangle of Cu-O-Ti.

The concept of ceramic-matrix nanocomposites was also applied to thin films that are solid layers of a few nm to some tens of µm thickness deposited upon an underlying substrate and that play an important role in the functionalization of technical surfaces. Gas flow sputtering by the hollow cathode technique turned out as a rather effective technique for

Page 5: Sessional of Composite Material

the preparation of nanocomposite layers. The process operates as a vacuum-based deposition technique and is associated with high deposition rates up to some µm/s and the growth of nanoparticles in the gas phase. Nanocomposite layers in the ceramics range of composition were prepared from TiO2 and Cu by the hollow cathode technique  that showed a high mechanical hardness, small coefficients of friction and a high resistance to corrosion.

Metal-matrix nanocomposites Metal matrix nanocomposites can also be defined as reinforced metal matrix composites. This type of composites can be classified as continuous and non-continuous reinforced materials. One of the more important nanocomposites is Carbon nanotube metal matrix composites, which is an emerging new material that is being developed to take advantage of the high tensile strength and electrical conductivity of carbon nanotube materials. Critical to the realization of CNT-MMC possessing optimal properties in these areas are the development of synthetic techniques that are (a) economically producible, (b) provide for a homogeneous dispersion of nanotubes in the metallic matrix, and (c) lead to strong interfacial adhesion between the metallic matrix and the carbon nanotubes. In addition to carbon nanotube metal matrix composites, boron nitride reinforced metal matrix composites and carbon nitride metal matrix composites are the new research areas on metal matrix nanocomposites. A recent study, comparing the mechanical properties (Young's modulus, compressive yield strength, flexural modulus and flexural yield strength) of single- and multi-walled reinforced polymeric (polypropylene fumarate—PPF) nanocomposites to tungsten disulfide nanotubes reinforced PPF nanocomposites suggest that tungsten disulfide nanotubes reinforced PPF nanocomposites possess significantly higher mechanical properties and tungsten disulfide nanotubes are better reinforcing agents than carbon nanotubes. Increases in the mechanical properties can be attributed to a uniform dispersion of inorganic

Page 6: Sessional of Composite Material

nanotubes in the polymer matrix (compared to carbon nanotubes that exist as micron sized agggregates) and increased crosslinking density of the polymer in the presence of tungsten disulfide nanotubes (increase in crosslinking density leads to an increase in the mechanical properties). These results suggest that inorganic nanomaterials, in general, may be better reinforcing agents compared to carbon nanotubes.Another kind of nanocomposite is the energetic nanocomposite, generally as a hybrid sol–gel with a silica base, which, when combined with metal oxides and nano-scale aluminum powder, can form superthermite materials

Polymer-matrix nanocomposites

In the simplest case, appropriately adding nanoparticulates to a polymer matrix can enhance its performance, often dramatically, by simply capitalizing on the nature and properties of the nanoscale filler  (these materials are better described by the term nanofilled polymer composites ). This strategy is particularly effective in yielding high performance composites, when good dispersion of the filler is achieved and the properties of the nanoscale filler are substantially different or better than those of the matrix.

Page 7: Sessional of Composite Material

An example of this would be reinforcing a polymer matrix by much stiffer nanoparticles  of ceramics, clays, or carbon nanotubes. It should be noted that the improvement in mechanical properties may not be limited to stiffness or strength. Time-dependent properties could be

Page 8: Sessional of Composite Material

improved by addition of the nanofillers. Alternatively, the enhanced crystallization behavior under flow conditions  and other physical properties of high performance nanocomposites may be mainly due to the high aspect ratio and/or the high surface area of the fillers, since nanoparticulates have extremely high surface area to volume ratios when good dispersion is achieved. Nanoparticle dispersibility in the polymer matrix is a key issue, which limits the appliciable particle volume fraction and there for also the multi-functionality of the composite material. Recent research on thin films (thickness <50 micrometer) made of polymer nanocomposites has resulted in a new and scalable synthesis technique, which allows the facile incorporation of greater nano-material quantities . Such advances will enable the future development of multi-functional small scale devices (i.e. sensor, actuator, medical equipment), which rely on polymer nanocomposites.

Page 9: Sessional of Composite Material

Advantages of Nanosized Additions Properties which have been shown to undergo substantial improvements include:

•         Mechanical properties e.g. strength, modulus and dimensional stability

•         Decreased permeability to gases, water and hydrocarbons

•         Thermal stability and heat distortion temperature

•         Flame retardancy and reduced smoke emissions

•         Chemical resistance

•         Surface appearance

•         Electrical conductivity

•         Optical clarity in comparison to conventionally filled polymers

Disadvantages of Nanosized Additions

To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Some of the data presented has suggested that nanoclay modification of polymers such as polyamides, could reduce impact performance. Clearly this is an issue which would require consideration for applications where impact loading events are likely. In addition, further research will be necessary to, for example, develop a better understanding of formulation/structure/property relationships, better routes to platelet exfoliation and dispersion etc.

Page 10: Sessional of Composite Material

Areas of Application

Such mechanical property improvements have resulted in major interest in nanocomposite materials in numerous automotive and general/industrial applications. These include potential for utilisation as mirror housings on various vehicle types, door handles, engine covers and intake manifolds and timing belt covers. More general applications currently being considered include usage as impellers and blades for vacuum cleaners, power tool housings, mower hoods and covers for portable electronic equipment such as mobile phones, pagers etc.

Gas Barriers

The gaseous barrier property improvement that can result from incorporation of relatively small quantities of nanoclay materials is shown to be substantial. Data provided from various sources indicates oxygen transmission rates for polyamide-organoclay composites which

Page 11: Sessional of Composite Material

are usually less than half that of the unmodified polymer. Further data reveals the extent to which both the amount of clay incorporated in the polymer, and the aspect ratio of the filler contributes to overall barrier performance. In particular, aspect ratio is shown to have a major effect, with high ratios (and hence tendencies towards filler incorporation at the nano-level) quite dramatically enhancing gaseous barrier properties. Such excellent barrier characteristics have resulted in considerable interest in nanoclay composites in food packaging applications, both flexible and rigid. Specific examples include packaging for processed meats, cheese, confectionery, cereals and boil-in-the-bag foods, also extrusion-coating applications in association with paperboard for fruit juice and dairy products, together with co-extrusion processes for the manufacture of beer and carbonated drinks bottles. The use of nanocomposite formulations would be expected to enhance considerably the shelf life of many types of food.

Oxygen Barriers

Honeywell have also been active in developing a combined active/passive oxygen barrier system for polyamide-6 materials. Passive barrier characteristics are provided by nanoclay particles incorporated via melt processing techniques whilst the active contribution comes from an oxygen scavenging ingredient (undisclosed). Oxygen transmission results reveal substantial benefits provided by nanoclay incorporation in comparison to the base polymer (rates approximately 15-20% of the bulk polymer value, with further benefits provided by the combined active/passive system). Akkapeddi suggests that the increased tortuosity provided by the nanoclay particles essentially slows transmission of oxygen through the composite and drives molecules to the active scavenging species resulting in near zero oxygen transmission for a considerable period of time.

Page 12: Sessional of Composite Material

Food Packaging

The requirement here is for a non-refrigerated packaging system capable of maintaining food freshness for three years. Nanoclay polymer composites are currently showing considerable promise for this application.

It is likely that excellent gaseous barrier properties exhibited by nanocomposite polymer systems will result in their substantial use as packaging materials in future years.

A somewhat more esoteric possibility arising from enhanced barrier performance recently suggested has been blown–films for artificial intestines!

Fuel Tanks

The ability of nanoclay incorporation to reduce solvent transmission through polymers such as polyamides has been demonstrated. Data provided by De Bievre and Nakamura of UBE Industries reveals significant reductions in fuel transmission through polyamide–6/66 polymers by incorporation of a nanoclay filler. As a result, considerable interest is now being shown in these materials as both fuel tank and fuel line components for cars. Of further interest for this type of application, the reduced fuel transmission characteristics are accompanied by significant material cost reductions.

Films

The presence of filler incorporation at nano-levels has also been shown to have significant effects on the transparency and haze characteristics of films. In comparison to conventionally filled polymers, nanoclay incorporation has been shown to significantly enhance transparency and reduce haze. With polyamide based composites, this effect has been shown to be due to modifications in the crystallisation behaviour brought about by the nanoclay particles; spherilitic domain dimensions

Page 13: Sessional of Composite Material

being considerably smaller. Similarly, nano-modified polymers have been shown, when employed to coat polymeric transparency materials, to enhance both toughness and hardness of these materials without interfering with light transmission characteristics. An ability to resist high velocity impact combined with substantially improved abrasion resistance was demonstrated by Haghighat of Triton Systems.

Environmental Protection

Water laden atmospheres have long been regarded as one of the most damaging environments which polymeric materials can encounter. Thus an ability to minimise the extent to which water is absorbed can be a major advantage. Data provided by Beall from Missouri Baptist College indicates the significant extent to which nanoclay incorporation can reduce the extent of water absorption in a polymer. Similar effects have been observed by van Es of DSM with polyamide based nanocomposites. In addition, van Es noted a significant effect of nanoclay aspect ratio on water diffusion characteristics in a polyimide nanocomposite. Specifically, increasing aspect ratio was found to diminish substantially the amount of water absorbed, thus indicating the beneficial effects likely from nanoparticle incorporation in comparison to conventional microparticle loading. Hydrophobic enhancement would clearly promote both improved nanocomposite properties and diminish the extent to which water would be transmitted through to an underlying substrate. Thus applications in which contact with water or moist environments is likely could clearly benefit from materials incorporating nanoclay particles.

Flammability Reduction

The ability of nanoclay incorporation to reduce the flammability of polymeric materials was a major theme of the paper presented by Gilman of the National Institute of Standards and Technology in the US. In his work Gilman demonstrated the extent to which flammability behaviour could be restricted in polymers such as polypropylene with as little as 2% nanoclay loading. In particular heat release rates, as obtained

Page 14: Sessional of Composite Material

from cone calorimetry experiments, were found to diminish substantially by nanoclay incorporation. Although conventional microparticle filler incorporation, together with the use of flame retardant and intumescent agents would also minimise flammability behaviour, this is usually accompanied by reductions in various other important properties. With the nanoclay approach, this is usually achieved whilst maintaining or enhancing other properties and characteristics.