Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for...

59
Rhode Island Convention Center • Providence, Rhode Island Sustainable High Performance “Smart Labs” Session: High Airflow Applications Tom Checksfield Exposure Control Technologies, Inc. August 9, 2016

Transcript of Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for...

Page 1: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Rhode Island Convention Center • Providence, Rhode Island

Sustainable High Performance “Smart Labs”

Session: High Airflow Applications

Tom ChecksfieldExposure Control Technologies, Inc.

August 9, 2016

Page 2: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Topics & Objectives

• Why research facilities and lab buildings are special?• What establishes the Demand for Ventilation?• Lab ventilation risk assessment to establish ACR’S• Lab ventilation effectiveness defined• What is a “Smart Lab” High Performance Lab Ventilation System?

• What are the benefits of a Lab Ventilation Management Program?

Page 3: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Research Facilities

• More than 10,000 facilities in the USA with one or more lab buildings

• Specially designed to support scientific research and development

• Building systems are complex, costly and challenging to manage

• Enterprise success requires safe, efficient and sustainable operation

UniversitiesGovernment PharmaceuticalChemical

Biotechnology Industry

Page 4: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Research Facilities

New Discovery

Attract Talent

Experiment 

Lab Investment

Reap the Benefits

Improve Lives

Better our WorldWin The Prize

Repeat

Promote Innovation

Page 5: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Modern Laboratory Buildings

• Attract & retain top talent

• Promote high quality research 

• Provide safe environments 

• Minimize energy use & operating costs 

• Maximize sustainability

• Comply with codes & standards

• Manage & mitigate risk

The building, labs and mechanical systems support scientific development and serve the  building occupants.

Page 6: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Potential for Exposure to Airborne Hazards and Adverse Health Effects

Inhalation Hazards

• Chemicals, Biologicals, Radioisotopes

• Severity of Exposure

• Probability of Generation

• Concentration Profile

• Duration of Exposure 

Physical Hazards

• Fires & Explosions

• Dermal Exposure

Dose = Concentration x Duration of Exposure

Page 7: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

SAFETYTHINK

LAB OFFICE

DUCTS

FILTER

ROOF

FAN

STACK

SUPPLYAIR

Exposure Control Devices (ECDs)&

Lab Ventilation Systems(LVS)

Page 8: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Ventilation – Expensive, Complex, Challenging

Size of Average Lab Building ≈ 100,000 ft2

Construction Cost(USA) ≈ $450 to $1,000 per ft2

LVS ≈ 15% to 30% of Construction Cost

Energy Costs ≈ $3 to $20 per ft2  (avg. $7/ ft2)

Average Energy Cost ≈ $700,000 per year

LVS Energy Use ≈ 50% to 75% (average 60%)

Airflow Costs ≈ $3 to $9 per cfm‐yr.

Traditional 6‐ft Fume Hood ≈ 800 to 1000 cfm

As much as 50% of LVS energy may be wasted by excess airflow, inefficient systems and improper modulation of flow

LVS Energy Use

Page 9: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Results of more than 30,000 ASHRAE 110 Tracer Gas Containment Tests Indicate:

15% ‐ 30% Failure

• Hood design  ‐ 20%

• Lab Design

• System Operation

• Work practices ‐ 25%

55%

Laboratory Hood Safety & Performance

Primary Factors Affecting Performance

Page 10: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

ANSI/AIHA –Z9.5 ‐ 2012 American National Standard for Laboratory Ventilation 

Revised & Published September 2012

Minimum Requirements and Best Practices– Protect People – Ensure Dependable Operation– Operate Energy Efficient Labs

Requires Risk Assessment and Lab Ventilation Management Plan

Specifications for New and Renovated Laboratories– Hood Design & Operation– Laboratory Design– Ventilation System Design– Commissioning and Routine Testing– Work Practices and Training– Preventative Maintenance

Page 11: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Minimum Flow for VAV Fume Hoods

1990s ‐ EPA – 50 cfm / ft of Wh

2004 ‐ NFPA 45 

- 25 cfm / sq. ft. ws- 2010 ‐ Defers to ANSI Z9.5

2012  ‐ ANSI Z9.5 (must be appropriate)

- Internal ACH (150 ACH  to  375 ACH)

- 150 ACH ~ 10 cfm / sq. ft. ws

- 375 ACH ~ 25 cfm / sq. ft. ws

• Containment • Dilution • Removal

InternalConc. (Ci)

Duct Conc. (Cd)

Caution:  Minimum Flow depends on the Hood Design, the System Controls and the Application 

Page 12: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Existing Lab Ventilation System 

Inefficient Fume Hoods

CAV Systems

Inefficient Exhaust Fans

Excess LEV

Short Circuiting Supply to Exhaust

Limited Controls & 

BAS

Inefficient Systems

Excess ACH

Page 13: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Safe, Energy Efficient & Sustainable Labs

Optimize Safety & Energy

Efficiency

Safe & 

Productive

Efficient &

Sustainable

Independent, not Mutually Exclusive

Page 14: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

• Effective─ Support research and development

─ Flexible to change

• Safe― Protect people from exposure

― Compliance with standards

• Efficient ─ Minimum energy consumption

─ Minimum operating costs

• Sustainable─ Minimum carbon footprint ─ Maintainable with Long Lifecycle─ Return on Investment 

High Performance “Smart Labs”

Page 15: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Achieving High Performance Laboratories

Lab Energy & Safety Optimization Process

• High Energy Consumption

• Safety Concerns

• Suboptimal Fume Hoods 

• Compromised Systems

• Inadequate Ventilation

• Poor Indoor Air Quality

• Upgrade Mechanical systems

• Install or Update VAV controls

• Upgrade Fume Hoods

• Install Demand Control Ventilation

• Utilize Energy Recovery

• Implement Lab Ventilation Management Program

• Safe and Productive

• Energy Efficient

• Maintainable

• Adaptable to Change

• Low Operating Cost

• Sustainable

Identify Issues & Opportunities

Upgrade and Optimize

Maintain High Performance 

Page 16: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Energy & Safety Optimization Process

1• Planning and Assessment

2• Systems Optimization

3• Performance Management

Plan 

Assess

Optimize

Sustain

Page 17: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Renovation& System Upgrades

PIMs &

ECMs

ProjectContracts

TAB &

CX

M&VPerformance Benchmark

CoordinateTeam

Engineering &

Specifications

Lab Energy & Safety Optimization Project

Monitoring & Maintenance

LVRA &

MOC

Assessment Performance Management

LVMP PMP

Training

Project Funding

Phase 1 Phase 2 Phase 3

3 to 6 months 3 monthsto

1+ years

3 months to 1+ years Multiple Years

Duration – ¾ Year to 3 Years

Periodic Building Health

Reports

Planning

Timeline

Building Profile

(RELSA)

Lab Ventilation

Risk Assessment

(LVRA)

Select PIMs

& ECMs

Project Scope

of Work

Feasibility Analysis

&Funding

Energy Model

Building Systems

Assessment(DVA)

System Performance

Tests

Ongoing System

Renovations

Roadmap to High Performance LVS “Smart Labs”

Page 18: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Renovation& System Upgrades

PIMs &

ECMs

ProjectContracts

TAB &

CX

M&VPerformance Benchmark

CoordinateTeam

Engineering &

Specifications

Lab Energy & Safety Optimization Project

Monitoring & Maintenance

LVRA &

MOC

Assessment Performance Management

LVMP PMP

Training

Project Funding

Phase 1 Phase 2 Phase 3

3 to 6 months 3 monthsto

1+ years

3 months to 1+ years Multiple Years

Duration – ¾ Year to 3 Years

Periodic Building Health

Reports

Planning

Timeline

Building Profile

(RELSA)

Lab Ventilation

Risk Assessment

(LVRA)

Select PIMs

& ECMs

Project Scope

of Work

Feasibility Analysis

&Funding

Energy Model

Building Systems

Assessment(DVA)

System Performance

Tests

Ongoing System

Renovations

Roadmap to High Performance LVS “Smart Labs”

Page 19: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Bridge the Gap

Architects & Engineers

EH&SEnergy

Sustainability

R&D

Maintenance

Page 20: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Achieving High Performance Laboratories

Environmental Health & Safety

Management Engineering

Maintenance

Priority No. 1  ‐ Team Development & Collaboration

Research

● Common Objectives   ● Realistic Goals   ● Teamwork

Space Planning

Purchasing

Page 21: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

• Task 1 ‐ Interdisciplinary Team of Stakeholders

• Task 2 – Rapid Energy and Lab Safety Assessment (RELSA)

– Scoping Study for One or More Buildings

– Identify and Prioritize Opportunities

• Task 3 – Demand For Ventilation Assessment (DVA)

– Comprehensive Building Evaluation

– Lab, Hood and System Surveys 

– Lab Ventilation Risk Assessment

– Benchmark Current Performance

– Identify PIMs and ECMs

– Determine Project SOW, Budget Costs and Benefits 

Lab Energy & Safety Optimization Process

Phase 1 – Planning & Assessment

Page 22: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

High Performance Labs – Campus WideBuilding Size – ft2

Croul Hall 95,500

McGaugh 213,717

Reines 156,514

Natural Sciences II 100,965

Biological Sciences III 145,017

Neurosciences 82,920

Sprague Hall 107,407

Hewitt Hall 75,203

Engineering III 129,158

Building Size ft2

Lab Health & Sustainability 

ProfileEUI

Energy Cost $

Project Cost$

BenefitsPayback

$

Croul Hall 95,500 ? ? ? ? ?McGaugh 213,717 ? ? ? ? ?Reines 156,514 ? ? ? ? ?

Natural Sciences II 100,965 ? ? ? ? ?Biological Sciences III 145,017 ? ? ? ? ?

Neurosciences 82,920 ? ? ? ? ?Sprague Hall 107,407 ? ? ? ? ?Hewitt Hall 75,203 ? ? ? ? ?

Engineering III 129,158 ? ? ? ? ?

Page 23: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

• Facility and Building Qualifying Tool– Select & Prioritize Best Projects First

• Key Metrics & Weighting Factors – Size & Space Allocation– Energy Use & Operating Costs– State of the Systems– Energy Reduction Potential

• Health And Sustainability Profile Report– Building Classification– Potential Energy Reduction– Project Costs & Potential Payback

Rapid Energy & Lab Safety Assessment (RELSA)

Attribute Lab Building Profile Category

• Health and State of the Systems

• Energy Reduction Potential 

• Project LOE & Complexity

• Return on Investment (Payback)

Class A

Class B

Class C

Class D

Page 24: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Profile Building Total Annual Utility Cost

% Utility 

Reduction

Annual Savings

$

Investment Project Cost

$

Payback PeriodYrs.

A Bldg D $1,950,000  24 $468,000  $1,404,000  3

B+ Bldg A $800,000  16 $128,000  $512,000  4

B Bldg F $600,000  21 $126,000  $567,000  5

B Bldg E $980,000  16 $156,800  $784,000  5

B‐ Bldg B $450,000  9 $40,500  $202,500  5

C‐ Bldg C $300,000  7 $21,000  $189,000  9

Totals $5,080,000  19 $940,300  $3,658,500  4

RELSA Profile & Project Prioritization 

Page 25: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Demand for VentilationPerformance Criteria, Engineering Controls

and Operating Specifications

Page 26: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Demand for Ventilation

Minimum flow and range of modulation required to meet the functional requirements of the occupants

• Safety – Appropriate ECDs

– Exhaust Flow

– Laboratory Pressurization

– Dilution (ACH)

• Comfort & Productivity– Temperature 

– Humidity 

• Occupancy & Utilization

Page 27: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Laboratory Ventilation System

Sash Open = 1000 cfm

Sash Closed = 200 cfm

Gex High = 500 cfm

Gex Low = 0 cfm

Modulation of flow is based on the Demand for Ventilation

Supply High = 900 cfm

Supply Low = 100 cfm

Max Supply

Min Supply

Max Exhaust

Min Exhaust

Page 28: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Laboratory Ventilation Risk Assessment

Page 29: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Agency Ventilation RateASHRAE Lab Guides 4-12 ACH

UBC – 1997 1 cfm/ft2

IBC – 2003 1 cfm /ft2

IMC – 2003 1 cfm/ft2

U.S. EPA 4 ACH Unoccupied Lab - 8 ACH Occupied Lab

AIA 4-12 ACH

NFPA-45-2004 4 ACH Unoccupied Lab - 8 ACH Occupied Lab

NRC Prudent Practices 4-12 ACH

OSHA 29 CFR Part 1910.1450 Recommends 4-12 ACH

ACGIH 24th Edition, 2001 Ventilation depends on the generation rate and toxicity of the contaminant and not the size of the room.

ANSI/AIHA Z9.5 Prescriptive ACH is not appropriate.

Rate shall be established by the owner!

Typical ACH Guidelines

Page 30: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Risk From Exposure to Airborne Hazards

• Type and Quantity of Hazard 

• Exposure Limit

• Emission Scenario

• Severity of Consequence

• Probability of Occurrence

• Potential for Change

• Potential for Explosion or Fire

Page 31: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Risk Based Demand for Ventilation 

People Airborne Hazard

Contaminant Concentration

Duration of Exposure RISK

Negligible

Extreme

Risk Spe

ctrum

Page 32: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Demand For Ventilation

• Survey Laboratories

1. Assess Exposure Control Devices (ECDs)

2. Assess Lab Environment

• Determine Hazard Emission Scenarios

• Categorize Risk Using Control Bands

• Recommend Appropriate Operating Specifications

– Minimum Fume Hood Flow

– Minimum Laboratory ACH 

– Exhaust Stack Discharge Requirements

Laboratory Ventilation Risk Assessment

Page 33: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Risk Control Bands for Fume Hoods & ECDs 

Total Score

Control Band

Description

< 15 0 Negligible

15‐30 1 Low

31‐50 2 Moderate

51‐70 3 High

71‐100 4 Very High

101‐125 5 Extreme

Risk Factor Ratings Determine RCBs

Page 34: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Distribution of Fume Hoods by Control Bands

Hazard Rating

Material Quantity

Generation Potential

Method of Generation (M, E, I, 

C)

Generation Locations (L,M,H)

DynamicHousekeeping

5 3 5 1 1 2 1

014 Fume Hood 2 0 0 0 0 0 0 1 1 0020 Fume Hood 1 1 2 1 2 1 1 2 23 2021 Fume Hood 1 0 0 0 0 0 0 1 1 0022 Fume Hood 2 1 2 2 2 1 1 2 28 2202 Fume Hood 4 2 1 1 2 1 1 1 24 2202 Fume Hood 2 2 2 1 2 1 1 1 27 2210 Fume Hood 6 2 2 2 2 1 1 1 32 2210 Fume Hood 1 2 1 1 2 1 1 1 24 2210 Fume Hood 2 2 1 1 2 1 1 1 24 2309 Fume Hood 2 0 0 0 0 0 0 1 1 0312c Fume Hood 1 0 0 0 0 0 0 1 1 0334 Fume Hood 1 1 1 1 2 1 1 4 22 1336a Fume Hood 1 0 0 0 0 0 0 1 1 0335 Fume Hood 1 3 3 3 5 5 1 1 52 4400 Fume Hood 8 3 2 1 2 3 1 1 34 2402 Fume Hood 1 2 1 1 2 1 1 1 24 2404 Fume Hood 1 3 4 2 3 1 2 2 47 3406 Fume Hood 2 3 1 1 2 1 1 1 29 2410 Fume Hood 2 0 0 0 0 0 0 1 1 0414 Fume Hood 1 3 2 2 2 1 1 2 38 3416 Fume Hood 1 2 1 1 2 1 1 1 24 2422 Fume Hood 1 2 1 1 3 1 1 1 25 2424 Fume Hood 2 2 3 2 3 1 1 2 37 3444 Fume Hood 2 1 1 1 2 1 1 1 19 1446 Fume Hood 2 2 2 2 2 1 1 2 33 2448 Fume Hood 1 1 1 1 2 1 1 1 19 1452 Fume Hood 1 0 0 0 0 0 0 1 1 0454 Fume Hood 2 1 2 2 2 1 1 2 28 2456 Fume Hood 2 0 0 0 0 0 0 1 1 0612 Fume Hood 3 4 3 4 5 5 3 4 69 5612 Fume Hood 1 4 4 4 5 5 3 4 72 5714 Fume Hood 2 1 1 1 2 1 2 3 23 2716 Fume Hood 2 2 1 1 2 1 1 2 25 2

ECD ‐ Risk MatrixECD 

LocationType of Device Quantity Score

Risk Control Band

Page 35: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Risk Control Bands for Lab Environments

Total Score

Control Band

Description

< 16 0 Negligible

16‐40 1 Low

41‐64 2 Moderate

65‐88 3 High

89‐120 4 Very High

121‐160 5 Extreme

Assignment to RCBL

Page 36: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Risk Factors for the Lab EnvironmentRate and Weight Risk Factors

• Chemical Hazard Rating

• Quantity of Hazardous Material

• Chemical Generation Potential

• Method of Generation

• Generation Source Location(s)

• Appropriate ECDs

• Potential for Change

• Housekeeping ‐ Lab Practices

• Ventilation Effectiveness (Sweep)

Page 37: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Specifications by Risk Control BandRatings, Weightings and RCBs Adjusted per Site Requirements

LVRA – Risk Control Bands and Lab Operating Specifications

Laboratory SpecificationsRisk Control Band

0 1 2 3 4 5

Minimum Effective ACH N/A 2 4 6 8 10

Recirculation of Lab Air Yes Yes Filtered Internal Internal No

Lab Pressurization “w.g. Neutral Neutral < ‐0.005 < ‐0.01 < ‐0.05 = > ‐0.05

RoomMonitor N/A N/A N/A Review Yes Yes

Airlock/Vestibule N/A N/A N/A N/A N/A Yes

Enthalpy Wheels Yes Yes Review Review No No

Flow Setback (DCV) Yes Yes Yes Yes Review No

Emergency Purge Mode No No No No Review Yes

Future Capacity for ECD Snorkel 4‐ft LFH 6‐ft LFH 8‐ft LFH 2 x 6‐ft LFH

Additional Flow Capacity N/A 100 cfm 480 cfm 780 cfm 1080 cfm 1560 cfm

Page 38: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Hazard Rating

Material Quantity

Generation Potential

Generation (M, E, I, C)

Generation Locations

ECD Availability

Appropriate ECDs

Dynamic HousekeepingAir Change Effectiveness

7 2 12 1 2 1 1 2 1 3700 5 5 1 1 1 5 5 1 2 5 4 10702 3 2 2 2 3 5 5 1 1 4 3 8704 3 2 3 2 4 1 1 2 3 3 4 10706 2 4 2 3 3 1 1 1 3 3 3 8708 2 2 2 3 4 1 1 3 3 3 3 8710 3 3 3 3 4 1 1 2 4 2 4 10712 1 1 2 3 2 1 1 2 2 2 2 6714 1 1 2 2 2 1 1 2 3 3 2 6716 1 1 2 3 2 1 1 1 2 3 2 6722 0 0 0 0 0 0 0 0 1 3 0 2724 2 2 3 3 3 1 1 2 3 3 3 8726 3 2 2 2 3 4 1 2 3 3 3 8728 2 3 1 2 2 1 1 1 2 3 2 6730 4 3 3 3 3 1 1 2 3 3 4 10732 1 1 1 3 1 1 1 1 1 2 1 4734 4 3 3 3 4 1 1 3 4 2 4 10736 2 2 1 2 3 4 4 2 2 3 2 6742 3 2 3 3 3 1 1 2 3 3 3 8744 3 4 4 3 4 1 1 3 4 2 4 10746 3 3 3 3 4 1 1 3 4 2 4 10748 3 4 3 3 3 1 1 2 3 3 4 10752 2 2 2 3 3 1 1 2 3 3 3 8754 4 4 4 3 4 1 1 3 4 2 4 10756 3 3 3 3 3 1 1 3 2 3 4 10758 3 4 4 3 4 1 1 2 4 3 4 10760 4 5 3 2 4 1 1 2 3 3 4 10762 5 5 5 4 5 1 1 1 5 3 5 12764 5 5 4 2 5 1 1 2 4 2 5 12766 2 2 2 3 3 1 1 2 3 3 3 8770 1 1 1 5 2 1 1 1 1 3 2 6772 3 2 3 3 4 1 1 3 3 2 4 10774 2 3 3 3 3 1 1 2 3 2 3 8776 0 0 0 0 0 0 0 0 2 3 0 2791 1 2 1 1 3 5 1 1 2 4 2 6792 2 2 2 2 2 5 5 0 2 5 3 8793 1 2 1 2 3 5 1 1 2 4 2 6794 1 3 1 1 3 5 1 1 2 4 2 6

Lab Environment ‐Risk Control Band FactorsLab Control 

BandMin. ACH

Distribution of Labs by Risk Control Bands

Page 39: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

24'-0"

20'-0

"8 F T

6 F

T6

FT

L ight ing Fix ture

A ir D if fus er

Lab Design and Ventilation Effectiveness Diffuser Types and Size

Diffuser Locations

Air Supply Volume

Supply Temperature

Thermostat Location

Resultant Room Air Patterns

Page 40: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Airflow Distribution & Ventilation Effectiveness

Poor VEFF = 1 ‐ 2

Better VEFF = 0.5 ‐ 1

Page 41: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Ventilation Effectiveness Current Design – Poor Air Distribution and Mixing

fan

Page 42: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Ventilation Effectiveness Optimized Distribution, Dilution and Contaminant Removal

Page 43: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Ventilation SpecificationsRisk Assessment and VEFF Results

• Work in laboratories involves a wide spectrum of risk

• Labs and ECDs can be categorized by Risk

• Risk Control Bands can associated with Hazard Emission Scenarios 

• Hazard Emission Scenarios can help establish design and operating specifications for new and existing laboratories

• Lab design and airflow distribution affect ventilation effectiveness (VEFF) and the required ACH 

• VEFF can be measured and quantified using simple tracer gas tests 

• VEFF is more important than ACH

• Labs should be designed for contaminant removal not dilution alone

ACH can be reduced by optimizing VEFF

Page 44: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Energy & Safety Optimization Process

Phase 2 - Building Optimization

Page 45: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Renovation& System Upgrades

PIMs &

ECMs

ProjectContracts

TAB &

CX

M&VPerformance Benchmark

CoordinateTeam

Engineering &

Specifications

Lab Energy & Safety Optimization Project

Monitoring & Maintenance

LVRA &

MOC

Assessment Performance Management

LVMP PMP

Training

Project Funding

Phase 1 Phase 2 Phase 3

3 to 6 months 3 monthsto

1+ years

3 months to 1+ years Multiple Years

Duration – ¾ Year to 3 Years

Periodic Building Health

Reports

Planning

Timeline

Building Profile

(RELSA)

Lab Ventilation

Risk Assessment

(LVRA)

Select PIMs

& ECMs

Project Scope

of Work

Feasibility Analysis

&Funding

Energy Model

Building Systems

Assessment(DVA)

System Performance

Tests

Ongoing System

Renovations

Roadmap to High Performance LVS “Smart Labs”

Page 46: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Energy & Safety Optimization Process

Phase 2 – Funding & Project Execution• Phase 2a ‐ Funding Sources

– Internal Facility Budget– Utility Rebates & Incentives – Performance Contracts

• Contractor Qualification & Selection

• Phase 2b – Project Engineering – Design Upgrades & System Modifications– Develop TAB & Cx Plans

• Phase 2c –Renovation / Construction Project– Implement Selected PIMs & ECMs– Retrofit Lab Hood Systems– Verify Performance and Energy Savings

Page 47: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Flow Monitors and VAV Controls

• Hood Monitors (Flow Measuring Device)– Flow– Velocity– Pressure

• Flow Control Types– Through the Wall Velocity– Sash Position– Occupancy– Manual 

• VAV Modes– Two State– Full VAV – VAV Hybrid

TTW Velocity Sensor

and Hood

Monitor

Monitors are required on all fume hoods

Page 48: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Upgrade Traditional Fume Hoods

Refurbish Inefficient Hoods

Improve Safety & Containment 

Reduce Flow and Energy Use

• Airfoil Sill

• Vortex Displacement Sash Handle

• Enhanced Baffle

PatentedUpgradeComponents

Page 49: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Performance Improvement Measures & Energy Conservation Measures 

Minimize Flow

Improve Efficiency

Maximum Energy 

Reduction

PIM and ECMs Applicable

Remove or Hibernate Unnecessary Hoods X

Modify Inefficient Hoods X

Replace & Retrofit Traditional Fume Hoods X

Upgrade CAV & VAV Controls X

Optimize Temperature & Humidity Controls X

Install Demand Control Ventilation X

Reduce / Reset System Static Pressure X

Optimize Exhaust Fan and AHU Operation X

Implement Energy Recovery ?

Page 50: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Avoid Unnecessary Hoods

Vented Cabinets• Misapplied

• Limited to No Protection

• Large Energy Waster

12 Vented Book Cases in one lab building @ 200 cfm each = $12,000 per year

Page 51: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Smart Lab ‐ High Performance Laboratory Ventilation System

RM 201RM 202 RM 203 RM 204

RM 101 RM 103 RM 105 RM 107

Penthouse

Basement

LFH7

LFH5

LFH1

LFH4

LFH2

LFH3

Gex1

Gex2

Page 52: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Successful Building Optimization

Name Type* Estimated Avg. ACH

VAV or CV

Was more efficient than

code?

kWh Savings

Therm Savings

Total Savings

Croul Hall P 6.6 VAV ~ 20% 41% 60% 55%

McGaugh Hall B 9.4 CV no 40% 66% 47%

Reines Hall P 11.3 CV no 70% 76% 72%

Natural Sciences II P, B 9.1 VAV ~ 20% 48% 62% 50%

Biological Sciences 3 B 9 VAV ~ 30% 45% 81% 60%

CALIT2 E 6 VAV ~ 20% 46% 78% 62%Gillespie Neurosciences M 6.8 CV ~ 20% 58% 81% 61%

Sprague Hall M 7.2 VAV ~ 20% 58% 82% 71%

Hewitt Hall M 8.7 VAV ~ 20% 58% 77% 69%

Engineering 3 E 8 VAV ~ 30% 59% 78% 61%

Averages − 8.2 VAV ~ 20% 55% 76% 58%

Laboratory Building Before “Smart Lab” Retrofit After “Smart Lab” Retrofit

Even the most well designed and well maintained buildings will degrade over time!

Page 53: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Laboratory Ventilation Management Plan

Page 54: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Renovation& System Upgrades

PIMs &

ECMs

ProjectContracts

TAB &

CX

M&VPerformance Benchmark

CoordinateTeam

Engineering &

Specifications

Lab Energy & Safety Optimization Project

Monitoring & Maintenance

LVRA &

MOC

Assessment Performance Management

LVMP PMP

Training

Project Funding

Phase 1 Phase 2 Phase 3

3 to 6 months 3 monthsto

1+ years

3 months to 1+ years Multiple Years

Duration – ¾ Year to 3 Years

Periodic Building Health

Reports

Planning

Timeline

Building Profile

(RELSA)

Lab Ventilation

Risk Assessment

(LVRA)

Select PIMs

& ECMs

Project Scope

of Work

Feasibility Analysis

&Funding

Energy Model

Building Systems

Assessment(DVA)

System Performance

Tests

Ongoing System

Renovations

Roadmap to High Performance LVS “Smart Labs”

PIM = Performance Improvement Measure

ECM = Energy Conservation Measures

TAB = Test, Adjust and Balance

Cx = Commissioning Tests

LVMP = Lab Ventilation Management Program

Page 55: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Lab Ventilation Management Program (LVMP)• Stakeholder Coordination

– Roles and Responsibilities

– Collaboration and Communication

• Ventilation Risk Assessment

• ECD Selection and Design

• Ventilation System Design

• Performance Validation 

• Maintenance and Routine Tests

• Personnel Training

• Management of Change

Page 56: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Operating Manual for Building Systems Performance Management Plan 

• Accurate Drawings / Diagrams• Up to Date Equipment Inventories • Lab Ventilation Risk Matrix• Appropriate Flow Specifications• Control Sequences and Parameters

• Key Performance Metrics and Parameters- Operational Boundary Conditions

• Standard Operating Procedures- Routine Tests & Maintenance Tasks- Schedules and Management of Change

• Adequate Training for Stakeholders and Staff

Protect Return On Investment

Page 57: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Identifying and Managing Change

• Labs are Dynamic Environments– Experimental Procedures and Materials– Personnel Turnover

• Change Trigger Points– Space Planning– Lab Inspections– Routine Certification Tests– User Input through Easy Web Interface– Changes in Chemical Inventory (if available)– Changes in Chemical Procurement (if known)– Changes in Hazardous Waste Records

The Only Thing That Is Constant Is Change -

Heraclitus

Page 58: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Ongoing Challenges

• Dynamic Research & Change in Processes– Trigger points to identify changes in lab operations

• Ongoing Risk Assessment• System Modifications• Component Degradation• Component Failures• Diminished Service and Support• Consistency and Quality of Maintenance

Ensuring lab safety and energy savings is not “sustainable” without ongoing risk assessment, management of change, 

training and integration of facility stakeholders!

Page 59: Session: High Airflow Applications · ANSI/AIHA –Z9.5 ‐2012 American National Standard for Laboratory Ventilation Revised & Published September 2012 Minimum Requirements and Best

Energy Exchange: Federal Sustainability for the Next Decade

Questions?

Exposure Control Technologies, Inc.919‐319‐4290

[email protected] 

Tom Checksfield