Session c 3 Tutorial

download Session c 3 Tutorial

of 124

Transcript of Session c 3 Tutorial

  • 7/29/2019 Session c 3 Tutorial

    1/124

    Communications:

    Applications

    Warren Stutzman and Bill Davisrg n a ec n enna roup

    June 2, 2011

    an enna.ece.v .e u

  • 7/29/2019 Session c 3 Tutorial

    2/124

    1. Introduction Stutzman

    2. Antenna Fundamentals Davis3. Antenna Elements Davis

    4. Array Antennas Stutzman

    break. ys em ons era ons Davis

    6. Wireless Applications Both

    .

  • 7/29/2019 Session c 3 Tutorial

    3/124

    .

    Self Introductions of Class

    History of Communications

    The S ectrum

    Antenna Performance Parameters

  • 7/29/2019 Session c 3 Tutorial

    4/124

    Fellow of the IEEE

    & Prop. Society

    Distinguished alumnus of Uo no s

    Founder of Virginia Tech

    Served as ECE Dept Headtwice

  • 7/29/2019 Session c 3 Tutorial

    5/124

    years Director of Vir inia Tech

    Antenna Group

    Past Commission Chair

    Incoming CommissionChair International URSICommission A

    URSI Meetings Coordinator

    Vice Chair 2005 IEEE

    APS/URSI Symposium

  • 7/29/2019 Session c 3 Tutorial

    6/124

    Wireless versus Wireline Fields of Application

    Sensing and Imaging Active Radar

    Industrial

    Control Ex.: garage door opener .

    Heating, cooking, drying, ...

    Communications

    Antennas must be used for: Mobile communications

    Very long distances

    pace

    Remote terrestrial locations

  • 7/29/2019 Session c 3 Tutorial

    7/124

    Antennas are preferred for Broadcast and point-to-multipoint comm.

    Long distance communications

    Thin routes

    Portable and personal communications

    . Loss in wireline is

    Loss in wireless is

    References

    W. Stutzman and G. Thiele, Antenna Theory and Design, 2e, Wiley, 1998.

    . , ,Prentice-Hall, 1996.

    K. Siwiak, Radiowave Propagation and Antennas for Personal

    Communications, Sec. Ed., Artech House, 1998.

  • 7/29/2019 Session c 3 Tutorial

    8/124

    Pre-modern civilization

    O tical communications: Smoke si nals, fla s, ....

    Acoustical communications: Drums

    [note all are forms of wireless ndigital communications]

    1844

    Telegraph (Morse) digital wireline comm.

    1864

    Maxwells equations principles of radio waves

    Telephone (Bell) analog wireline comm.

    1887

    1897

    First radio systems (Marconi, Popov)

  • 7/29/2019 Session c 3 Tutorial

    9/124

    1901

    1907Lee de Forest invented triode tube

    1920KDKA, 1st modern radio station (Pittsburgh)

    World War IIDevelopment of radar & Magnetron

    Fiber optics

    1980sWireless reinvented

    Wireless Radio Wireless 1900 2000

  • 7/29/2019 Session c 3 Tutorial

    10/124

  • 7/29/2019 Session c 3 Tutorial

    11/124

    Antenna Performance Parameters

    Radiation pattern F(,)The angular variation of radiation around an antenna

    Pattern types:Directive (narrow main

    beam)

    Omnidirectional

    Shaped beam

    Low side lobe

    Directivity DRatio of power density in the direction of pattern maximum to the

    i.e. how much more focused the power is than if isotropically

    distributed.

    Directivity reduced by losses on the antenna

  • 7/29/2019 Session c 3 Tutorial

    12/124

  • 7/29/2019 Session c 3 Tutorial

    13/124

    .

    Connecting to the antenna

    Impedance

    Pattern

    Fundamental Limits

  • 7/29/2019 Session c 3 Tutorial

    14/124

  • 7/29/2019 Session c 3 Tutorial

    15/124

    Wire: Approximate sinusoid/traveling wave

    current

    )()()cos(),( yxzIzrJ =r

    r

  • 7/29/2019 Session c 3 Tutorial

    16/124

  • 7/29/2019 Session c 3 Tutorial

    17/124

  • 7/29/2019 Session c 3 Tutorial

    18/124

    1 rr

    rrr

    )( rrjHrE ==

  • 7/29/2019 Session c 3 Tutorial

    19/124

    Far FieldLinear E-field Decibel E-field

  • 7/29/2019 Session c 3 Tutorial

    20/124

  • 7/29/2019 Session c 3 Tutorial

    21/124

  • 7/29/2019 Session c 3 Tutorial

    22/124

    Current ~

    r

    r

    Vector Potential

    z

    rj

    ze

    A =

    r

    Magnetic Field

    r4

    sinz

    rj

    Ie

    jH =

    r

    Electric Field

    sinz

    rj

    Ie

    jE =

    r

    Poynting Vector

    sin

    16

    2

    1

    2

    1 222

    22

    2* z

    r

    IrHES

    ==

    rrr

    12

    2 zI

    P

    =

  • 7/29/2019 Session c 3 Tutorial

    23/124

    R i i n R i nShort Dipole

    EQUATE Input Power &

    Radiation Power

    2 2

    280

    1 3

    ra z zradR

    I

    =

    L , For ractical di ole

    2

  • 7/29/2019 Session c 3 Tutorial

    24/124

  • 7/29/2019 Session c 3 Tutorial

    25/124

  • 7/29/2019 Session c 3 Tutorial

    26/124

    -

  • 7/29/2019 Session c 3 Tutorial

    27/124

  • 7/29/2019 Session c 3 Tutorial

    28/124

    Example: Approximate /4dipole

    =

    L = 0.5m

    a. = . m

  • 7/29/2019 Session c 3 Tutorial

    29/124

    22

    == 22 ),()(),( dFFAverageD

    ,

    )],(max[ DD =D =

    4

    A

    An leSolidBeam2 == dF,

  • 7/29/2019 Session c 3 Tutorial

    30/124

    Directivitd = sin ddd Fi ure 1-17

    sin d Element of solid angle d.

    UmUm

    Figure 1-18Antenna beam solid angle A.

    (a) Actual pattern (b)

  • 7/29/2019 Session c 3 Tutorial

    31/124

  • 7/29/2019 Session c 3 Tutorial

    32/124

    sinj r

    eE I

    = r

    4 r

    * ( , ) sinzh = r

  • 7/29/2019 Session c 3 Tutorial

    33/124

    Linear, Circular, Elliptical

    )cos(cos 21 ++= tEytExE

  • 7/29/2019 Session c 3 Tutorial

    34/124

    / *p h E h E=

    r r r r

    p=1 for matched wave and antennap= for CP ant. and LP wave

    = .

  • 7/29/2019 Session c 3 Tutorial

    35/124

    wt j( t + ) = E + E = E e + E e

    x y 1 2E x y x y

    2E

    2 - -

    Counter- Clockwise

    1

    E1

    c oc w se1

    2

    -180 -135 -90 -45 0 +45 +90 +135 +180

    Figure 2-37 Polarization ellipses as a function of the ratio E2/E1 and phase angle .

    left-handed polarization (IEEE definition) while counterclockwise corresponds

    to right-handed polarization.

  • 7/29/2019 Session c 3 Tutorial

    36/124

    e= Realized GainR

    == RR

  • 7/29/2019 Session c 3 Tutorial

    37/124

  • 7/29/2019 Session c 3 Tutorial

    38/124

  • 7/29/2019 Session c 3 Tutorial

    39/124

    ththv trOC = )(rr

  • 7/29/2019 Session c 3 Tutorial

    40/124

    -,

    Balanced vs Unbalanced

    Feed Network (Arrays)

    True Time-Delay

    Circuit & loading

  • 7/29/2019 Session c 3 Tutorial

    41/124

    Im edance Treat as a circuit

    element

    = Induced EMF Z

    mcv

    = dJEJZ )(2rrr

  • 7/29/2019 Session c 3 Tutorial

    42/124

    XmitRcv FF =

  • 7/29/2019 Session c 3 Tutorial

    43/124

    Pattern Reciprocity

  • 7/29/2019 Session c 3 Tutorial

    44/124

    A bit of Controversy

    )1(

    122233 ++

    = aaa

    Q

    aaQ

    1133 +=

    102

    Antenna Fundamental Limit

    Inverted F

    Dual Inverted F

    Patch

    101

    iationQ

    Dipole

    Goubau

    Planar Inverted F

    Foursquare

    100

    Ra

    Wideband, Compact, Planar Inverted F

    McLean

    0 0.5 1 1.5 2 2.510

    -1

    ka

    GrimesChu

  • 7/29/2019 Session c 3 Tutorial

    45/124

  • 7/29/2019 Session c 3 Tutorial

    46/124

    .

    Electrically Small Antennas

    Broadband Antennas

    Fre uenc Inde endent Ultra Wideband

    Aperture Antennas

  • 7/29/2019 Session c 3 Tutorial

    47/124

    The Four Antenna Types

    Electrically Small Antennas

    Examples

    Short dipole Small loop

    Properties

    Low input resistanceLow efficiency and gain

  • 7/29/2019 Session c 3 Tutorial

    48/124

    Resonant Antennas

    Examples

    Properties

    Low to moderate gain

    Real input impedance

    Low efficiency and gain

  • 7/29/2019 Session c 3 Tutorial

    49/124

  • 7/29/2019 Session c 3 Tutorial

    50/124

    Broadband Antennas

    Examples (Frequency Independent)

    Spiral Log Periodic Dipole Array

    ,

    frequency independent performance and ones that preserve

    signal properties in the time domain (UWB)

    PropertiesLow to moderate gain

    Real in ut im edance

    Low efficiency and gain

  • 7/29/2019 Session c 3 Tutorial

    51/124

    Aperture Antennas

    Examples

    Low to moderate gainReal input impedance

  • 7/29/2019 Session c 3 Tutorial

    52/124

    .

    A. Array Basics

    B. Arra s of Isotro ic Elements

    C. Inclusion of Element Effects

    . u ua oup ng

    E. Phased Arrays

  • 7/29/2019 Session c 3 Tutorial

    53/124

  • 7/29/2019 Session c 3 Tutorial

    54/124

    Two element arrays of isotropic elements of various spacings

  • 7/29/2019 Session c 3 Tutorial

    55/124

    y g

    and phasings

    0 45 90 135 180

    d 18

    d 14

    d 38

    d

    I1

    I 1

    d 12

    d 58

    rom raus

    d 1

    General uniformly excited, equally spaced linear array (UE,ESLA)

  • 7/29/2019 Session c 3 Tutorial

    56/124

    y , q y p y ( , )

    r

    zd d

    0 1 2

    Figure 3-7 Equally spaced linear array of isotropic point sources.

    Nj d j d j nd

    I I e I e I e = + + + =

    1cos 2 cos cos

    0 1 2 nAF L (3-14)n=0

    jna

    n nA e

    Now consider the array to be transmitting. If the current has a linear phase progression

    (i.e., relative phase between adjacent elements is the same), we can separate the phase

    explicitly as(3-15)

    where the n + 1th element leads the nth element in phase by a. Then (3-14) becomes

    Define

    ( )N n d an

    n

    A e +

    =1 cos0AF = (3-16)

    ThenN

    jn

    n

    n

    A e

    =1

    0

    AF =

    (3-18)

    Universal

    array factor

  • 7/29/2019 Session c 3 Tutorial

    57/124

  • 7/29/2019 Session c 3 Tutorial

    58/124

  • 7/29/2019 Session c 3 Tutorial

    59/124

    Universal arra factors for N = 3, 5, 10

    1.0 ( )f 1.0 ( )f N= 5

    N= 3

    (b)0

    0

    0.4 0.8 1.2 1.6 2(a)

    0

    0

    223

    43

    -

    1.0 ( )f N= 10

    spaced, uniformly excited linear array

    for a few array numbers. (a) Three

    elements. (b) Five elements. (c) Ten

    elements.

    (c)0

    0

    21.6 1.81.41.20.2 0.4 0.6 0.8

  • 7/29/2019 Session c 3 Tutorial

    60/124

  • 7/29/2019 Session c 3 Tutorial

    61/124

  • 7/29/2019 Session c 3 Tutorial

    62/124

    Nonuniformly excited, ESLA

  • 7/29/2019 Session c 3 Tutorial

    63/124

    y ,

    -

    jnn

    n=0

    AF A e d cos = +1.0

    An

    Uniform

    1.0

    0.5

    00 2 z1/2 3/2An

    (a)1: 1 : 1 : 1 : 1

    Trian ular

    1.0

    0 2 z1/2 3/2An

    (b) 1 : 2 : 3 : 2 : 1

    Figure 3-24 Current distributions

    1.0

    0.5

    0 2 z1/2 3/2An

    (c) 1 : 4 : 6 : 4 : 1

    Fig. 3-23. The current phases are

    zero ( = 0). Currents are normal-ized to unity at the array center.

    (a) Uniform. (b) Triangular.

    1.0

    0.5

    0

    0 2 z1/2 3/2An

    (d)

    -

    for a side lobe level of -20dB

    1 : 1.61 : 1.94 : 1.61 : 1

    c nom a . d o p -

    Chebyshev (SLL = -20 dB).(e) Dolph-Chebyshev.

    0.5

    0

    0 2 z1/2 3/2(e)Dolph-Chebyshev

    for a side lobe level of -30dB

    1 : 2.41 : 3.14 : 2.41 : 1

  • 7/29/2019 Session c 3 Tutorial

    64/124

    D 5HP 20.5

    SLL 12 dB

    == = .

    HP 26.0

    SLL 19.1 dB

    == = D 3.66

    HP 30.3

    SLL dB

    == =

    180 1801800 0 0

    1.00 1.00 1.00

    0.75 0.75 0.750.250.250.25

    0.500.500.50

    (a) Uniform currents, 1 : 1 : 1 : 1 : 1. (b) Triangular current amplitude

    distribution, 1 : 2 : 3 : 2 : 1.

    (c) Binomial current amplitude

    distribution, 1 : 4 : 6 : 4 : 1.

    Figure 3-23 Patterns of several uniform phase (o = 90), equally spaced (d = /2)linear arrays with various amplitude distributions. The currents are plotted in Fig. 3-24.

    D 4.22

  • 7/29/2019 Session c 3 Tutorial

    65/124

    = D 4.68 .SLL 30 dB

    == HP 23.6

    SLL 20 dB-= =

    1.000.75180 0

    1.00

    0.750.50

    0.25

    180 00.25

    .

    -

    Current amplitude distribution, 1 : 1.61 : 1.94 : 1.61 : 1for a side lobe level of -20 dB.

    (e) Dolph-Chebyshev

    Current amplitude distribution,

    1 : 2.41 : 3.14 : 2.41 : 1, with a side

    lobe level of -30 dB.

    Fig. 3-23 (continued)

  • 7/29/2019 Session c 3 Tutorial

    66/124

    antennas in general:

    As amplitude taper increases:

    Directivity decreases (as a consequence of beamwidth increasing)

    Sidelobes decrease

    Current envelope:

    Directivity of nonuniformly excited, isotropic element arrays

  • 7/29/2019 Session c 3 Tutorial

    67/124

    Directivity of nonuniformly excited, isotropic element arrays

    General case of unequally spacings and nonuniform phasings

    N

    Ak

    2

    1

    -

    ( ) ( )( )m p

    N Nm pj

    m pm p m p

    Dsin z z

    A A ez z

    =

    =

    1 1

    =0 =0

    Equal spacings and broadside operation

    -

    N

    k

    k

    A

    = = = 21

    =0

    S acin s a multi le of a half-wavelen th and broadside

    ( )( )

    n nN N

    m p

    m p

    m p dA A

    m p d

    1 1=0 =0 sin

    (3-93), . . .

    N

    n

    n

    N

    A

    D d ,

    = =

    21

    =0

    1 ( )nn

    A=0

  • 7/29/2019 Session c 3 Tutorial

    68/124

    Collinear elements

  • 7/29/2019 Session c 3 Tutorial

    69/124

    Example: Two collinear short dipoles

    | |

    x

    I Io = =11 1 z(a) The array.

    Element Array Total

    pattern factor pattern

    z

    Figure 3-18 A linear array of parallel line

    sources.

    (b) The pattern.

    sin

    cos cos2

    sin cos cos2

    Figure 3-17 Array of two half-wavelength spaced, equal

    amplitude, equal phase, collinear short dipoles (Example 3-8).

  • 7/29/2019 Session c 3 Tutorial

    70/124

    Prob 3 3 2

  • 7/29/2019 Session c 3 Tutorial

    71/124

    Prob. 3.3-2

    2

    1 1

    From (2-7) ( ) =

    a

    cos cos2

    g

    sin

    From (3-13) ( ) ( )f cos cosSo

    ( ) ( )( ) ( ) ( ) ( )

    = =a

    cos cos2

    F g f cos cossin

    ga x f F

    zz

    =

    (Fig. 2-5b) (Fig. 3-6c)

    Method used in practice to produce a single endfire beam

  • 7/29/2019 Session c 3 Tutorial

    72/124

    x y

    z

    Ground plane

    4

    -

    x y yz-plane (array

    factor)

    -1 -11 1

    d =

    2

    d =

    2

    xz-plane (including/2 dipole effect)

    Problem 3.7-7 uses array theory to find the patterns

  • 7/29/2019 Session c 3 Tutorial

    73/124

    Base Station Collinear Arrays

  • 7/29/2019 Session c 3 Tutorial

    74/124

    .

    L2

    = ( )From code

    D 7.75 dBi d 0.72

    5.6 dBd

    A roximate directivit

    = =

    =

    e i

    D D D 1.64(5.4) 8.9, using Fig. 3-20

    9.5 dB 7.3 dBd=

    = ==

    The tower enhances the gain by makingpattern more directive

  • 7/29/2019 Session c 3 Tutorial

    75/124

    Base station with elements in

    opposing pairs and clocked

    90 degrees around the tower

    to produce nearly an

    omnidirectional pattern

  • 7/29/2019 Session c 3 Tutorial

    76/124

    The input impedance of the mth element in an array with all elements active

    an mu ua coup ng nc u e s

  • 7/29/2019 Session c 3 Tutorial

    77/124

    an mu ua coup ng nc u e s

    m 1 2 Nm m1 m2 mN

    m m m m

    V I I 1Z Z Z Z

    I I I 1= + + + (3-103)

    mV

    mZ

    mI

    g

    mZ

    g

    mVThis is often called active impedance or driving point impedance.

    Note that active impedance depends on mutual impedances between elements

    as well as the excitations of all elements. This dependence includes the

    current phases and thus scan angle in phased arrays.

    The effects of mutual coupling include:

    The impedance of an element in an array differs from its free space value and depends

    on that array scan angle (element phases) and the element location.

    The pattern of an element is changed from its isolated pattern and depends on array

    position.

    Polarization characteristics deteriorate.

  • 7/29/2019 Session c 3 Tutorial

    78/124

    E. Phased Arrays

  • 7/29/2019 Session c 3 Tutorial

    79/124

    o= 900.75

    1.00

    o= 75

    0.500.75

    1.00

    180 00.25.

    z 180 0.

    (a) o= 90 (b) o= 90 (c) o= 75o= 30

    90 o= 090

    180 00.250.50

    0.75 1.0

    180 00.250.50 0.75

    1.0

    z

    (d) o = 30 (bifurcated pattern) (e) Endfire (o = 0)(f) Endfire (o = 90)

    Figure 3-32 Example of phase-scanned patterns for a five-element linear array along

    the z-axis with elements equally spaced at d = 0.4 and with uniform currentmagnitudes for various main beam pointing angles o.

  • 7/29/2019 Session c 3 Tutorial

    80/124

  • 7/29/2019 Session c 3 Tutorial

    81/124

    Phased array example: AWACS (Airborne Warning and Control System)

    oun e on op o a rcra suc as - , - or aer a surve -

  • 7/29/2019 Session c 3 Tutorial

    82/124

    p ,

    lance and detection of bombers and low flying fighters coming in

    over north pole

    First operational radar antenna with very low sidelobes: -40 dB

    o e wavegu e array w s o s

    Scanned in vertical plane using ferrite phase shifters

    Rotated for azimuth coverageNext generation: phased array conforming to the aircraft

    -

    Beam switched scanning

  • 7/29/2019 Session c 3 Tutorial

    83/124

    1 x 4 Switch

    (a)43 2

    1

    o e s

    sP

    Rotman

    Lens or

    ERP = PTGT = GePso

    G

    eP oGs

    e

    PP

    4=se PP

    4=

    10 Log N

    =1 x 4 Switch

    Butler Matrix

    1 2 3 4 T T o o

    ERP P G NG NP=

    == s s4G P

    (b) (c)

    Switched antenna system vs linear array configurations: (a) switched antennas;

    (b) multiple-beam array; (c) steered-beam array.

    sPs

    P

    [Microwave Journal, January 1987]

  • 7/29/2019 Session c 3 Tutorial

    84/124

    Scanning arrays of wideband elements[Stutzman and Buxton, Microwave Journal, Feb. 2000.]

  • 7/29/2019 Session c 3 Tutorial

    85/124

    0.9 6.4

    0

    d/)

    1

    . .

    0.7

    0.8

    25.4

    14.5

    Ang

    le

    ntSp

    acing(

    0.4

    0.5

    0.6

    90

    41.8

    ximumSca

    alizedElem

    0.2

    0.3 MNor

    1 1.5 2 2.5 30

    .

    Bandwidth (f/f )

  • 7/29/2019 Session c 3 Tutorial

    86/124

  • 7/29/2019 Session c 3 Tutorial

    87/124

  • 7/29/2019 Session c 3 Tutorial

    88/124

    Basic Single Path

    2

    Xmit T RRcv P G G p=

    Multipath link

    ( )( , ) ( , ; ,Rcv R R R R R R T TP G p C = 2

    *

    T R

    G d d P

    4

  • 7/29/2019 Session c 3 Tutorial

    89/124

    wo ma n ac ors a ec ng s gna a

    receiver Distance (or delay) Path attenuation

    Multipath Phase differences

    Green signal travels 1/2 farther than Yellowto reach receiver, who sees Red. For 2.4

    GHz, (wavelength) =12.5cm.

    Ref: UCLA, CSCI 694, 24 September 1999, Lewis Girod

  • 7/29/2019 Session c 3 Tutorial

    90/124

    Free Space Loss

    Atmospheric Absorption

    Indoor

    Doors

    Walls

    Waveguide effects (maybe use ducting)

  • 7/29/2019 Session c 3 Tutorial

    91/124

    ti rrBasic Single Path

    tcRv trOC

    =4

    ( )R i t srr r

    Multipath link

    , ,

    T R

    OC r R R T T t R T c t

  • 7/29/2019 Session c 3 Tutorial

    92/124

    Higher signal vs

    Higher noise

    g er requency Smaller Antenna

    LowerQ for same size

    Higher Gain for same size

  • 7/29/2019 Session c 3 Tutorial

    93/124

  • 7/29/2019 Session c 3 Tutorial

    94/124

    .

    Antennas for Satellite Communications e c e n ennas

    Antennas for Personal Communications

    UWB Some Concepts

  • 7/29/2019 Session c 3 Tutorial

    95/124

    Omnidirectional pattern base station

  • 7/29/2019 Session c 3 Tutorial

    96/124

    Pattern is constant in azimuth and narrow in

    Usually realized with collinear array of dipolesxamp e: e u ar ase s a on

  • 7/29/2019 Session c 3 Tutorial

    97/124

    Antel Cellular

    Base StationAntenna

    870-970 MHz

    Collinear dipoles

    136 in long

    10 dBd gain

    1.25 deg downtilt

    Sector base station

    T i lPolarization diversity

  • 7/29/2019 Session c 3 Tutorial

    98/124

    Typical

    120 deg sectors, VP

    Polarization diversity

    120 deg sectors,

  • 7/29/2019 Session c 3 Tutorial

    99/124

  • 7/29/2019 Session c 3 Tutorial

    100/124

    A new wideband base station antenna developed at

    :

    Minimum number of antennas on tower

  • 7/29/2019 Session c 3 Tutorial

    101/124

    Minimum number of antennas on tower

    Dual-polarized for diversity

    Multi-functional capability (800 ~ 2200 MHz)

    Low profile and compact

    Front view Tuning plate on back

  • 7/29/2019 Session c 3 Tutorial

    102/124

    , , , ,

    Measured Radiation PatternsMeasured Radiation PatternsE-planeH-plane

  • 7/29/2019 Session c 3 Tutorial

    103/124

    HPBW: 60 ~ 80 Low cross-pol, less than -30 dB

  • 7/29/2019 Session c 3 Tutorial

    104/124

  • 7/29/2019 Session c 3 Tutorial

    105/124

    Vehicular Antennas

    Broadcast receptionT diti l 31 (0 003 t AM) f d t hi t

  • 7/29/2019 Session c 3 Tutorial

    106/124

    Traditional 31 (0.003 at AM) fender mount whip antenna.

    New cars have mostly on-glass antennas

    Example of aFord rear window

    glass antenna

    Two-way land mobile vehicle antennasVHF and below

    Short monopole

    Quarter-wave

  • 7/29/2019 Session c 3 Tutorial

    107/124

    monopole

    Example quarter-wave

    monopole

    UHF

    Quarter-wave monopole

    5/8 over wavelength

  • 7/29/2019 Session c 3 Tutorial

    108/124

    Example 5/8 over

    wavelength

  • 7/29/2019 Session c 3 Tutorial

    109/124

    Example: Commercial MD-80 airplane

  • 7/29/2019 Session c 3 Tutorial

    110/124

    VHFShort monopole

  • 7/29/2019 Session c 3 Tutorial

    111/124

    p

    Loo s small and/or loaded

    Normal mode helix

    UHF

    Monopole

    Normal mode helix

    Patch

    Inverted-L

    anar nver e -Embedded

    stubby antenna with an extendable wire antenna

  • 7/29/2019 Session c 3 Tutorial

    112/124

    Nokia Patent

    5,612,704

  • 7/29/2019 Session c 3 Tutorial

    113/124

  • 7/29/2019 Session c 3 Tutorial

    114/124

    (%)Wideband Compact PIFA

    IFA 2

    PIFA 8

    po e

    WC PIFA 43VT patent 6,795,028

  • 7/29/2019 Session c 3 Tutorial

    115/124

    TEM Horn Ridged Horn BiCone

    Tapered Slot (Vivaldi) Impulse Radiating Antenna (IRA)

    Half-Disk

  • 7/29/2019 Session c 3 Tutorial

    116/124

  • 7/29/2019 Session c 3 Tutorial

    117/124

    Reflection Transmission Link

  • 7/29/2019 Session c 3 Tutorial

    118/124

    -20

    -10

    0Return Loss

    litude

    (dB)

    -50

    0

    Frequency Response s21

    1(dB

    )

    0 2 4 6 8 10 12 14 16 18 20-40

    -30

    Frequency (GHz)

    Am

    0 2 4 6 8 10 12 14 16 18 20-100

    Frequency (GHz)

    s

    -200

    0

    200ase - e ay ase

    se(degrees)

    1

    2 x 10

    9 21

    plitude(s-1)

    0 2 4 6 8 10 12 14 16 18 20

    -400

    Frequency (GHz)

    Pha

    0 2 4 6 8 10 12 14 16 18 20

    -1

    Time (nsec)

    Am

    At least 10:1 instantaneous Gain Bandwidth with 0.1 Size

  • 7/29/2019 Session c 3 Tutorial

    119/124

    t east 0 Ga a d dt t 0 S e

    Relatively-constant Monopole-like Radiation Pattern

    Size & Performance Close to Theoretical Limits Light, Aerodynamic, and Inexpensive Design

    -5

    0

    5

    10

    (dBi)

    -35

    -30

    -25

    -20

    -15

    -10

    RealizedGain

    0 2 4 6 8 10 12 14 16 18 20-40

    Frequency (GHz)

    Picture of Prototype Realized Gain v.s. Frequency Comparison to Limit

    8

    9

    10

    Measurement

    FDTD [CST, 2007]

    MoM [FEKO, 2007]0.5

    1

    ude

    Measurement

  • 7/29/2019 Session c 3 Tutorial

    120/124

    itu

    2

    3

    4

    5

    6

    VSWR

    -0.5

    0

    NormalizedApl

    2 4 6 8 10 12 14 16 18 201

    Frequency (GHz)

    4 4.5 5 5.5 6 6.5 7-1

    Time (ns)

    Measured and Simulated VSWRs Radiated Pulse

    Measured Patterns @ Selected Freqs Printed Version: 450 MHz10 GHz

  • 7/29/2019 Session c 3 Tutorial

    121/124

    SAR Specific Absorption Rate

    Power per area absorption

    HAC Hearing Aid Compatibility

    System Interference and Cross-Modulation

    Measured Near Field Pattern

  • 7/29/2019 Session c 3 Tutorial

    122/124

    Calculated Far Field Pattern

    INSTRUMENTATION

    ANTCOM 7+1 axis near field farfield scanner

    Agilent 8510, 8511, 8530 Network

    Analyzer

  • 7/29/2019 Session c 3 Tutorial

    123/124

    Next:

  • 7/29/2019 Session c 3 Tutorial

    124/124

    Antennas