Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf ·...

10
REVIEW 1130-0108/2017/109/7/516-526 REVISTA ESPAÑOLA DE ENFERMEDADES DIGESTIVAS © Copyright 2017. SEPD y © ARÁN EDICIONES, S.L. REV ESP ENFERM DIG 2017, Vol. 109, N.º 7, pp. 516-526 Herreros-de-Tejada A, González-Lois C, Santiago J. Serrated lesions and ser- rated polyposis syndrome. Rev Esp Enferm Dig 2016;109(7):516-526. DOI: 10.17235/reed.2017.4065/2015 Received: 26-10-2015 Accepted: 13-09-2016 Correspondence: Alberto Herreros de Tejada Echanojáuregui. Service of Digestive Diseases. IDIPHIM. Hospital Universitario Puerta de Hierro Maja- dahonda. C/ Manuel de Falla, 1. 28222 Majadahonda. Madrid, Spain e-mail: [email protected] Serrated lesions and serrated polyposis syndrome Alberto Herreros-de-Tejada 1 , Carmen González-Lois 2 and José Santiago 1 Services of 1 Digestive Diseases and 2 Pathology. IDIPHIM. Hospital Universitario Puerta de Hierro Majadahonda. Madrid, Spain ABSTRACT The serrated pathway has been shown to be an alternative colorectal carcinogenetic route potentially accounting for up to one third of all CRCs. Serrated lesions, particularly SSPs, have been a focus of research during the past few years. They have well- established histological and molecular characteristics that account for their potential carcinogenetic risk through the accumulation BRAF, KRAS and methylator profile (CpG) mutations. Their endoscopic identification and resection represent a challenge because of their specific characteristics, and the need for an adequate specimen for histological diagnosis. Knowledge of these lesions is key, as is the adoption of established criteria for their endoscopic description and histological diagnosis. SPS is the maximum expression of involvement by serrated lesions, is associated with increased risk for CRC, and requires attentive endoscopic follow-up, as well as family screening. While the exact etiopathogenic mechanism remains unknown, current research will likely provide us with appropriate answers in the not too distant future. Key words: Colonic polyps. Colorectal cancer. Serrated polyposis syndrome. Serrated polyposis. Hyperplastic polyposis syndrome. Hyperplastic polyps. Sessile serrated polyps. Serrated pathway. INTRODUCTION Serrated lesions result from alternative carcinogenesis in colorectal cancer (CRC), the so-called “serrated path- way” (1). These lesions have been the subject of study and attention in the last few years, and are considered to account for up to one third of all CRCs (2-7). Failure to detect these lesions may possibly result in a significant number of interval neoplasms for different reasons (chal- lenging identification, predominance in the right colon, incomplete resection from poorly identified lesion mar- gins, etc.) (5,8-11), and indirectly cause a lower effective- ness of colonoscopy in the prevention of proximal CRC (12-14). SERRATED PATHWAY CARCINOGENESIS: EPIDEMIOLOGY AND PATHOPHYSIOLOGICAL, MOLECULAR AND GENETIC CHARACTERISTICS The “serrated” carcinogenesis pathway, which differs from the “traditional” one and from the precursor “serrat- ed lesions”, accounts for up to 20-30% of all CRCs (4-7). The initial description of adenocarcinomas arising from serrated lesions was reported by Jass and Smith in 1992 (15), with tobacco exposure defined as a risk factor and no conclusive association with ethnic factors (7). The same carcinogenetic pathway would result in adenocarcinomas with varying biological behavior, histology and molecular profiles. In the serrated pathway, signals are activated within the mitogen-activated protein kinase (MAPK) pathway, also known as the RAS-RAF-MAPK cascade, with predom- inant BRAF or KRAS mutations and CpG island meth- ylator phenotype (CIMP), both high-level (CIMP-H) and low level (CIMP-L). The molecular study of adenocarci- nomas related to serrated lesions also reveals a smaller proportion of CRCs with no BRAF or KRAS mutations. Approximately 30% of CRCs evolve through the serrated pathway, 10% have BRAF mutations, 15% have KRAS mutations, and 5% have both (16). BRAF-mutated CRCs are found proximally, are CIMP-H, and may exhibit microsatellite instability (MSI) o microsatellite stability (MSS). The sessile serrated polyp (SSP) is considered as their precursor lesion, from which dysplasia subsequently develops. KRAS-mutated CRCs are located preferentially in the distal colon, with CIMP-L and MSS. Their precur- sor lesion is thought to be the traditional serrated adenoma (TSA). Serrated-pathway CRCs are usually mucosecre- tory and express MUC2, MUC5B, MUC5A, and MUC6. Other typical histological features, most commonly in

Transcript of Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf ·...

Page 1: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

REVIEW

1130-0108/2017/109/7/516-526Revista española de enfeRmedades digestivas© Copyright 2017. sepd y © ARÁN EDICIONES, S.L.

Rev esp enfeRm dig2017, Vol. 109, N.º 7, pp. 516-526

Herreros-de-Tejada A, González-Lois C, Santiago J. Serrated lesions and ser-rated polyposis syndrome. Rev Esp Enferm Dig 2016;109(7):516-526.

DOI: 10.17235/reed.2017.4065/2015

Received: 26-10-2015Accepted: 13-09-2016

Correspondence: Alberto Herreros de Tejada Echanojáuregui. Service of Digestive Diseases. IDIPHIM. Hospital Universitario Puerta de Hierro Maja-dahonda. C/ Manuel de Falla, 1. 28222 Majadahonda. Madrid, Spaine-mail: [email protected]

Serrated lesions and serrated polyposis syndromeAlberto Herreros-de-Tejada1, Carmen González-Lois2 and José Santiago1

Services of 1Digestive Diseases and 2Pathology. IDIPHIM. Hospital Universitario Puerta de Hierro Majadahonda. Madrid, Spain

ABSTRACT

The serrated pathway has been shown to be an alternative colorectal carcinogenetic route potentially accounting for up to one third of all CRCs. Serrated lesions, particularly SSPs, have been a focus of research during the past few years. They have well-established histological and molecular characteristics that account for their potential carcinogenetic risk through the accumulation BRAF, KRAS and methylator profile (CpG) mutations. Their endoscopic identification and resection represent a challenge because of their specific characteristics, and the need for an adequate specimen for histological diagnosis. Knowledge of these lesions is key, as is the adoption of established criteria for their endoscopic description and histological diagnosis. SPS is the maximum expression of involvement by serrated lesions, is associated with increased risk for CRC, and requires attentive endoscopic follow-up, as well as family screening. While the exact etiopathogenic mechanism remains unknown, current research will likely provide us with appropriate answers in the not too distant future.

Key words: Colonic polyps. Colorectal cancer. Serrated polyposis syndrome. Serrated polyposis. Hyperplastic polyposis syndrome. Hyperplastic polyps. Sessile serrated polyps. Serrated pathway.

INTRODUCTION

Serrated lesions result from alternative carcinogenesis in colorectal cancer (CRC), the so-called “serrated path-way” (1). These lesions have been the subject of study and attention in the last few years, and are considered to account for up to one third of all CRCs (2-7). Failure to detect these lesions may possibly result in a significant number of interval neoplasms for different reasons (chal-lenging identification, predominance in the right colon, incomplete resection from poorly identified lesion mar-gins, etc.) (5,8-11), and indirectly cause a lower effective-ness of colonoscopy in the prevention of proximal CRC (12-14).

SERRATED PATHWAY CARCINOGENESIS: EPIDEMIOLOGY AND PATHOPHYSIOLOGICAL, MOLECULAR AND GENETIC CHARACTERISTICS

The “serrated” carcinogenesis pathway, which differs from the “traditional” one and from the precursor “serrat-ed lesions”, accounts for up to 20-30% of all CRCs (4-7). The initial description of adenocarcinomas arising from serrated lesions was reported by Jass and Smith in 1992 (15), with tobacco exposure defined as a risk factor and no conclusive association with ethnic factors (7). The same carcinogenetic pathway would result in adenocarcinomas with varying biological behavior, histology and molecular profiles.

In the serrated pathway, signals are activated within the mitogen-activated protein kinase (MAPK) pathway, also known as the RAS-RAF-MAPK cascade, with predom-inant BRAF or KRAS mutations and CpG island meth-ylator phenotype (CIMP), both high-level (CIMP-H) and low level (CIMP-L). The molecular study of adenocarci-nomas related to serrated lesions also reveals a smaller proportion of CRCs with no BRAF or KRAS mutations. Approximately 30% of CRCs evolve through the serrated pathway, 10% have BRAF mutations, 15% have KRAS mutations, and 5% have both (16). BRAF-mutated CRCs are found proximally, are CIMP-H, and may exhibit microsatellite instability (MSI) o microsatellite stability (MSS). The sessile serrated polyp (SSP) is considered as their precursor lesion, from which dysplasia subsequently develops. KRAS-mutated CRCs are located preferentially in the distal colon, with CIMP-L and MSS. Their precur-sor lesion is thought to be the traditional serrated adenoma (TSA). Serrated-pathway CRCs are usually mucosecre-tory and express MUC2, MUC5B, MUC5A, and MUC6. Other typical histological features, most commonly in

Page 2: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS SYNDROME 517

Rev esp enfeRm Dig 2017;109(7):516-526

Fig. 1. A. Histologic image of serrated adenocarcinoma on a sessile serrated polyp (hematoxylin-eosin stain, x25). The image shows a transition area in a sessile serrated polyp, with characteristically inverted (dilated at the base) crypts on the left. A transitional dysplasia area may be seen in the middle of the image. To the right, an infiltrating adenocarcinoma with associated Crohn-like inflammation is shown. B. Immunohistochemical pattern from the same adenocarcinoma (immunohistochemical stain with diaminobenzidine for MLH1 [x25]). Loss of nuclear DNA repair gene MLH1-coded protein expression in the adenocarcinoma and dysplasia areas (negative, blue nuclei), which is otherwise preserved in the dysplasia-free sessile serrated polyp area (positive, brown nuclei).

CRCs with MSI, include poor differentiation, intratumoral lymphocytosis, and a peritumoral Crohn-like inflamma-tory response (16).

Histological subtype definitions have been described for this pathway (serrated adenocarcinoma, medullary carcinoma); however, despite their recognition as variants in the WHO classification (17), no direct correspondence with specific molecular profiles can be found. Hence, the sole histological feature useful for the diagnosis of serrat-ed-pathway CRC is its continuity with a precursor lesion (Fig. 1A).

SERRATED LESIONS: HISTOLOGIC TYPES AND ENDOSCOPIC CHARACTERISTICS

Serrated lesions represent approximately one third of all colonic polyps (18,19), with a prevalence of 20-35% among the general population (20,21). Serrated lesions show hystopathological features unlike conventional adenomas, and endoscopic appearance partly correlate to histological subtype (22). The term “serrated adeno-ma” was first used by Longacre and Fenoglio-Preiser in 1990 (23) to describe lesions sharing hyperplastic polyp (HP) and adenoma features. Later, Torlakovic and Snover used the term “sessile serrated adenoma” in the setting of hyperplastic polyposis syndrome (24). The “sawtoothed” appearance of the crypt epithelium is the most typical morphologic feature. It results from expansion of the mid- or upper-crypt proliferative area in

association with inhibited cell exfoliation and inhibited apoptosis (25).

Histologic diagnosis of serrated lesions is challenging, with low inter-observer concordance, which has been clas-sically attributed to two major issues:

– The histological differential diagnosis between hyperplastic polyp (HP) and SSP without dysplasia is challenging in endoscopic biopsy samples, limited by deficient orientation or fragmentation.

– Different guidelines provide different terminologies and minimal diagnostic criteria (6,13,17).

A major goal in order to advance in the study of these lesions is a homogeneous terminology and clearly defined minimal diagnostic criteria. In this regard, recently report-ed diagnostic guidelines recommend a simplified classifi-cation system (6):

1. Hyperplastic polyp (HP).2. Sessile serrated polyp (SSP) (without/with dyspla-

sia).3. Traditional serrated adenoma (TSA).4. Mixed polyp: this category, still unrecognized by the

WHO classification, is included in these guidelines for lesions with HP-like diagnostic characteristics and “classic” adenoma features in the left colon. When described in the right colon, most lesions are SSP with dysplasia. In any case, the diagnosis of these lesions is controversial, with no complete con-sensus in the literature.

In this review we primarily consider the lesions recog-nized by the WHO, which are discussed in detail below.

A B

Page 3: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

518 A. HERREROS-DE-TEJADA ET AL. Rev esp enfeRm Dig

Rev esp enfeRm Dig 2017;109(7):516-526

Hyperplastic polyp

These lesions make up the most numerous group of serrated lesions (85%) (26,27). They are about 5 mm in size, pale or mucosa-like in color, and most are located in the sigma and rectum (6,22). Their mucosal pattern with star-shaped crypts (Kudo II pattern with magnifica-tion endoscopy) is characteristic (Fig. 2A). Histologically, glands exhibit a saw-toothed profile without dysplasia or histologic features, preventing them being categorized as SSPs (17).

Three morphological patterns exist: 1. Microvesicular HP: mucosecretory epithelial cells

and reduced goblet-cell density (Fig. 2B). They usu-ally have BRAF mutations.

2. HP rich in goblet cells: usually associated with KRAS mutations.

3. HP poor in mucin: scarce, similar to microvesicular, less mucin.

High grade dysplasia in HP is exceptional, and the risk for CRC is negligible for smaller lesions in the left colon (6).

Sessile serrated polyp (SSP)

These lesions are a minor subgroup among ser-rated lesions, with an overall prevalence of 2-13% (5,11,18,19,26-31); however, they are considered to be

potentially neoplastic, with a prevalence of high-grade dysplasia at 10-13% (22,23,29), particularly when larger than 10 mm (32).

They are characterized by sessile or a flat morpholo-gy (0-Is /0-II), pale color similar to the normal mucosa, fuzzy vascular pattern, and poorly delineated limits, and are usually covered by a yellowish mucus layer that may hide them from sight in the presence of adhered fecaloid remnants (13,26,33,34) (Fig. 2C). One third of cases may exhibit an erythematous surface, and the mean size is above 10 mm (22,33). Most (> 80%) are located proxi-mally to the descending colon (34). Their superficial crypt pattern may be similar to that of HPs, but a Kudo II open shape (II-O) has been specifically described, with larger oval crypts (Fig. 2E). This pattern is highly predictive of SSP, with a specificity of 97.3% (34,35) and limited sensi-tivity at < 66% (36). However, the II-O pattern seems to be a marker for the CpG methylator phenotype and microsat-ellite instability, which would define a premalignant status (35). Another interesting characteristic that has been stud-ied with NBI + magnification is the presence of “varicose” vasculature (varicose microvascular vessels), defined as tortuous vascular structures larger than mucosal vessels in diameter, which seemingly are highly specific (88%) (33).

In the literature the terms sessile serrated adenoma and sessile serrated polyp are often used interchangeably. The WHO has attempted to unify both terms with the desig-nation “sessile serrated adenoma/polyp” (SSA/P) (6,17).

Fig. 2. A. Endoscopic image of a 3-mm hyperplastic polyp in the sigma, after staining with 0.4% indigo carmine. It exhibits a Kudo II superficial pattern with stellate crypts. B. Histologic image of microvesicular hyperplastic polyp (hematoxylin-eosin, x50). Glands exhibit a “serrated” profile only in their upper portion, not at the bottom, and are not dilated (in contrast to sessile serrated polyps). C. Endoscopic image of a 15-mm sessile serrated polyp (SSP) in the ascending colon, after staining with 0.4% indigo carmine. Typical features include: pale color, vague borders, blurred vascular pattern, glossy mucus coating, and fecaloid remnants. D. Histologic image of sessile serrated polyp (hematoxylin-eosin, x25). The panoramic image shows the diagnostic characteristics of a SSP: irregular crypt distribution, serrated profile down to the gland bottom, and dilated crypts at the bottom, at times with horizontal crypt extension (T or L) or branching. The lesion meets the WHO criteria (at least three crypts or two consecutive crypts with these features). E. Endoscopic image of a 25-mm SSP with 0-IIa morphology in the sigma, after staining with 0.4% indigo carmine. A Kudo type O-II crypt pattern may be seen at the center (arrowhead). F. Histologic close-up image of a sessile serrated polyp (hematoxylin-eosin, x100). Detail view of the dilated, ser-rated crypts at the base. G. White light endoscopic image of an 8-mm traditional serrated adenoma in the rectum. “Pinecone”-like 0-Is morphology. H. Histologic image of the above (hematoxylin-eosin, x25; detail inset x200) revealing a villous lesion with eosinophilic cells and dysplasia. Typical ectopic crypts may be seen on the villus sides. Inset: close-up of ectopic crypts.

B

F

C

G

D

H

A

E

Page 4: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS SYNDROME 519

Rev esp enfeRm Dig 2017;109(7):516-526

However, the recently reported British guidelines on ser-rated lesions recommend that only SSP be used (6), since the term adenoma implies the presence of dysplasia, which does not occur in all SSPs. The morphological features dis-tinguishing them from HPs are listed in figures 2D and F.

The current guidelines differ regarding minimal diag-nostic criteria:

– The WHO establishes a minimum of three crypts, or two adjacent crypts with the typical morphological features, in any single lesion (17).

– The American Gastroenterology Society recommends only one crypt with one or more characteristic fea-tures (13).

Histological and endoscopic differentiation between HP and SSP depends on a variable agreement rate and is a controversial topic in daily clinical practice (37). A recent study with NBI and magnification showed a high diag-nostic yield for three combined characteristics (varicose vascular pattern, size > 10 mm, and location in the right colon) when distinguishing SSPs from HPs larger than 6 mm (33). Despite efforts to establish diagnostic criteria in the past few years, both the endoscopist and pathol-ogist must have a high suspicion index, particularly for SSP (38). According to the WHO criteria, a continuous spectrum persists between microvesicular HP and SSP. SSPs are usually larger than 10 mm, and almost certainly will meet such minimal criteria, preferably in complete, well-oriented, non-fragmented resections. There are inde-terminate lesions that do not meet WHO minimal criteria, usually as they are smaller, but do contain some crypts with characteristic features. Diagnostic correlation increas-es when lesion location and size is known (39).

SSP identification during endoscopy is particularly challenging, and detection rates among endoscopists (23-65%) (19,28,30,40) are highly variable, much more so than for adenomas (19), which likely indicates that a signif-icant number of lesions remain undiagnosed in clinical practice (13). An experienced endoscopist may identify an SSP in the right colon in up to 20% of procedures (31,40). Therefore, such lesions must be proactively searched for with an adequate withdrawal time and systematic, careful examination (40). The challenging nature of endoscopic SSP diagnosis, and its likely relationship with interval CRC, have led some authors to suggest a 5-10% minimal detection rate for these lesions as quality criterion with a high discriminating power in the mid-risk population (28,31,36,40,41), although no evidence similar to that sup-porting the role of adenoma detection rates in reducing CRC incidence and CRC-related mortality is available yet (42,43).

SSP with dysplasia

This is a well-established class among SSPs. Dysplasia is defined as the morphologic aspect of intraepithelial neo-

plasm in the colon and rectum, histologically recognized in classic adenomas. Dysplasia, according to the WHO classification, may be high-grade or low-grade (6,17). In this context, dysplasia is commonly associated with the absence of the DNA repair protein hMLH-1 within the carcinogenic pathway including BRAF mutations and dif-fuse DNA methylation (CIMP-H) (Fig. 1B). In comparison with adenomas, dysplasia is also more common in lesions > 10 mm (29). Data remain inconclusive on SSP-associated risk for CRC. It is mostly accepted that larger lesions with dysplasia represent the highest risk for progression (6).

Traditional serrated adenoma (TSA)

These are uncommon lesions with an estimated preva-lence < 1% among the general population (18,27). Their morphology is often protusive (0-Ip) and exophytic, with a mean size greater than 10 mm, the surface color is ery-thematous, and they are distributed in the entire colon but they are most commonly distal (22,41,44,45). Their typical macroscopic shape is referred to as “pinecone”-like (Fig. 2G) or double elevation (22,46), although shapes similar to those of classic adenomas are also common (47). Under magnification, characteristic crypt Kudo patterns include the IIIL “stellar”, III-H “fern-like” (22,46), and IV-S “saw-toothed” types (34,35), but their actual diagnostic yield has been questioned. Given the nature of these lesions, some cases exhibit a melting pot appearance including several patterns (II, IIIs, IIIL) (47).

The incidence of high-grade dysplasia is lower than 2% (22). Fifty per cent of cases are said to be associated with a HP or SSP component in the same lesion, or with a tubular or tubulovillous adenoma in their vicinity (44,45). The association with HP or SSP within the same lesion correlates with a colonic location, similar to the way these two lesions present in clinical practice (48).

Characteristically, cells have an eosinophilic cytoplasm with long nuclei (Fig. 2H). Their serrated appearance results from a combination of undulated crypt epithelium and crypt budding (ectopic crypts). Sessile serrated pol-yps have no budding. They are characterized by disrupted cell control and programmed cell death signaling path-ways, which results in enhanced cell proliferation. Such increased cell proliferation leads to the accumulation of somatic mutations, which may account for the faster devel-opment of traditional serrated adenomas when compared to conventional adenomas (6).

Miscellanea: special situations where serration may develop

Serrated glands have been shown to develop in chronic inflammatory bowel disease, with or without dysplasia, and in association with stromal lesions (neurofibromas,

Page 5: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

520 A. HERREROS-DE-TEJADA ET AL. Rev esp enfeRm Dig

Rev esp enfeRm Dig 2017;109(7):516-526

perineuromas, fibroblastic polyps, submucosal lipomas) (6). Whether this is due simply to comorbidity or second-ary serration has not be determined.

General recommendations from a histological viewpoint

The desirable goal in the diagnosis of serrated lesions is increased histological recognition and inter-observer agreement, which requires:

– Differentiating SSPs and HPs by applying the criteria established in diagnostic guidelines.

– Obtaining a fine lesion en-bloc resection (preferable to endoscopic biopsy) for improved orientation and assessment of completeness.

– Obtaining a good correlation with endoscopic data to assess lesion risk, particularly regarding size and location.

– Using the nomenclature recommended by guidelines (WHO) to increase consistency and improve data col-lection for the study of these lesions.

– Assessing dysplasia in this context according to the already established dysplasia criteria for “classic” adenomas.

SERRATED POLYPOSIS SYNDROME (SPS)

Serrated polyposis syndrome (SPS) is characterized by multiple serrated lesions (SSP/HP) (Fig. 3), and defined by one or more than three WHO-defined criteria (17,25):

1. Presence of at least five serrated lesions proximal to the sigma, with at least two of them larger than 10 mm.

2. Any number of serrated lesions proximal to the sig-ma in an individual with a first-degree relative diag-nosed with SPS.

3. Over 20 serrated lesions spread along the whole colon, regardless of size.

Clinically, three disease phenotypes may be distin-guished, which might even translate to different etiopatho-genic substrates. Phenotype 1 represents the most common subtype (50% of cases) and is characterized by a reduced number of large serrated polyps in the right colon. In con-trast, phenotype 2 is characterized by a high number of smaller serrated lesions in the left colon. Lastly, phenotype 3 (30% of cases) represents a mixture of the other two phenotypes (49).

Epidemiology and risk factors

The prevalence of SPS is poorly understood, but a greater awareness of endoscopists and pathologists of these conditions, together with diagnostic advancements, has clearly increased the recognition of serrated lesions and, consequently, SPS (50). Overall, its prevalence seems lower than 0.09% in colonoscopy-based CRC screening programs (51), but is considerably higher in preselected (positive fecal occult blood test) populations, with esti-mates of 0.34-0.66% (52,53). SPS prevalence is higher than for other polyposis syndromes, including familial ade-nomatous polyposis (54). The mean age at diagnosis is 55 years, with no differences between genders (49,55,56). Clear demographic, histopathologic, or molecular differ-ences do not exist between phenotypes, and a greater pro-portion was only shown among first-degree relatives with CRC for phenotype 2 (numerous smaller lesions mainly in the left colon) (57). Several studies have associated smok-ing and being overweight with the development of serrated lesions and SPS (56,58,59).

Diagnosis and etiopathogenesis

This is a highly heterogeneous clinical condition with a poorly understood etiopathogenesis and natural histo-ry. While most SPS cases are sporadic, evidence suggests that this syndrome exhibits a genetic component at least occasionally. The higher prevalence of CRC and SPS in first-degree relatives (FDRs) as compared to the general population supports this theory (49,55,56,60-68), although the genetic basis and its heritance pattern is not fully under-stood yet (60,66). The action of various environmental factors on an unknown genetic predisposition will likely condition specific disease expression (49).

The exclusive use of clinical diagnostic criteria, which may somehow be considered to be both arbitrary and restrictive, largely results from unfamiliarity with the condition itself. Thus, difficulties in the endoscopic rec-

Fig. 3. White light endoscopy image of the transverse colon in a 50-year-old patient diagnosed with SPS. Multiple serrated lesions (0-IIa mor-phology) may be seen on folds, with characteristics suggestive of SSP (arrows), in a short colonic segment.

Page 6: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS SYNDROME 521

Rev esp enfeRm Dig 2017;109(7):516-526

ognition of serrated lesions, together with the challenges often entailed by their correct histological characterization, commonly results in under-diagnosis.

Molecular characteristics of serrated polyps in SPS

The prevalence of KRAS and BRAF mutations in serrated polyps is 64-75% (66,69). Those mutations are more common in serrated polyps from patients with SPS than in sporadic serrated polyps, hence they could be used as a criterion supporting the diagnosis of SPS (57,66). Interestingly, dysplasia develops more common-ly in lesions with BRAF and KRAS mutations (69). In fact, almost 90% of CRCs with the CpG island methylator phenotype (CIMP+) characteristic of the serrated pathway have BRAF and/or KRAS mutations (70). This fact may indicate a higher risk for the development of dysplasia foci in serrated polyps in the SPS setting.

Increased risk for CRC

The association of SPS and increased CRC prev-alence/incidence (25-70%) is a classic description (55,60,68,71,72). Recent studies seem to reduce the esti-mated risk by about 15% (56), with a cumulative risk for interval cancer at five years of 2-7% (8,56,65) regardless of the phenotype (56,57). The presence of at least two SSPs proximal to the splenic angle, or of high-grade dysplasia in any SSP, seems to be a factor associated with increased risk for CRC development (56).

SPS and first-degree relatives

It has been shown that over 30% of first-degree rela-tives of patients meeting SPS diagnostic criteria are them-selves diagnosed with SPS during screening colonoscopy (55,56,60-64), mainly using the WHO’s second criterion (64). An association of CRC has been reported for up to 10-50% of FDRs, and the risk for CRC in FDRs is estimat-ed to be 5-fold that of the general population (49,55,65-68). In contrast to other hereditary syndromes, evidence for an increased incidence of extracolonic neoplasms in patients with SPS or their FDRs has been insufficiently proven (49,73).

Endoscopic follow-up and screening for families

Current clinical guidelines recommend that these patients be monitored annually with colonoscopy, attempt-ing to resect at least all serrated lesions > 3-5 mm, with special emphasis in the right colon (13). However, recent studies seem to suggest a subgroup of patients with a low-

er risk profile (absence of SSPs proximal to the splenic angle, with high-grade dysplasia) where monitoring could be performed less frequently than 3-year intervals (56). In cases not amenable to endoscopic control because of the number or characteristics of serrated lesions, or when a CRC is identified, a surgical approach is recommended (subtotal/total colectomy) (13).

It is currently recommended that all first-degree relatives undergo screening colonoscopy starting at 35-40 years of age, or ten years earlier than the age of SPS diagnosis when diagnosed at a younger age. Recommended subsequent monitoring should be at 5-year intervals, except when lesions are present (13,55,64).

ENDOSCOPIC TECHNICAL ASPECTS FOR THE IDENTIFICATION OF SERRATED LESIONS

Withdrawal time

As seen for adenoma identification (74), withdrawal time is key for the identification of serrated lesions, par-ticularly of SSPs (28,40). Recently, an important study highlighted the relevance of lengthening withdrawal time to nine minutes in order to obtain 30% higher recognition rates for serrated lesions (SSPs and HPs) as compared to six minutes (28).

Preparation

Although numerous studies have shown that adequate preparation correlates to higher adenoma detection rates (75,76), this relationship could not be specifically and unequivocally established for serrated lesions (40,77). However, indirect evidence suggests that suboptimal preparation is associated with lower detection rates for non-polypoid lesions (78), among which serrated lesions may be reasonably expected.

Indigo carmine chromoendoscopy

Indigo carmine panchromoendoscopy has indirectly proven effective for detecting serrated lesions in a number of studies (79,81). However, its usefulness has not been shown consistently (47,82), and SPS is likely the sole sce-nario where it may be recommended for routine use until further studies are available (82).

Narrow band imaging (NBI) chromoendoscopy

The application of the characteristics included in the NICE (NBI International Colorectal Endoscopic Classification) (83) has been specifically studied for the

Page 7: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

522 A. HERREROS-DE-TEJADA ET AL. Rev esp enfeRm Dig

Rev esp enfeRm Dig 2017;109(7):516-526

characterization of SSP-like serrated lesions starting with four endoscopic features: cloud-like surface, borders indis-tinguishable from the normal mucosa, surface dark spots, and irregular borders (50). The promising results initially obtained in the ex vivo study (50) could not be replicated in clinical practice (84), hence no definitive conclusions may be drawn.

ENDOSCOPIC MANAGEMENT AND FOLLOW-UP FOR SERRATED LESIONS

As a general recommendation, serrated lesions smaller than 5 mm, with hyperplastic appearance, located in the sigma and rectum should not be systematically resected (13,41) given that their malignant potential is extremely rare, and are considered as a normal finding by post-colo-noscopy follow-up guidelines (85). Real-time endoscopic assessment with NBI has proven a high-yield strategy for the differentiation of HPs from adenomatous lesions (86). Some authors recommend endoscopic resection for all ser-rated lesions that are proximal to the sigma, particularly those with endoscopic characteristics suggestive of SSP or TSA (13,41). However, the resection of lesions > 3 mm will likely be insufficient to provide a protective effect of colonoscopy for CRC (87).

As a general approach, virtually the same principles regarding polypectomy and endoscopic mucosal resection (EMR) for adenomatous lesions apply to serrated lesions, with the following peculiarities. Complete, en-bloc resec-tion should be attempted for serrated lesions whenever possible (88). When unfeasible, residual tissue at resection

margins should be excised with biopsy forceps or treated with argon plasma (47). Flat morphology (0-II), poorly defined borders, extension to colonic folds, and preferen-tial location at the proximal colon (26,33,34) are probably factors leading to significant rates of incomplete resec-tion as seen in some studies for serrated lesions > 10 mm (> 30%) (89), which makes endoscopic follow-up at 3-6 months advisable according to some authors (38). Virtual chromoendoscopy (NBI), either superficial or submucosal, must be attempted with the indigo carmine stain to aid bor-der definition prior to EMR (13,38,47), emphasizing the importance of safe surgical margins. Furthermore, serrated lesions are usually soft, slippery growths commonly seen on folds, which require a stiff or monofilament snares to firmly grab the lesion and adjacent normal mucosa (38,41).

All endoscopists should not overlook the importance of specimen preparation to facilitate its pathological study. Extension and fixation on a flat surface, be it blotting paper or a harder material (rubber, cork) for larger lesions, is strongly recommended (90,91). Adequate serrated lesion preparation and extension has been shown to significantly increase the SSP-related diagnostic rate and inter-pathol-ogist agreement (90).

Resection with biopsy forceps (1-3 mm) or the cold snare technique (> 3 mm) is acceptable for smaller lesions (< 6-8 mm) (13,92,93). The technique of choice for larg-er lesions is hot-snare EMR (47). Various studies have specifically addressed hot-snare EMR for SSPs > 20 mm, with resection rates > 95% and complication rates < 15% (94). Nonetheless, late recurrence is a limitation of frag-mented EMR for these lesions, with rates approaching 20% (95). More extensive studies including adenomatous

Table I. Follow-up recommendations for serrated lesions and SPS, adapted from Rex et al. (13), Castells et al. (100), East et al. (41) and Carballal et al. (56)

Histology/syndrome Number Size Location Colonoscopy interval

HP

Any < 10 mm Rectum and sigmoid colon10 years

≤ 3 < 5 mm Proximal to sigmoid colon

>3 Any sizeProximal to sigmoid colon 5 years

≥ 1 > 5 mm

SSP

< 3 < 10 mm Any 5 years

≥ 3 Any sizeAny 3 years

1 ≥ 10 mm

≥ 2 ≥ 10 mm

Any 1-3 years≥ 1 > 20 mm

≥ 1 w/dysplasia Any size

SPS

≤ 2 Any size Distal to splenic angle 2-3 years

> 2 Any size Proximal to splenic angle 1 year

≥ 1 with HGD Any size Proximal to splenic angle 1 year

HP: Hyperplastic polyp; SSP: Sessile serrated polyp; SPS: Serrated polyposis syndrome (WHO criteria); HGD: High-grade dysplasia.

Page 8: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS SYNDROME 523

Rev esp enfeRm Dig 2017;109(7):516-526

and serrated lesions > 20-40 mm using fragmented EMR have shown success rates above 90%, albeit with a persist-ing relapse risk, particularly for lesions > 40 mm (96,97). A recently used technique for large serrated lesions is endoscopic submucosal dissection, which allows en-bloc resection with no size limitations for colorectal lesions (98).

While consensus guidelines have been recently report-ed, specifically addressing serrated lesion follow-up (13), CRC screening guidelines have usually included them in a similar manner to common adenomatous lesions (99). Overall, expert consensus suggests that CRC risk increases with lesion number and size, SSP versus HP histological subtype, and location in the proximal colon. Although available scientific evidence is scarce regarding serrated lesion progression time and CRC risk, the above-listed variables have been considered when follow-up intervals are suggested by expert groups (13), as summarized in table I.

REFERENCES

1. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathol 2007;50(1):113-30. DOI: 10.1111/j.1365-2559.2006.02549.x

2. Li D, Jin C, McCulloch C, Kakar S, et al. Association of large serrated polyps with synchronous advanced colorectal neoplasia. Am J Gastro-enterol 2009;104(3):695-702. DOI: 10.1038/ajg.2008.166

3. Makinen MJ. Colorectal serrated adenocarcinoma. Histopathol 2007;50(1):131-50. DOI: 10.1111/j.1365-2559.2006.02548.x

4. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterol 2010;138(6):2088-100. DOI: 10.1053/j.gastro.2009.12.066

5. Huang CS, Farraye FA, Yang S, et al. The clinical significance of ser-rated polyps. Am J Gastroenterol 2011;106(2):229-40;quiz 41. DOI: 10.1038/ajg.2010.429

6. Bateman AC, Shepherd NA. UK guidance for the pathological report-ing of serrated lesions of the colorectum. J Clin Pathol 2015;68(8):585-91. DOI: 10.1136/jclinpath-2015-203016

7. Szylberg L, Janiczek M, Popiel A, et al. Serrated polyps and their alternative pathway to the colorectal cancer: a systematic review. Gas-troenterol Res Pract 2015;2015:573814. DOI: 10.1155/2015/573814

8. Boparai KS, Mathus-Vliegen EM, Koornstra JJ, et al. Increased colo-rectal cancer risk during follow-up in patients with hyperplastic poly-posis syndrome: A multicentre cohort study. Gut 2010;59(8):1094-100. DOI: 10.1136/gut.2009.185884

9. O’Brien MJ, Yang S, Mack C, et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 2006;30(12):1491-501. DOI: 10.1097/01.pas.0000213313.36306.85

10. Schreiner MA, Weiss DG, Lieberman DA. Proximal and large hyper-plastic and nondysplastic serrated polyps detected by colonoscopy are associated with neoplasia. Gastroenterol 2010;139(5):1497-502. DOI: 10.1053/j.gastro.2010.06.074

11. Spring KJ, Zhao ZZ, Karamatic R, et al. High prevalence of sessile serrated adenomas with BRAF mutations: A prospective study of patients undergoing colonoscopy. Gastroenterol 2006;131(5):1400-7. DOI: 10.1053/j.gastro.2006.08.038

12. Baxter NN, Goldwasser MA, Paszat LF, et al. Association of colonos-copy and death from colorectal cancer. Ann Intern Med 2009;150(1):1-8. DOI: 10.7326/0003-4819-150-1-200901060-00306

13. Rex DK, Ahnen DJ, Baron JA, et al. Serrated lesions of the colorectum: Review and recommendations from an expert panel. Am J Gastro-enterol 2012;107(9):1315-29;quiz 4:30. DOI: 10.1038/ajg.2012.161

14. Singh H, Turner D, Xue L, et al. Risk of developing colorectal cancer following a negative colonoscopy examination: Evidence for a 10-year interval between colonoscopies. JAMA 2006;295(20):2366-73. DOI: 10.1001/jama.295.20.2366

15. Jass JR, Smith M. Sialic acid and epithelial differentiation in colorectal polyps and cancer - A morphological, mucin and lectin histochemical study. Pathol 1992;24(4):233-42. DOI: 10.3109/ 00313029209068874

16. O’Brien MJ, Zhao Q, Yang S. Colorectal serrated pathway cancers and precursors. Histopathol 2015;66(1):49-65. DOI: 10.1111/his.12564

17. Snover D AD, Burt RW. Serrated polyps of the colon and rectum and serrated polyposis. En: Bosman FT CF, Hruban RH, Theise ND, eds. World Health Organization classification of tumours pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2010.

18. Hazewinkel Y, De Wijkerslooth TR, Stoop EM, et al. Prevalence of serrated polyps and association with synchronous advanced neoplasia in screening colonoscopy. Endoscopy 2014;46(3):219-24.

19. Kahi CJ, Hewett DG, Norton DL, et al. Prevalence and variable detection of proximal colon serrated polyps during screening colo-noscopy. Clin Gastroenterol Hepatol 2011;9(1):42-6. DOI: 10.1016/j.cgh.2010.09.013

20. Jass JR, Young PJ, Robinson EM. Predictors of presence, multiplicity, size and dysplasia of colorectal adenomas. A necropsy study in New Zealand. Gut 1992;33(11):1508-14. DOI: 10.1136/gut.33.11.1508

21. Williams AR, Balasooriya BA, Day DW. Polyps and cancer of the large bowel: A necropsy study in Liverpool. Gut 1982;23(10):835-42. DOI: 10.1136/gut.23.10.835

22. Hasegawa S, Mitsuyama K, Kawano H, et al. Endoscopic discrimina-tion of sessile serrated adenomas from other serrated lesions. Oncol Lett 2011;2(5):785-9.

23. Longacre TA, Fenoglio-Preiser CM. Mixed hyperplastic adenoma-tous polyps/serrated adenomas. A distinct form of colorectal neopla-sia. Am J Surg Pathol 1990;14(6):524-37. DOI: 10.1097/00000478-199006000-00003

24. Torlakovic E, Snover DC. Serrated adenomatous polyposis in humans. Gastroenterol 1996;110(3):748-55. DOI: 10.1053/gast.1996.v110.pm8608884

25. Snover DC. Update on the serrated pathway to colorectal carcinoma. Hum Pathol 2011;42(1):1-10. DOI: 10.1016/j.humpath.2010.06.002

26. Rotondano G, Bianco MA, Cipolletta L, et al. Prevalence and char-acteristics of serrated lesions of the colorectum in Italy: A multicen-tre prospective cohort study. Dig Liver Dis 2015;47(6):512-7. DOI: 10.1016/j.dld.2015.03.005

27. Carr NJ, Mahajan H, Tan KL, et al. Serrated and non-serrated polyps of the colorectum: Their prevalence in an unselected case series and correlation of BRAF mutation analysis with the diagnosis of sessile serrated adenoma. J Clin Pathol 2009;62(6):516-8. DOI: 10.1136/jcp.2008.061960

28. Butterly L, Robinson CM, Anderson JC, et al. Serrated and adenoma-tous polyp detection increases with longer withdrawal time: Results from the New Hampshire Colonoscopy Registry. Am J Gastroenterol 2014;109(3):417-26. DOI: 10.1038/ajg.2013.442

29. Bouwens MW, Van Herwaarden YJ, Winkens B, et al. Endoscopic characterization of sessile serrated adenomas/polyps with and with-out dysplasia. Endoscopy 2014;46(3):225-35. DOI: 10.1055/s-0034-1364936

30. Hetzel JT, Huang CS, Coukos JA, et al. Variation in the detection of serrated polyps in an average risk colorectal cancer screening cohort. Am J Gastroenterol 2010;105(12):2656-64. DOI: 10.1038/ajg.2010.315

31. Kahi CJ, Li X, Eckert GJ, et al. High colonoscopic prevalence of proximal colon serrated polyps in average-risk men and women. Gas-trointest Endosc 2012;75(3):515-20. DOI: 10.1016/j.gie.2011.08.021

32. Burgess NG, Pellise M, Nanda KS, et al. Clinical and endoscopic pre-dictors of cytological dysplasia or cancer in a prospective multicentre study of large sessile serrated adenomas/polyps. Gut 2015;65:437-46. DOI: 10.1136/gutjnl-2014-308603

33. Uraoka T, Higashi R, Horii J, et al. Prospective evaluation of endo-scopic criteria characteristic of sessile serrated adenomas/polyps. J Gastroenterol 2015;50(5):555-63. DOI: 10.1007/s00535-014-0999-y

34. Ishigooka S, Nomoto M, Obinata N, et al. Evaluation of magnifying colonoscopy in the diagnosis of serrated polyps. World J Gastroenterol 2012;18(32):4308-16. DOI: 10.3748/wjg.v18.i32.4308

Page 9: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

524 A. HERREROS-DE-TEJADA ET AL. Rev esp enfeRm Dig

Rev esp enfeRm Dig 2017;109(7):516-526

35. Kimura T, Yamamoto E, Yamano HO, et al. A novel pit pattern identi-fies the precursor of colorectal cancer derived from sessile serrated adenoma. Am J Gastroenterol 2012;107(3):460-9. DOI: 10.1038/ajg.2011.457

36. Burke CA, Snover DC. Sessile serrated adenomas and their pit pat-terns: We must first see the forest through the trees. Am J Gastroenterol 2012;107(3):470-2. DOI: 10.1038/ajg.2011.468

37. Torlakovic EE, Gómez JD, Driman DK, et al. Sessile serrated adeno-ma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol 2008;32(1):21-9. DOI: 10.1097/PAS.0b013e318157f002

38. Crockett SD, Snover DC, Ahnen DJ, et al. Sessile serrated adenomas: An evidence-based guide to management. Clin Gastroenterol Hepatol 2015;13(1):11-26e1. DOI: 10.1016/j.cgh.2013.10.035

39. Bettington M, Walker N, Rosty C, et al. Critical appraisal of the diagno-sis of the sessile serrated adenoma. Am J Surg Pathol 2014;38(2):158-66. DOI: 10.1097/PAS.0000000000000103

40. De Wijkerslooth TR, Stoop EM, Bossuyt PM, et al. Differences in proximal serrated polyp detection among endoscopists are asso-ciated with variability in withdrawal time. Gastrointest Endosc 2013;77(4):617-23. DOI: 10.1016/j.gie.2012.10.018

41. East JE, Vieth M, Rex DK. Serrated lesions in colorectal cancer screening: Detection, resection, pathology and surveillance. Gut 2015;64(6):991-1000. DOI: 10.1136/gutjnl-2014-309041

42. Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 2014;370(14):1298-306. DOI: 10.1056/NEJMoa1309086

43. Kaminski MF, Regula J, Kraszewska E, et al. Quality indica-tors for colonoscopy and the risk of interval cancer. N Engl J Med 2010;362(19):1795-803. DOI: 10.1056/NEJMoa0907667

44. Chetty R, Hafezi-Bakhtiari S, Serra S, et al. Traditional serrated adeno-mas (TSAs) admixed with other serrated (so-called precursor) polyps and conventional adenomas: A frequent occurrence. J Clin Pathol 2015;68(4):270-3. DOI: 10.1136/jclinpath-2014-202827

45. Wiland HOt, Shadrach B, Allende D, et al. Morphologic and molecular characterization of traditional serrated adenomas of the distal colon and rectum. Am J Surg Pathol 2014;38(9):1290-7.

46. Sano Y, Saito Y, Fu K-I, et al. Efficacy of magnifying chromoendos-copy for the differential diagnosis of colorectal lesions. Dig Endosc 2005;17(2):105-16. DOI: 10.1111/j.1443-1661.2005.00483.x

47. Limketkai BN, Lam-Himlin D, Arnold MA, et al. The cutting edge of serrated polyps: A practical guide to approaching and managing serrated colon polyps. Gastrointest Endosc 2013;77(3):360-75. DOI: 10.1016/j.gie.2012.11.013

48. Kim MJ, Lee EJ, Suh JP, et al. Traditional serrated adenoma of the colorectum: Clinicopathologic implications and endoscopic findings of the precursor lesions. Am J Clin Pathol 2013;140(6):898-911. DOI: 10.1309/AJCPDJC9VC5KTYUS

49. Kalady MF, Jarrar A, Leach B, et al. Defining phenotypes and can-cer risk in hyperplastic polyposis syndrome. Dis Colon Rectum 2011;54(2):164-70. DOI: 10.1007/DCR.0b013e3181fd4c15

50. Hazewinkel Y, López-Cerón M, East JE, et al. Endoscopic features of sessile serrated adenomas: Validation by international experts using high-resolution white-light endoscopy and narrow-band imaging. Gas-trointest Endosc 2013;77(6):916-24. DOI: 10.1016/j.gie.2012.12.018

51. Van Herwaarden YJ, Verstegen MH, Dura P, et al. Low prevalence of serrated polyposis syndrome in screening populations: A systematic review. Endoscopy 2015;47(11):1043-9. DOI: 10.1055/s-0034-1392411

52. Moreira L, Pellise M, Carballal S, et al. High prevalence of serrated polyposis syndrome in FIT-based colorectal cancer screening pro-grammes. Gut 2013;62(3):476-7. DOI: 10.1136/gutjnl-2012-303496

53. Biswas S, Ellis AJ, Guy R, et al. High prevalence of hyperplastic poly-posis syndrome (serrated polyposis) in the NHS bowel cancer screening programme. Gut 2013;62(3):475. DOI: 10.1136/gutjnl-2012-303233

54. Bisgaard ML, Fenger K, Bulow S, et al. Familial adenomatous poly-posis (FAP): Frequency, penetrance, and mutation rate. Hum Mutat 1994;3(2):121-5. DOI: 10.1002/humu.1380030206

55. Boparai KS, Reitsma JB, Lemmens V, et al. Increased colorectal cancer risk in first-degree relatives of patients with hyperplastic polyposis syndrome. Gut 2010;59(9):1222-5. DOI: 10.1136/gut.2009.200741

56. Carballal S, Rodríguez-Alcalde D, Moreira L, et al. Colorectal can-cer risk factors in patients with serrated polyposis syndrome: A large multicenter study. Gut 2015. DOI: 10.1016/S0016-5085(15)31872-2

57. Guarinos C, Sánchez-Fortun C, Rodríguez-Soler M, et al. Clinical subtypes and molecular characteristics of serrated polyposis syn-drome. Clin Gastroenterol Hepatol 2013;11(6):705-11;quiz e46. DOI: 10.1016/j.cgh.2012.12.045

58. Walker RG, Landmann JK, Hewett DG, et al. Hyperplastic polypo-sis syndrome is associated with cigarette smoking, which may be a modifiable risk factor. Am J Gastroenterol 2010;105(7):1642-7. DOI: 10.1038/ajg.2009.757

59. Anderson JC, Rangasamy P, Rustagi T, et al. Risk factors for ses-sile serrated adenomas. J Clin Gastroenterol 2011;45(8):694-9. DOI: 10.1097/MCG.0b013e318207f3cf

60. Chow E, Lipton L, Lynch E, et al. Hyperplastic polyposis syndrome: Phenotypic presentations and the role of MBD4 and MYH. Gastroen-terol 2006;131(1):30-9. DOI: 10.1053/j.gastro.2006.03.046

61. Win AK, Walters RJ, Buchanan DD, et al. Cancer risks for relatives of patients with serrated polyposis. Am J Gastroenterol 2012;107(5):770-8. DOI: 10.1038/ajg.2012.52

62. Hazewinkel Y, Koornstra JJ, Boparai KS, et al. Yield of screening colonoscopy in first-degree relatives of patients with serrated polypo-sis syndrome. J Clin Gastroenterol 2015;49(5):407-12. DOI: 10.1097/MCG.0000000000000103

63. Balaguer F, Pellise M. Colorectal cancer: Serrated polyposis - Should we screen first-degree relatives? Nat Rev Gastroenterol Hepatol 2014;11(6):333-4. DOI: 10.1038/nrgastro.2014.61

64. Oquinena S, Guerra A, Pueyo A, et al. Serrated polyposis: Prospec-tive study of first-degree relatives. Eur J Gastroenterol Hepatol 2013;25(1):28-32. DOI: 10.1097/MEG.0b013e3283598506

65. Edelstein DL, Axilbund JE, Hylind LM, et al. Serrated polypo-sis: Rapid and relentless development of colorectal neoplasia. Gut 2013;62(3):404-8. DOI: 10.1136/gutjnl-2011-300514

66. Carvajal-Carmona LG, Howarth KM, Lockett M, et al. Molecular clas-sification and genetic pathways in hyperplastic polyposis syndrome. J Pathol 2007;212(4):378-85. DOI: 10.1002/path.2187

67. Jasperson KW, Tuohy TM, Neklason DW, et al. Hereditary and famil-ial colon cancer. Gastroenterol 2010;138(6):2044-58. DOI: 10.1053/j.gastro.2010.01.054

68. Lage P, Cravo M, Sousa R, et al. Management of Portuguese patients with hyperplastic polyposis and screening of at-risk first-degree rela-tives: A contribution for future guidelines based on a clinical study. Am J Gastroenterol 2004;99(9):1779-84. DOI: 10.1111/j.1572-0241.2004.30178.x

69. Chan TL, Zhao W, Leung SY, et al. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 2003;63(16):4878-81.

70. Kambara T, Simms LA, Whitehall VL, et al. BRAF mutation is asso-ciated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 2004;53(8):1137-44. DOI: 10.1136/gut.2003.037671

71. Leggett BA, Devereaux B, Biden K, et al. Hyperplastic polyposis: Association with colorectal cancer. Am J Surg Pathol 2001;25(2):177-84. DOI: 10.1097/00000478-200102000-00005

72. Abraham J, Núñez-Álvarez Y, Hettmer S, et al. Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev 2014;28(14):1578-91. DOI: 10.1101/gad.238733.114

73. Hazewinkel Y, Reitsma JB, Nagengast FM, et al. Extracolonic cancer risk in patients with serrated polyposis syndrome and their first-degree relatives. Fam Cancer 2013;12(4):669-73. DOI: 10.1007/s10689-013-9643-x

74. Barclay RL, Vicari JJ, Doughty AS, et al. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med 2006;355(24):2533-41. DOI: 10.1056/NEJMoa055498

75. Harewood GC, Sharma VK, De Garmo P. Impact of colonoscopy preparation quality on detection of suspected colonic neoplasia. Gas-trointest Endosc 2003;58(1):76-9. DOI: 10.1067/mge.2003.294

76. Kim JS, Kang SH, Moon HS, et al. Impact of bowel preparation quality on adenoma identification during colonoscopy and optimal timing of surveillance. Dig Dis Sci 2015;60(10):3092-9. DOI: 10.1007/s10620-015-3737-2

77. Anderson JC, Butterly LF, Robinson CM, et al. Impact of fair bowel preparation quality on adenoma and serrated polyp detection: Data from the New Hampshire colonoscopy registry by using a standard-ized preparation-quality rating. Gastrointest Endosc 2014;80(3):463-70. DOI: 10.1016/j.gie.2014.03.021

Page 10: Serrated lesions and serrated polyposis syndromescielo.isciii.es/pdf/diges/v109n7/revision.pdf · 2017. 12. 20. · 2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS

2017, Vol. 109, N.º 7 SERRATED LESIONS AND SERRATED POLYPOSIS SYNDROME 525

Rev esp enfeRm Dig 2017;109(7):516-526

78. Oh CH, Lee CK, Kim JW, et al. Suboptimal bowel preparation significant-ly impairs colonoscopic detection of non-polypoid colorectal neoplasms. Dig Dis Sci 2015;60(8):2294-303. DOI: 10.1007/s10620-015-3628-6

79. Hurlstone DP, Cross SS, Slater R, et al. Detecting diminutive colorectal lesions at colonoscopy: A randomized controlled trial of pan-colonic versus targeted chromoscopy. Gut 2004;53(3):376-80. DOI: 10.1136/gut.2003.029868

80. Lapalus MG, Helbert T, Napoleon B, et al. Does chromoendoscopy with structure enhancement improve the colonoscopic adenoma detec-tion rate? Endoscopy 2006;38(5):444-8. DOI: 10.1055/s-2006-925265

81. Pohl J, Schneider A, Vogell H, et al. Pancolonic chromoendoscopy with indigo carmine versus standard colonoscopy for detection of neo-plastic lesions: A randomized two-centre trial. Gut 2010;60(4):485-90. DOI: 10.1136/gut.2010.229534

82. Kaminski MF, Hassan C, Bisschops R, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Soci-ety of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2014;46(5):435-49. DOI: 10.1055/s-0034-1365348

83. Hewett DG, Kaltenbach T, Sano Y, et al. Validation of a simple clas-sification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterol 2012;143(3):599-60 e1. DOI: 10.1053/j.gastro.2012.05.006

84. Kumar S, Fioritto A, Mitani A, et al. Optical biopsy of sessile ser-rated adenomas: Do these lesions resemble hyperplastic polyps under narrow-band imaging? Gastrointest Endosc 2013;78(6):902-9. DOI: 10.1016/j.gie.2013.06.004

85. Lieberman DA, Rex DK, Winawer SJ, et al. Guidelines for colonosco-py surveillance after screening and polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroen-terol 2012;143(3):844-57. DOI: 10.1053/j.gastro.2012.06.001

86. Hewett DG, Huffman ME, Rex DK. Leaving distal colorectal hyper-plastic polyps in place can be achieved with high accuracy by using narrow-band imaging: An observational study. Gastrointest Endosc 2012;76(2):374-80. DOI: 10.1016/j.gie.2012.04.446

87. Hazewinkel Y, Tytgat KM, Van Eeden S, et al. Incidence of colonic neoplasia in patients with serrated polyposis syndrome who undergo annual endoscopic surveillance. Gastroenterol 2014;147(1):88-95. DOI: 10.1053/j.gastro.2014.03.015

88. Leonard DF, Dozois EJ, Smyrk TC, et al. Endoscopic and surgical management of serrated colonic polyps. Br J Surg 2011;98(12):1685-94. DOI: 10.1002/bjs.7654

89. Pohl H, Srivastava A, Bensen SP, et al. Incomplete polyp resec-tion during colonoscopy-results of the complete adenoma resection

(CARE) study. Gastroenterol 2013;144(1):74-80e1. DOI: 10.1053/j.gastro.2012.09.043

90. Morales SJ, Bodian CA, Kornacki S, et al. A simple tissue-handling technique performed in the endoscopy suite improves histologic sec-tion quality and diagnostic accuracy for serrated polyps. Endoscopy 2013;45(11):897-905 DOI: 10.1055/s-0033-1344435

91. Williams JG, Pullan RD, Hill J, et al. Management of the malig-nant colorectal polyp: ACPGBI position statement. Colorectal Dis 2013;15(Supl 2):1-38. DOI: 10.1111/codi.12262

92. Kedia P, Waye JD. Colon polypectomy: A review of routine and advanced techniques. J Clin Gastroenterol 2013;47(8):657-65. DOI: 10.1097/MCG.0b013e31829ebda7

93. Lee CK, Shim JJ, Jang JY. Cold snare polypectomy vs. cold forceps polypectomy using double-biopsy technique for removal of diminutive colorectal polyps: A prospective randomized study. Am J Gastroenterol 2013;108(10):1593-600. DOI: 10.1038/ajg.2013.302

94. Buchner AM, Guarner-Argente C, Ginsberg GG. Outcomes of EMR of defiant colorectal lesions directed to an endoscopy refer-ral center. Gastrointest Endosc 2012;76(2):255-63. DOI: 10.1016/j.gie.2012.02.060

95. Khashab M, Eid E, Rusche M, et al. Incidence and predictors of “late” recurrences after endoscopic piecemeal resection of large ses-sile adenomas. Gastrointest Endosc 2009;70(2):344-9. DOI: 10.1016/j.gie.2008.10.037

96. Moss A, Bourke MJ, Williams SJ, et al. Endoscopic mucosal resec-tion outcomes and prediction of submucosal cancer from advanced colonic mucosal neoplasia. Gastroenterol 2011;140(7):1909-18. DOI: 10.1053/j.gastro.2011.02.062

97. Moss A, Williams SJ, Hourigan LF, et al. Long-term adenoma recur-rence following wide-field endoscopic mucosal resection (WF-EMR) for advanced colonic mucosal neoplasia is infrequent: Results and risk factors in 1000 cases from the Australian Colonic EMR (ACE) study. Gut 2015;64(1):57-65. DOI: 10.1136/gutjnl-2013-305516

98. Repici A, Hassan C, De Paula Pessoa D, et al. Efficacy and safety of endoscopic submucosal dissection for colorectal neoplasia: A sys-tematic review. Endoscopy 2012;44(2):137-50. DOI: 10.1055/s-0031-1291448

99. Levin B, Lieberman DA, McFarland B, et al. Screening and surveil-lance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the Ameri-can College of Radiology. CA Cancer J Clin 2008;58(3):130-60. DOI: 10.3322/CA.2007.0018