Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New...

20
7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach … http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 1/20 215  Journal of Petroleum Geology, Vol. 32(3), July 2009, pp 215-234 SEQUENCE STRATIGRAPHY OF THE UPPER PERMIAN ZECHSTEIN MAIN DOLOMITE CARBONATES IN WESTERN POLAND: A NEW APPROACH M. Slowakiewicz 1*  and Z. Mikolajewski 2 The Upper Permian Main Dolomite in the Zechstein 2 cyclothem in the Gorzów Block (part of the  Zechstein Basin in western Poland) contains both hydrocarbon source and reservoir rocks, and is sealed both above and below by evaporites. In this paper we propose a new sequence stratigraphic model for the development of potential reservoir rocks in toe-of-slope locations. Data came from detailed analyses of 35 cores from wells in and at the margins of the Wielkopolska platform, a palaeogeographic element composed of Main Dolomite carbonates. In basinal areas, the Main Dolomite carbonates begin with a transgressive interval overlain by laminated dolomudstones interpreted as transgressive facies. The TST begins in the upper part of the underlying A1g anhydrites. The dolostones are underlain by a ravinement surface on the platform, and by a maximum regressive surface in toe-of-slope and basinal locations. In well Gorzów Wielkopolski-2, a hardground marks the maximum flooding surface. Overlying the TST deposits are thick intervals of intraclast-oolitic grainstones and floatstones which are interpreted as highstand deposits and indicate “highstand shedding”. Toe-of-slope facies are composed of alternating laminated dolomudstones, intraclast-oolitic grainstones, packstones and floatstones which make up submarine fans (prisms) interpreted as falling stage facies which are capped by dolomudstones. A subaerial unconformity was recognized on the platform, and a slope onlap surface on the slope and toe-of-slope, respectively. In platform areas, the Main Dolomite begins with thin intervals containing microbial complexes deposited during the early HST, which pass into thick oolitic grainstones (HST to late HST) and terminate as microbial-to-oolitic wackestone and mudstone complexes interpreted as falling stage facies. Thrombolitic bioherms constitute a reference horizon which can be correlated between wells in the study area. The beginning of the LST occurs in the upper part of the Main Dolomite. The boundary between lowstand and transgressive deposits was identified in the lower part of the Basal Anhydrite and is marked by sabkha and salina facies, respectively, where an erosional ravinement surface and maximum regressive surface were identified. Thus, the upper part of the underlying Upper Anhydrite and the upper part of the Main Dolomite deposits form a second depositional sequence in the study area. The depositional environment of the Main Dolomite platform carbonates was variable, and was influenced by the topography of the pre-existing evaporitic platform. The newly proposed sequence stratigraphic model emphasises the role of forced regressive submarine fans as potential hydrocarbon accumulations and traps in the toe-of-slope area. 1 Polish Geological Institute, ul. Rakowiecka 4, 00-975

description

SEQUENCE STRATIGRAPHY OF THE UPPER PERMIANZECHSTEIN MAIN DOLOMITE CARBONATESIN WESTERN POLAND: A NEW APPROACH

Transcript of Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New...

Page 1: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 1/20

215 Journal of Petroleum Geology, Vol. 32(3), July 2009, pp 215-234

SEQUENCE STRATIGRAPHY OF THE UPPER PERMIAN

ZECHSTEIN MAIN DOLOMITE CARBONATES

IN WESTERN POLAND: A NEW APPROACH

M. Slowakiewicz1* and Z. Mikolajewski2

The Upper Permian Main Dolomite in the Zechstein 2 cyclothem in the Gorzów Block (part of the Zechstein Basin in western Poland) contains both hydrocarbon source and reservoir rocks, and issealed both above and below by evaporites. In this paper we propose a new sequence stratigraphic model for the development of potential reservoir rocks in toe-of-slope locations. Data came fromdetailed analyses of 35 cores from wells in and at the margins of the Wielkopolska platform, apalaeogeographic element composed of Main Dolomite carbonates.

In basinal areas, the Main Dolomite carbonates begin with a transgressive interval overlain by laminated dolomudstones interpreted as transgressive facies. The TST begins in the upper part of the underlying A1g anhydrites. The dolostones are underlain by a ravinement surface on theplatform, and by a maximum regressive surface in toe-of-slope and basinal locations. In well Gorzów Wielkopolski-2, a hardground marks the maximum flooding surface. Overlying the TST deposits are thick intervals of intraclast-oolitic grainstones and floatstones which are interpreted as highstand deposits and indicate “highstand shedding”. Toe-of-slope facies are composed of alternating laminated dolomudstones, intraclast-oolitic grainstones, packstones and floatstoneswhich make up submarine fans (prisms) interpreted as falling stage facies which are capped by dolomudstones. A subaerial unconformity was recognized on the platform, and a slope onlapsurface on the slope and toe-of-slope, respectively.

In platform areas, the Main Dolomite begins with thin intervals containing microbial complexesdeposited during the early HST, which pass into thick oolitic grainstones (HST to late HST) and 

terminate as microbial-to-oolitic wackestone and mudstone complexes interpreted as falling stagefacies. Thrombolitic bioherms constitute a reference horizon which can be correlated betweenwells in the study area. The beginning of the LST occurs in the upper part of the Main Dolomite.The boundary between lowstand and transgressive deposits was identified in the lower part of theBasal Anhydrite and is marked by sabkha and salina facies, respectively, where an erosional ravinement surface and maximum regressive surface were identified. Thus, the upper part of theunderlying Upper Anhydrite and the upper part of the Main Dolomite deposits form a second depositional sequence in the study area.

The depositional environment of the Main Dolomite platform carbonates was variable, and was influenced by the topography of the pre-existing evaporitic platform. The newly proposed sequence stratigraphic model emphasises the role of forced regressive submarine fans as potential 

hydrocarbon accumulations and traps in the toe-of-slope area.

1 Polish Geological Institute, ul. Rakowiecka 4, 00-975

Page 2: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 2/20

216 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

INTRODUCTION

The NE part of the Fore-Sudetic Monocline in Western

Poland is a major oil and gas province. The most

important reservoir rocks occur in the Upper PermianMain Dolomite and Zechstein Limestone. Significant

hydrocarbon accumulations are present in the Main

Dolomite on the Gorzów Block, located between the

Szczecin Trough to the north and the Fore-Sudetic

Monocline to the south (Narkiewicz and Dadlez,

2008) (Fig. 1). This area was of little interest from an

exploration point of view until a minor oil

accumulation was discovered in the 1970s in a toe-

of-slope location next to the Sulecin Platform

(Depowski and Peryt, 1985; Karnkowski, 1999;

Jaworowski and Mikolajewski, 2007). In 2002, themuch larger  Lubiatów accumulation was discovered

at the western margin of the Grotów Peninsula, a

northerly extension of the regional-scale

Wielkopoloska Platform (Fig.1c). This discovery

confirmed the prospectivity of the Main Dolomite

reservoir and encouraged further exploration. Further 

discoveries were made in the area in 2003 including

the  Miedzychód  gasfield (with a reservoir in barrier 

facies), the Sowia Góra oilfield (toe-of-slope facies)

and the Grotów oilfield (inner platform facies). The

 Lubiatów  and Sowia Góra  fields together comprise

the second-largest oilfield complex in Poland (after 

 Barnówko-Mostno-Buszewo: Górski et al., 1999) and

have recoverable reserves of 46.31 MM brl oil and

0.21 TCF gas (Dyjaczynski et al ., 2006; Górecki et 

al ., 2008).

The Main Dolomite (abbreviated here as Ca2,

following Wagner, 1994) reservoir rocks comprise

alternating medium- and coarse-grained carbonates

with different thicknesses within a carbonate mud

succession in the Polish part of the Zechstein Basin,

whose stratigraphic scheme was established by

Wagner (1994, Fig.2). These rocks have beeninterpreted as redeposited material resulting from

 progradation of the carbonate platform margin

(Jaworowski and Mikolajewski, 2007). An alternative

interpretation is that they are lowstand deposits

composed mostly of autochthonous material

(Zdanowski, 2003a,b, 2004a,b). Mikolajewski and

Slowakiewicz (2008) showed that, in the study area,

diagenetic modification of the dolomite and the

development of porosity occurred during both

eodiagenesis and mesodiagenesis (Fig.3). Secondary

 porosity (locally up to 35%) formed due to the partialor complete dissolution of carbonate grains, most

probably due to aggressive CO -bearing fluids

Grotów Peninsula and Krobielewko microplatform

area. The model is based on sedimentological data

 presented by Slowakiewicz and Mikolajewski (2008).

The sequence stratigraphy of the European Zechstein

Basin has been interpreted in various ways (e.g.Tucker, 1991; Strohmenger et al ., 1996a,b; Wagner 

and Peryt, 1997; Leyrer et al ., 1999; Kaiser, 2001;

Kaiser et al ., 2003; Zdanowski, 2003a,b, 2004a,b;

Becker and Bechstädt, 2006; Warren, 2006;

Jaworowski and Mikolajewski, 2007; Slowakiewicz

and Mikolajewski, 2008). Sequence stratigraphy is

more difficult to apply in evaporite basins than in

open-marine settings because accommodation space

is controlled by rapid subsidence and by fluctuations

in brine levels which depend on evaporation rates and

rates of brine inflow-outflow (Peryt, 1992; Becker andBechstädt, 2006). Our studies emphasise the

application of sequence stratigraphy in mapping

 potential hydrocarbon traps in toe-of-slope locations

in falling-stage deposits.

GEOLOGICAL SETTINGAND REGIONAL PALAEOGEOGRAPHY

The study area is located in the western part of the

Polish Zechstein Basin (Wagner, 1994), in the east of 

the European Southern Permian Basin. In

 palaeogeographic terms (Fig.1c), the area lies at the

embayed northern margin of the regional-scale

Wielkopolska Platform which is composed of Main

Dolomite carbonates. A northerly extension of the

 platform is known as the Grotów Peninsula, to the

west of which is the Krobielewko microplatform

(Fig.1c).

The palaeogeographic setting of the Main

Dolomite is related to the palaeotopography of the

Lower Rotliegend volcanics and underlying folded

and eroded Carboniferous rocks (Kotarba and Wagner,

2006). In Rotliegend time, this formed a palaeohighknown as the Lubusko High (Dadlez, 2006) (Fig. 4)

which was composed of volcaniclastics and Upper 

Rotliegend sedimentary rocks (Maliszewska et al .,

2003). Geissler et al . (2008) suggested that both the

 pre-volcan ic re li ef and synvolcanic tecton is m

influenced the Southern Permian Basin at the cessation

of Lower Rotliegend volcanism (their Fig. 7). Late

Carboniferous - Early Permian volcanic rocks reach

thicknesses of around 400 m in well Santok-1  and

rest unconformably on eroded Carboniferous rocks

(Lorenc et al ., 1995). The entire area was submergedduring the Zechstein transgression and was flooded

by a shallow epicontinental sea

Page 3: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 3/20

217 M. Slowakiewicz and Z. Mikolajewski 

p  o   f   P  o

   l  a  n   d  w   i   t   h   t   h  e  s   t  u   d  y  a  r  e  a .

  a   l  s  u   b   d

   i  v   i  s   i  o  n  o   f   N   W    P  o   l  a  n   d  a   t   t   h  e  s  u   b  -   C

  e  n  o  z  o   i  c  p  a   l  a  e  o  s  u  r   f  a  c  e   (  a   f   t  e  r   N  a  r   k   i  e  w   i  c  z  a  n   d   D  a   d   l  e  z ,   2   0   0   8   )  ;

o  g  r  a  p   h   i  c  m  a  p  o   f   t   h  e   M  a   i  n   D  o   l  o  m   i   t  e  o  n   t   h  e   G  o  r  z   ó  w   P   l  a   t   f  o  r  m  a  n   d  o  n   t   h  e  n

  o  r   t   h  e  r  n  p  a  r   t  o   f   t   h  e   W   i  e   l   k  o  p  o   l  s   k  a

   P   l  a   t   f  o  r  m   (  a   f   t  e  r   K  o   t  a  r   b  a   &   W  a  g  n  e  r ,   2   0   0   7 ,

o  r  e   h  o   l  e

  s   f  r  o  m   t   h  e  s   t  u   d  y  a  r  e  a  :   1 .   G  o  r  z   ó  w   W

   l   k  p  -   2  ;   2 .   K  r  o   b   i  e   l  e  w   k  o  -   2  ;   3 .   K  r  o   b   i  e   l  e

  w   k  o  -   5  ;   4 .   L  e  s  z  c  z  y  n  y  -   1  ;   5 .   L  e  s  z  c  z  y  n  y  -   1   K  ;   6 .   M   i  e   d  z  y  c   h   ó   d  -   2  ;   7 .   M  o   k  r  z  e  c  -   1  ;   8 .   L  u   b   i  a  t   ó  w  -

w  -   1  ;   1   0 .   L  u   b   i  a  t   ó  w  -   4  ;   1   1 .   S  o  w   i  a   G   ó  r  a  -   1  ;   1   2 .   S  o  w   i  a   G   ó  r  a  -   2   K  ;   1   3 .   S  o  w   i  a   G   ó  r  a  -   4  ;   1   4

 .   M   i  e   d  z  y  c   h   ó   d  -   6  ;   1   5 .   M   i  e   d  z  y  c   h   ó   d  -   4  ;   1   6 .   M   i  e   d  z  y  c   h   ó   d  -   5  ;   1   7 .   G  r  o  t   ó  w  -   1  ;

2  ;   1   9 .   G  r

  o  t   ó  w  -   6  ;   2   0 .   G  r  o  t   ó  w  -   5  ;   2   1 .   S   i  e  r  a   k   ó  w  -   4  ;   2   2 .   S   i  e  r  a   k   ó  w  -   1  ;   2   3 .   C   h  r  z  y  p  s   k  o  -   3  ;   2   4 .   G  n  u  s  z  y  n  -   1  ;   2   5 .   K  a  c  z   l   i  n  -   1 .   B  o  r  e   h

  o   l  e  s  o  n   t   h  e   G  o  r  z   ó  w   P   l  a   t   f  o  r  m  :   A .

   M  a  r  w   i  c  e  -   3  ;

1  ;   C .   S  t  a

  n  o  w   i  c  e  -   2  ;   D .   S  t  a  n  o  w   i  c  e  -   3  ;   E .   R  a  c   l  a  w

  -   1   K  ;   F .   B  a  c  z  y  n  a  -   1  ;   G .   B  a  c  z  y  n  a  -   2  ;   H

 .   C   i  e  c   i  e  r  z  y  c  e  -   1  ;   I .   D  z   i  e  r  z   ó  w  -   1   K  ;   J .   S  a  n  t  o   k  -   1 .

        1

 G E  M A N

 Y R

   B  a  s   i  n  p   l  a   i  n

   C  a  r   b  o  n  a   t  e  p   l  a   t   f  o  r  m

   d  e  e  p  p  a  r   t

  s   h  a   l   l  o  w

  p  a  r   t

   b  a  y

   l  a  g  o  o  n

   b  a  r  r   i  e  r  s

   l  o  w  -  e  n  e  r  g  y  z  o  n  e

  e  s  c  a  r  p  m

  e  n   t  -   l   i   k  e  p   l  a   t   f  o  r  m   m

  a  r  g   i  n

   b  o  r  e   h  o   l  e

  s

  p   l  a   t   f  o  r  m   s

   l  o  p  e

  o  n  c  o   l   i   t  e  -  o  o   l   i   t  e  s   h  o  a   l  s

   h   i  g   h  -  e  n  e  r  g  y  z  o  n  e

  s   t  u   d  y  a  r  e  a

 G E  M A N

 Y R

E

N

AL

BA

C

TR

SIN

                     O                     T                     E

                    Æ                      B

                    A                     Y

                     N

 

        2        3 

        4   5 

       7

        8         9         1        0 

        1        1

        1        2

        1        3 

        1        4

        1       5 

        1        6 

        1       7

        1        8         1

        9 

        2        0 

        2        1

        2

        2

        2

       5 

        2        4

   I

   B

   W    T   N   I  C

   A   A    Y

   R   Z   E   P   I   N

   B   A   Y

                    W                    I                    E

                    L                    K

                    O                    P

                     L                    S                    K

                    A                     P

                   A                    T                    F                   O                    R                    M

 

                   O

                     L

 

        2        3 

        6 

       G

         R

         W  

        P

         R

 

       O

         Z          Ó

 

        L        A

         T         F       O

        M 

  G    R  O    T   Ó   W 

   I

    U

   P    E   N

    N   S

    L   A

   K

   R   O   B   I   E   L   E   W   K   O

   M   I   C   R   O   P   L   A   T   F   O   R   M

   Z   I   E   L   I   N

   M   I   C   R   O   P   L   A   T   F   O   R   M

   C   H   A   R   T    Ó   W  -   G    Ó   R   Z   Y   C   A

   M   I   C   R   O   P   L   A   T   F   O   R   M

   S   U

   L    Ê   C   I   N

   M   I   C   R   O   P   L   A   T   F   O   R   M

   C

   Y   C   H   R   Y

   M   I   C   R   O

   P   L   A   T   F   O   R   M

    L    I     N

ER

    R

    W

    W    A

    S     A

z   i

  r

e  c  n

 T o  u  g    h

  o  m

  a  n  n

 S

   l   l

   P

  e  r   i  a

  w  e

   P  o  m

  a  n  n

 T o  u

 h

  e  r   i  a

  r  g 

G   o   r

 ó   w

    B    l

 c    k

   z

   o

F  o  r  e  -   S  u

   d  e   t   i  c   M  o  n  o  c   l   i  n  e

   M   i  d  -

   P

   l

  S  w

  e   l

  o   i  s

   h 

   l

   1

    C  a   2  p  r  o   f   i   l  e  s   f  r  o  m    t   h

  e  s   t  u   d  y  a  r  e  a

   C

     A

     B

     C      D

     E     F

     G 

     H   I

     J 

   A

   C  a   2  p  r  o

   f   i   l  e  s   f  r  o  m    t   h

  e   G  o  r  z   ó  w

   P   l  a   t   f  o  r  m

L b

a

t

ó

 

S

a

 

u

i

w

 

o

w

i

G

ó

r

a

o

l

e

l

 

i

f

i

d

 

o

w

r

t

i

e

o

f

l

 

i

d

z

y

 

e

c

h

ó

d

s

g

 

f

i

e

l

d

   0

   5

   1   0   k  m

   B   A

Page 4: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 4/20

218 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

300 m (Kotarba and Wagner, 2006). Small salt basins

formed locally. In neighbouring depressions, sulphates

and salts were deposited with thicknesses of < 200 m.The Main Dolomite rocks were deposited directly on

the PZ1 sulphate platform successions (Peryt and

Dyjaczynski, 1991; Kotarba and Wagner, 2006, 2007).

A depositional model for the Main Dolomite in the

eastern part of the Gorzów Block during sea-level

highstand is shown in Fig.5. The morphology of the

Main Dolomite carbonate platform and adjoining slope

was controlled by that of the precursor sulphate

 platform. The model differs from that of Jaworowski

and Mikolajewski (2007) especially in terms of the

development and interpretation of toe-of-slope depositswhich form the reservoir at the  Lubiatów oilfield.

Dolomite from 25 representative wells in the study

area and ten wells from the eastern part of the Gorzów

Platform (a total of approximately 2000 m of core)(Fig. 1c). All cores were cut perpendicular to bedding

 planes using a water-cooled saw and were logged in

detail at a macro scale using polished slabs at the

Borehole Core Storage of the Polish Oil and Gas

Company in Pila, where digital photographs of cores

were taken. Samples (every 50 cm) from all the cores

for thin sections were then collected. Petrographic

observations were carried out under a Zeiss Axioskop

microscope coupled with a Nikon Coolpix 990 digital

camera at the Petrographic Laboratory of the Polish

Oil and Gas Company in Pila.As previously noted by Jaworowski and

Mikolajewski (2007) and confirmed in the present

GLOBAL TIME SCALE

251.0

255.0

258.0or

260.4

LITHOSTRATIGRAPHY

 Baltic Fm.

Rewal Fm.PZ4ePZ4d

PZ4cPZ4b

PZ4a

TopTerrigenous

Series(PZt)

P O L I S H Z E C H S T E I N B A S I N

   P

   E

   R

   M

   I   A

   N

   L   O   P   I   N   G   I   A

   N

       G       U       A       D       A   -

       L       U       P       I       A       N

   P   3

   P   2

   A

  g  e   [   M  a   ]

   S   Y   S

   T   E   M

   S   E

   R   I   E   S

   T   R   I   A   S   S   I   C

   E   A   R   L   Y

   I   N   D   U   A   N

   S   T

   A   G   E

   C   A   P   I   T  -

   A   N   I   A   N

   W   U   C   H   I   A   P   I   N   G   I   A   N

   C   H   A   N   G   H   S

   I   N   G   I   A   N

         R         O         T         L         I         E         G         E         N         D

   U

   p

   p

   e

   r

   Z

   E

   C

   H

   S

   T

   E

   I   N

   B   U   N   T  -

   S   A   N   D   S   T   E   I   N

   Z  e  c   h  s   t  e   i  n   4

   P   Z   4

   L  o  w  e  r

   T  p   1

   Z  e  c   h  s   t  e   i  n   3

   P   Z   3

   Z  e  c   h  s   t  e   i  n   2

   P   Z   2

   Z

  e  c   h  s   t  e   i  n   1

   P   Z   1

Notec Subgroup

Upper Anhydrite A1g

Lower Anhydrite A1dOldest Halite Na1

Zechstein Limestone Ca1

Kupferschiefer T1

Grey Pelite T3

Platy Dolomite Ca3

Main Anhydrite A3

Younger Halite/Younger Potash Na3/K3

Main Dolomite Ca2Basal Anhydrite A2

Older Halite Na2Older Potash K2

Screening Older Halite Na2r Screening Anhydrite A2r 

Fig. 2. Lithostratigraphy of the Polish Zechstein Basin modified after Wagner (1994, 2001). Global Time Scale

after Ogg et al. (2008). Age boundaries of the Zechstein after Slowakiewicz et al. (2009); dashed line (at 260.4

Ma), and solid line (lower Zechstein boundary at 258 Ma) after Wagner (2008).

Page 5: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 5/20

219 M. Slowakiewicz and Z. Mikolajewski 

Basin. Sedimentary structures which appeared to

indicate a tidal influence such as fine-scale lamination probably record storm- or wave-induced changes in

water level especially in arid and semi-arid areas

than “‘intertidal”. Similarly, “sublittoral” and

“supralittoral” are used instead of “subtidal” and“supratidal”.

Sedimentological descriptions in this paper in

Fig. 3. a (above left). Photomicrograph showing porosity in the Main Dolomite after dissolution of ooids and

peloids; well Lubiatów-1, depth 3243.10 m; porosity: 30 %, permeability: 0.01 mD. (b) Oomouldic and

interparticle porosity, well Miedzychód-4, depth 3096.6 m; porosity: 25 %, permeability: 1.65 mD. Toe-of-slopeand barrier facies, respectively. Scale bars are 1 mm. Well locations in Figs 1 and 4.

Fig. 4. Palaeogeography of the Gorzów Block during latest Rotliegend sedimentation (after Kiersnowski, 2004,

updated from Kiersnowski, 2009; tectonics partly after Dadlez, 2006). VDF: extent of Variscan Deformation

Front. 1. Lower Rotliegend volcanic rocks directly under Zechstein deposits. 2. Proved or interpreted areas

built of Lower Rotliegend sedimentary rocks directly underlying Zechstein rocks. 3. Carboniferous

sedimentary rocks. 4. Supposed chain of palaeovolcanoes interpreted by Kiersnowski (2004). 5. Alluvial

deposits. 6. Aeolian deposits. 7. Playa deposits. 8. Supposed faults and dislocations originating in Early Permian

time. 9. Extent of the Main Dolomite carbonate platform after Kotarba and Wagner (2007).

Debno

V  D F  

       N       I       E

       F       A       U       L        T

        W        Y

 

W  O  

S  Z  T  Y  N   

H  I  G  

 

H  

ʯY -1KM

D   ÓDY H   -M Ê Z C   2I

M ZY   CIE   R AD   E Z-1Z

KA Z   -1ÓWM S

R AOWB   ZOZ -1

-2J

-7J

IOWN EC -2

THC RA   ÓW-1

C   -5H  C   -3H

C -6HG-4

G-7   0G-1

D   -1OGOM NR   I

OŒ O-3NN   - G2OŒ O I

D   GOS -ZY 1£U N

-D   2OGOM NR   I

L CI -1P   N AO

GOR   -IG1WLKZÓW PE   I-1ZYJ K

B NC   -1A ZY A

A C 1S   OWIT   N E-

T-S 2

W /-1M R   EA   C -1 KI

M   -3AI C   -S ÓW 1C E H

-B   / 1LU S   -I ZY   1 KN2LU-

N   ATWI CI   -1

M   O-1OS NTE L   1WI C   WA -

E NBD O-1

RH Y-Y 1C   C

-2C

-4CRY H   Y-6CC

LM   -1A Y   NN S  I

Z 3 3 / BK K   S- -   I  M R Z 1GR   I DAZY   -

B   O-1R ÓWKA N

U / BLK K S-3 -3I

D   EO   I -1EP L S /OZA S O-1K AR   N -1   R K-3-2R

JGA EWO-1

B S   -ÓW 1U Z

W   1B   S EU   ZO -

-4R

S   B -GNLI ZM   ÓRY   1

GZE C   A E   S I - IS R L   R Ñ   KT E   J   EK   1

O 1LU NB   -

IZ   D SD   ZY   EE   U C   -1-2D

T-S 3 B -2AC   KA LA   -R   W 1

GOR   -WLK 2ZÓW P

EI C EC   ZY -IE C 1R

ZD   -1E ZÓWI R   K

BOR E E   O-1K I L WK

K   -2R

M-5

GN S Y -1U Z N

-P I WY 1N E

P I WY-2N E

P I WY-3N E

I RS O-1P E K

KOK IN   I-1S   OL

Z CR O-1KOB Y

OTN   -S   1A K

AZYC -GÓR 1

E 1J N I CNE I -

W   5B SZEU   O-

CHRZYPSKO-1

CH-3

M-4MIEDZYCHÓD-3

M-6

CH-2

GROTÓW-1

G-2

LUBIATÓW-1

SG-1

L-2

M   SLIBÓR  Y    ZBLOCK

LUBUSKOHIGH

BRUK ELAS

E INB RL

 AWWARS

POZNANBASIN

LEGEND

1

2

3

5

6

8

7

94

0   10 20 km

K -5R

MOKRZEC-1

G-6   G5

S-4

SIERAKÓW-1L-4

SG-2KSG-4MOKRZEC-1

S C   /Z   -E   ZY Y 1   KL   N   1

ZIELONA GÓRA BASIN

Z -1E NI LI  Z-2

     P    A     P     R    O    C

 

Page 6: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 6/20

220 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

t     o   e   -   o   

f     -   s   l     o     p   

e   

o  

u   t   e  r    b  

a  r   r   i    e  

r   

i  n n 

e r   b a r  r  i  e r  

b  a  s  i    n   f    l    o  

o  r   

p l a t  f  o r  m

 s   l  o

  p  e

b a s i n

l a g o o nl a g o o n

direction of shallow-water bottom currents

Miêdzychód gasfield Grotów oilfield  Lubiatów oilfield 

Fig. 5. Depositional model of the Main Dolomite facies in the Grotów Peninsula area during relative sea-levelhighstand (after Jaworowski and Mikolajewski 2007, modified). Not to scale.

(2005), Embry et al . (2007), Catuneanu (2007) and

Catuneanu et al . (2009).

SEQUENCE STRATIGRAPHY

Stratigraphic units of the Polish Zechstein Basin were

discussed in detail by Wagner (1994, Fig. 2) who

correlated them with their counterparts in the German

Zechstein Basin. The fill of the Polish Zechstein Basin

has been divided into four Zechstein Sequences (PZ1-

4) comprising third-order sequences with associated

systems tracts (Wagner and Peryt, 1997). The Main

Dolomite (Ca2) comprises the HST of the second

Zechstein sequence; however, the Ca2 slope facies can

 be treated as the beginning of the LST of the third

Zechstein sequence (Wagner and Peryt, 1997).

Alternatively, according to Zdanowski (2003a,b,

2004a,b), the upper parts of the Ca2 toe-of-slope

deposits in the Grotów Peninsula area are

autochthonous and are of shallow platform origin

related to a sea-level lowstand; they pass upward intoextremely shallow-water sabkha facies of the Basal

Anhydrite (A2). However, this interpretation was

challenged by Jaworowski and Mikolajewski (2007)

who proposed that there is no evidence for the

emergence of the Main Dolomite platform, which is

necessary for the formation of lowstand deposits.

Instead they suggested that the toe-of-slope deposits

represent highstand and forced regressive deposits of 

the preceding sequence. Slowakiewicz and

Mikolajewski (2008) agreed with this general scheme

 but improved the Ca2 depositional model in theGrotów Peninsula area. Thus they distinguished

transgressive deposits in the upper part of the Upper

TRANSGRESSIVE SYSTEMS TRACT

Transgressive deposits are not well developed on the

Upper Anhydrite platform. However, in slope and toe-

of-slope locations, there occur 60-cm to several-metre

thick successions of deposits reworked during a

transgression, but originating from a lowstand wedge.

Such a succession is observed in the eastern slope of 

the Krobielewko platform in well Leszczyny-1K  (Fig.

7a). Transgressive deposits in the slope and toe-of-

slope are mostly composed of angular fragments (up

to 30 cm long) of nodular anhydrites forming a

matrix-to clast-supported breccia, deposited in a

sabkha setting during a lowstand of relative sea level

and subaerial exposure of the A1 sulphate platform

(Fig. 7a). Anhydrite breccias occur in the Ca2

dolomudstones and are derived from the Upper 

Anhydrite anhydrites. Basinal facies, by contrast,

consist of thinly laminated anhydrites which pass into

dark laminated dolostones (Fig. 7b), indicating

continuous sedimentation in the basin and a well-developed maximum regressive surface ( sensu

Helland-Hansen and Martinsen, 1996) which passes

towards the shoreline into a subaerial unconformity.

The timing of the maximum regressive surface (MRS)

corresponds to the end of base-level fall at the

shoreline. According to Embry (2001b), the MRS

should replace the correlative conformity because it

has low diachroneity, it is widespread throughout the

conformable succession and it joins the basinward

termination of the unconformity. This is the sense in

which the term MRS is used here.The transition between lowstand and transgressive

platform facies of the Upper Anhydrite and Main

Page 7: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 7/20

221 M. Slowakiewicz and Z. Mikolajewski 

PLATFORM   SLOPE   TOE-OF-SLOPE

 A1g

Ca2

 A1g LST

TSTMRS

SU/TRS

MRS 

SU 

TRS 

PLATFORM   SLOPE   TOE-OF-SLOPE

 A1g

S.L.

MFS 

SU 

TRS 

MRS 

MFS

MFSSU/TRS

MRS

PLATFORM   SLOPE   TOE-OF-SLOPE

S.L.

low-densityturbidites

SU

SU/TRS

SU 

TRS 

SOS 

SOS

MFSMRSMRSMRS 

MFS

MFS 

?

Fig.6. Schematic models showing development of systems tracts for the Main Dolomite in the eastern part of

Page 8: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 8/20

222 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

   A 

g

C

a

C

a

A

 

   d  e  p  o  s

   i   t  s  o  r   i  g   i  n  a   t  e   d   f  r  o  m   s

  e  a  -   l  e  v  e   l   l  o  w  s

   t  a  n   d   (   L   S   T   )

  r  e  w  o  r   k  e   d   d  u  r   i  n  g   t  r  a  n  s  g  r  e  s  s   i  o  n   (   T   S

   T   )

   A   1  g

   C

  a   2   H   S   T

   B

n  s  g  r  e  s  s   i  v  e   d  e  p  o  s   i   t  s   (  a   b  r  a  s   i  v  e  p   l  a   t   f  o  r  m   )   f  r

  o  m   w

  e   l   l    L   e   s   z   c   z   y   n   y  -    1    K ,

   d  e  p   t   h   i  n   t  e  r

  v  a   l   3   4   8   9  -   3   5   0   7  m    (   l  o

  w  e  r  p  a  r   t  o   f   t   h

  e  e  a  s   t  e  r  n  s   l  o  p  e  o   f   t   h  e   K  r  o   b   i  e   l  e  w   k  o

r  m   )  ;   B .

   E  x  a  m  p   l  e  o   f   t  r  a  n  s   i   t   i  o  n  z  o  n  e   b  e   t  w  e  e  n   l  a  m   i  n  a   t  e   d  a  n   h  y   d  r   i   t  e  s  o   f   t   h  e   U

  p  p  e  r   A  n   h  y   d  r   i   t  e   (   A   1  g   )  a  n   d   l  a  m   i  n  a

   t  e   d   d  o   l  o  s   t  o  n  e  s  o   f   t   h  e   M  a   i  n   D  o   l  o  m

   i   t  e   (   C  a   2   )

M   o    k   r   z   e   c  -    1 ,

   d  e  p   t   h   i  n   t  e  r  v  a   l   3   3   1   2  -   3   3   1   5  m    (   b

  a  y   /   b  a  s   i  n  a   l   f  a  c   i  e  s   ) .   A  r  r  o  w  p  o   i  n   t  s   t  o

   t  r  a  n  s   i   t   i  o  n  s  u  r   f  a  c  e   (  m  a  x   i  m  u  m   r

  e  g

  r  e  s  s   i  v  e  s  u  r   f  a  c  e   ) .

Page 9: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 9/20

223 M. Slowakiewicz and Z. Mikolajewski 

rise to large-scale stratigraphic hiatuses (Helland-

Hansen and Martinsen, 1996; Catuneanu, 2007). In

the study area, the subaerial unconformity is replaced

 by a transgressive ravinement surface (e.g. well

 Leszczyny-1: Fig.8a) which is evidence for the MainDolomite transgression. As mentioned above, the

subaerial unconformity may or may not be replaced

 by a transgressive ravinement surface (TRS) which

separates regressive strata below from transgressive

strata above (Embry 1993, 1995), and which is

characterized by a distinctive lithological change, in

this case from anhydrites to dolostones. The TRS in

the study area may be slightly diachronous because

the transgression reached areas of high sediment

supply (the carbonate platform interior) somewhat

later. However, according to Embry (1995), thisdiachroneity is likely to be minor in relation to the

duration of the cycle of base level rise and fall.

The transgressive deposits represent an

accretionary-type of transgression, which implies that

accommodation of sediment took place behind a

retreating shoreline and that the transgressing

shoreline climbed upward and landward (Helland-

Hansen, 1995; Helland-Hansen and Martinsen, 1996).

Relatively thick anhydrite breccias (up to tens of 

metres in diameter; e.g. well Leszczyny-1K ) at the foot

of the platform suggest subaerial erosion of the A1

sulphate platform during the sea-level lowstand and

subsequent rapid transgression which began in the

upper part of the Upper Anhydrite interval but in this

case flooded the platform slope in Main Dolomite

time.

HIGHSTAND SYSTEMS TRACT

During the sea-level highstand, the Main Dolomite

 platform prograded and aggraded due to high sediment

supply. Highstand facies are marked by erosional

contacts on the platform and platform slope (Fig. 8a,b)and were the dominant facies throughout Main

Dolomite deposition. The Upper Anhydrite platform

 became gradually flooded during the sea- level

highstand in Main Dolomite time. The maximum

flooding surface marks the end of shoreline

transgression and separates transgressive

(retrograding) strata below from highstand

(prograding) strata above. It was identified as a

hardground in well Gorzów Wielkopolski-2 (Fig. 8c)

to the west of the Krobielewko Platform (Jaworowski

and Mikolajewski, 2007).Highstand facies are mainly composed of cross-

stratified oolitic dolograinstones (Fig 8d) At the end

toe-of-slope locations. During the early HST,

aggrading sublittoral oolitic grainstones built up a bar 

or oolitic barrier complex. Platform (lagoonal) facies

 begin with thin intervals of microbial complexes

 passing into thick oolitic grainstones (HST to lateHST/FSST) forming grainstone/oolite shoals formed

as winnowed lag deposits on palaeohighs.

FALLING STAGE SYSTEMS TRACT

The platform facies terminate as microbial-to-oolitic

dolowackestone and dolomudstone complexes

deposited during base-level fall. They were probably

initiated during the late phase of sea-level highstand.

Microbial unlaminated and clotted thrombolitic

 bioherms and mounds (biogenic boundstones) providea good correlative horizon, e.g. at wells Grotów-1,-2,

-5, -6 , and Sieraków-4 (Fig. 8e). In the toe-of-slope

facies, alternating laminated dolomudstones,

floatstones (Fig. 8f), oolitic grainstones and

 packstones which build submarine fans represent a

falling stage systems tract (FSST). They are observed

to aggrade but do not prograde towards the basin.

The submarine fans (prisms) are interpreted to be

derived from storm action or as a result of submarine

earthquakes which may periodically have shaken the

 platform margin (Peryt, 1992; Slowakiewicz and

Mikolajewski, 2008). Grammer et al . (2001)

suggested that such sediments may be swept off the

top of a shallow carbonate bank by winds, as in the

case of the Great Bahama Bank. The oolitic

dolograinstones, packstones and floatstones

interbedded with dolomudstones which are interpreted

as grainflow depositss i.e. turbidites, grainflows (sensu

 stricto) and debris flows (Lowe, 1976; Mullins and

Buren, 1979; Smith, 1985) constituted prisms at the

toe of the platform slope with high porosities (up to

35%). These prisms are thickest around the Lubiatów

oilfield. Similar carbonate deposits have beendescribed from the Permian of the Delaware Basin

(Newell et al ., 1953), the Dutch Zechstein Basin

(Clark, 1980), the English Zechstein Basin (Smith,

1980), the Polish Zechstein Basin (Depowski and

Peryt, 1985) and the German Zechstein Basin (Meier,

1975; Mausfeld and Zankl, 1987). These regressive

deposits are classified as detached forced regressive

deposits sensu Posamentier and Morris (2000).

The prisms may also have developed as a result of 

 bot tom currents flowing parallel to bathymetric

contours (Faugère and Stow, 1993), which can rework sediments shed from the platform top (see Stanley,

1993 his Fig 8a) The palaeoflow direction of currents

Page 10: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 10/20

224 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

According to Faugère and Stow (1993), these bottom-

current-deposited fans should not be termed

contourites (Stow and Lovell, 1979; Stow et al ., 1996)

which are deposited at depths of more than 500 m,

 because the Zechstein Basin was only about 250 to300 m deep (Smith, 1979).

Jaworowski and Mikolajewski (2007) noted (and

as confirmed by the present authors’ studies) that the

debris-flow deposits and grainflows build

accretionary-type slopes with low-angle gradients of 

2-3o  (James and Mountjoy, 1983). As with the

Bahamian margins, the shallow Ca2 platform edge in

the Grotów Peninsula is separated from the main slope

 by a marginal escarpment at a depth of around 50 m

(see Kotarba and Wagner 2006; Fig. 9). The

accretionary slope developed below this depth, as inthe present-day northern and western Great Bahama

Bank (Mullins et al ., 1984; Grammer et al ., 1993),

and also in the German Zechstein Basin and Messinian

evaporites (Schlager and Bolz, 1977). The

resedimented material was transported down the slope

through gullies on the upper slope, and was deposited

at the toe-of-slope in the form of submarine fans. The

accretionary slope began to develop during the sea-

level highstand and continued during the forced

regression. Similar processes have been observed in

the Tongue of the Ocean, Exuma Sound and Little

Bahama Bank (Schlager and Chermak, 1979; Crevello

and Schlager, 1980; Harwood and Towers, 1988), and

in the Sierra Diablo Mountains, West Texas (Playton

and Kerans, 2002, 2006).

The forced regressive deposits were first

recognized by Jaworowski and Mikolajewski (2007),

whose interpretations were not consistent with those

of Zdanowski (2003a,b, 2004a,b) who proposed a

lowstand sea-level setting for the toe-of-slope deposits.

According to Jaworowski and Mikolajewski (2007),

there is no evidence of emergence of the Main

Dolomite platform. However, recent data from wellsGrotów-5, -6  and Sieraków-4 indicates that the Grotów

Peninsula was affected by fluctuations of sea-level

which in some places caused subaerial exposure. The

sea-level fluctuations were not only due to falls and

rises of relative sea-level but also to vertical

movements of the Ca2 carbonate platform of tectonic

origin (see discussion).

Our studies have confirmed that the toe-of-slope

facies are composed of material redeposited by

turbidity currents, grainflows and debris flows swept

off the slope by shallow-water (regressive) processes.The thin beds of matrix- to clast-supported brecciated

anhydrites which lie beneath the redeposited toe-of-

developed. A slope onlap surface (SOS: Embry, 1995,

2001a, 2008) has been recognized in the Ca2 deposits

on the platform top and in the marine portion of the

 basin (slope and toe-of-slope). The SOS developed

when the Ca2 carbonate slope was exposed and theslope was starved of marine regressive-derived

sediments. High- and low-density turbidites onlap the

lower portion of the slope (toe-of-slope facies) and

are composed of platform-derived deposits. The SOS

continued to develop during the subsequent sea-level

lowstand.

Forced regressive strata were deposited as

detached forced-regressive deposits, but the basinal

 parts of the Main Dolomite did not receive sediments

from the nearby slopes at toe-of-slope locations.

Therefore, the typical facies can be characterized asdark, organic-rich laminated dolomudstones,

interpreted by Kotarba and Wagner (2007) as source

rocks for hydrocarbons. Basinal facies during the

forced regression continued to be deposited as they

were during the sea-level highstand. Moreover, due

to the limited circulation and high salinity of seawater,

evaporites were laid down on the basin floor and

alternate with dololaminites (well Gnuszyn-1: Fig. 8h).

In some cases, evaporite crystal moulds are observed

in cores, and originate from minerals which

 precipitated from interstitial waters on bedding planes.

Similar facies have been described from the Permian

Delaware Basin of West Texas (Ward et al ., 1986;

Tinker, 1998), and from restricted basins (Kendall,

1988; Becker and Bechstädt, 2006). Characteristic of 

the FSST are shallow-marine deposits with prograding

and offlaping stacking patterns (Hunt and Tucker,

1992; Plint and Nummedal, 2000), as well as

megabreccias such as those described from the

Cambrian of North Greenland (Ineson and Surlyk,

2000). The toe-of-slope deposits do not record

 progradation, but the offlaping pattern of the Ca2

 platform during the forced regression and its age-equivalent basinal submarine fans were recognized.

In combination, these observations indicate that the

toe-of-slope deposits mainly developed during a

forced regression of the Ca2 sea.

LOWSTAND SYSTEMS TRACT

As the forced regression continued, the Ca2 platform

top became subaerially exposed. During the relative

sea-level lowstand, the carbonates underwent

weathering processes and dissolution because thecarbonate factory was shut down following subaerial

exposure Aggressive waters containing H CO which

Page 11: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 11/20

225 M. Slowakiewicz and Z. Mikolajewski 

C a2

A g

 A

1  cm

1cm C

1cm

D

E

1  cm

1cm

G

Ca2

A2

 cm

F

1  cm

H

Ca2

A2

MRS ?

Ca2

A g

B

1  cm

Fig. 8. A. Erosional contact (arrow indicates subaerial unconformity replaced by a transgressive ravinement

surface) between A1g and Ca2 at the platform slope zone in well Leszczyny-1 at a depth of 3244.80 m.

A1g: Upper Anhydrite, Ca2: Main Dolomite.

B. Erosional contact (arrow indicates subaerial unconformity/transgressive ravinement surface) of the barrier 

facies in well Sieraków-1 at a depth of 3223.35 m.

C. Hardground marking the maximum flooding surface in the bay facies in well Gorzów Wielkopolski-2 at a

depth of 3168 m.

D. Cross-stratified oolitic grainstones deposited during sea-level highstand. Barrier facies. Well Miedzychód-5,depth 3168 m.

E. Fragment of clotted thrombolitic bioherms, well Grotów-5, depth 3286.10 m.

F. Forced regressive breccias deposited at the toe of the platform slope, well Lubiatów-4, depth 3217 m.

G. Erosional surface (arrow marks subaerial unconformity/transgressive ravinement surface) separating the

Main Dolomite (Ca2) toe-of-slope dolomitic turbidites and dololaminites originating from forced regression/

sea-level lowstand from transgressive sabkha facies of the Basal Anhydrite (A2) sulphates. Well Sowia Góra-2K ,

depth 3309.60 m.

H. Transition zone (possible occurrence of maximum regressive surface MRS within the Ca2 carbonates)

between the Main Dolomite (Ca2) dololaminites and laminated anhydrites of the Basal Anhydrite (A2) basinal

facies. Dololaminites pass into anhydrites (chemical transition). Note small nodules of replacive anhydrite.

 Well Gnuszyn-1, depth 3484.60 m.

The subaerial unconformity surface was partlyremoved by the transgressive ravinement surface

during the subsequent Basal Anhydrite transgression.

transgressive deposits is marked by changes inevaporite texture from sabkha-like to salina-like

anhydrites. This suggests that the next evaporite

Page 12: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 12/20

226 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

 platform. The slope was further onlapped by salina-

like anhydrites during the early part of the

transgression. Thus, the boundary between the second

and third sequences of the Polish Zechstein is between

the Main Dolomite and the Basal Anhydrite. BasalAnhydrite facies on the platform are nodular and partly

reworked anhydrites (due to the transgression),

whereas sedimentation was continuous in the basin

(Fig. 8h). The dark dololaminites are overlain by

laminated anhydrites, a sedimentary style which was

initiated during the FSST. Relative sea-level did not

fall below the forced regressive toe-of-slope fans as

evidenced by the lack of a subaerial exposure surface

however in their uppermost parts (e.g. wells Sowa

Góra-2K, Lubiatów-2:  Figs.6 and 8g). Subaerial

exposure of the platform top and slope of the Ca2carbonate platform continued during subsequent

normal lowstand regression, which is why the falling-

stage to lowstand interval may be studied as a single

stage (Catuneanu, 2007). This principle can only be

applied to rimmed platforms (MacNeil and Jones,

2006), such as the Main Dolomite.

Cores from wells Grotów-5  and Grotów-6   show

that the Main Dolomite sea expanded and contracted

several times (Peryt and Dyjaczynski, 1991) in the

Grotów Peninsula area. In our material, however, this

is confirmed by the occurrence of only one recorded

 beach facies in te rval containing charac teri st ic

 blackened lithoclasts and black pebbles of unknown

origin which were later flooded by oolitic

dolograinstone facies. In general, black pebbles and

 blackened lithoclasts are associated with subaerial

exposure surfaces (Strasser, 1984; Shinn and Lidz,

1988), and are evidence of small-scale regressive-

transgressive fluctuations in sea level. Correlation of 

wells Grotów-1   and -6   (Fig. 10) confirms this

interpretation, and shows that sedimentation in well

Grotów-6  took place in platform depressions whereas

sedimentation in well Grotów-1 was on a local high.Hence, well Grotów-1 does not contain the lower part

of the Grotów-6  profile.

PETROLEUM POTENTIAL IN THEGROTÓW PENINSULA

Dololaminites with high organic matter contents,

 preserved due to restricted marine circulation and

anoxic and reducing conditions on the basin floor, may

have source rock potential (Kotarba and Wagner,

2007; Wagner et al ., 2008).The detached forced regressive system described

above and the associated submarine fans at the foot

Zdanowski, 2004a; Jaworowski and Mikolajewski,

2007), and has been described from different locations

(e.g. Ziegler, 1989; Ainsworth et al ., 2000). Detached

forced regressive deposits composed mainly of grainy

sediments can have high porosities and may be sealed by evaporites. The submarine fans did not prograde

towards the basin, and it is therefore important to

determine potential trapping configurations using

sequence stratigraphic modelling. Future hydrocarbon

exploration in the northern part of the Fore-Sudetic

Monocline and the southern part of the Górzow Block 

should therefore focus on mapping forced regressive

fans at the foot of the Main Dolomite carbonate

 platform.

In addition to toe-of-slope traps, the platform

interior in the Grotów Peninsula area may also haveexploration potential. Potential reservoir rocks here

are characterized by intervals (35-80 m thick) of oolitic

dolograinstones deposited in high-energy conditions

which represent platform flat (lagoonal-to-oolite

shoal) facies. These facies form reservoirs at the

 Miedzychód  gasfield, Grotów oilfield and Chrzypsko

oilfield, with significant oil shows in the Sieraków

area. This suggests that hydrocarbon generation

occurred not only in basinal (slope) conditions but

also in the platform interior, suggesting two petroleum

systems (Kotarba and Wagner, 2006, 2007).

According to Kotarba and Wagner (2007),

microbial-algal source rocks in the Main Dolomite

 began to generate hydrocarbons in the Late Triassic

to Early Jurassic. Later generation of condensates and

high-temperature gas began in the Late Triassic and

continued to the end of the Late Jurassic or perhaps

Late Cretaceous. Hydrocarbon generation followed

two stages: (i) a single-stage process, in which full

generation of hydrocarbons occurred in the Late

Triassic; and (ii) a two-stage process, in which 80-

90% of hydrocarbons (by mass) were generated by

the end of the Jurassic, with generation completed inthe post-Cretaceous. Consequently, oil accumulated

in traps at the end of the Triassic and Jurassic, and

gas saturation of oil acumulations took place by the

Late Jurassic, with final gas generation in the

Palaeogene and Neogene (Kotarba and Wagner,

2007).

DISCUSSION

Zdanowski (2004a) interpreted lowstand fans as

redeposited material (intervals 1 m thick) overlain bylowstand wedges composed of PZ1 anhydrites and

highstand Ca2 carbonates deposited on the slope and

Page 13: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 13/20

227 M. Slowakiewicz and Z. Mikolajewski 

i  c  s  e  c   t   i  o  n  a  c  r  o  s  s   t   h  e   L  u   b   i  a  t   ó  w  o   i   l   f   i  e   l   d  a   t   t   h  e   f  o  o   t  o   f   t   h  e  c  a  r   b  o  n  a   t  e  p   l  a   t   f  o  r  m

  s   l  o  p  e  a  n   d   M   i  e   d  z  y  c   h   ó   d  g  a  s   f   i  e   l   d  o

  n   t   h  e  c  a  r   b  o  n  a   t  e  p   l  a   t   f  o  r  m   (   3   D  s  e   i  s  m   i  c  s  u  r  v  e  y  s

z  y  c   h   ó   d  -   S   i  e  r  a   k   ó  w  a  r  e  a ,   G  e  o   f   i  z  y   k  a   T  o  r  u  n   2

   0   0   1  -   2   0   0   2   ) .   Z   1   ’  -   b  a  s  e   Z  e  c   h  s   t  e   i  n  c  y  c   l  o   t   h  e  m   1   (   W  e  r  r  a   ) ,   Z   2  –   t  o  p   B  a  s  a

   l   A  n   h  y   d  r   i   t  e ,   N  a   1  –   O   l   d  e  s   t   H  a   l   i   t  e ,   N  a   2  –   O   l   d  e  r

–   Y  o  u  n  g

  e  r   H  a   l   i   t  e .

   N  a   1

   N  a   2

   N  a   3

   L  u   b   i  a   t   ó  w  -   1

   M   i  e   d  z  y  c   h   ó   d  -   4

   Z   1   ’

   Z   2

  m  a  r  g   i  n  a   l

  e  s  c  a  r  p  m  e  n   t

Page 14: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 14/20

228 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

e   l  a   t   i  o  n

  o   f   t   h  e   G  r  o  t   ó  w  -   1  a  n   d   G  r  o  t   ó  w  -   6  w  e   l   l  s   i  n   t   h  e   G  r  o   t   ó  w   P  e  n   i  n  s  u   l  a .

k  e  p   l  a   t   f  o  r  m  m  a  r  g   i  n

   B  a  s   i  n  p   l  a   i  n

   C  a  r   b  o  n  a   t  e  p   l  a   t   f  o  r  m

   d  e  e  p  e  r  p  a  r   t

  s   h  a   l   l  o  w  e  r  p  a  r   t

   b  a  y

   l  a  g  o  o  n

   b  a  r  r   i  e  r  s

  o  o   l   i   t  e  s   h  o  a   l  s

  p   l  a   t   f  o  r  m  s   l  o  p  e   0

   5   k  m

   M   I   E   D   Z   Y   C

   H   O   D  -   6

   G   R   O   T   O   W  -   6

   G   R   O   T   O   W  -   5

   S   I   E   R   A   K   O   W  -   1

   S   I   E   R   A   K   O   W  -   4

O   W  -   2

O   W  -   1

C   H   O   D  -   4

D   Z   Y   C   H   O   D  -   5

D  -   3    M

   O   K   R   Z   E   C  -   1

   K   A   C   Z   L   I   N  -   1

   C   H   R   Z   Y   P   S   K   O  -   1

   C   H   R   Z   Y   P   S   K   O  -   3

   C   H   R   Z   Y   P   S   K   O  -   2

   f   l  o  a   t  s   t  o  n  e  s   +  r  u   d  s   t  o  n  e  s

  w  a  c   k  e  s   t  o  n  e  s

  p  a  c   k  s   t  o  n  e  s   /  g  r  a   i  n  s   t  o  n  e  s

   S  e   d   i  m  e  n   t  a  r  y   t  e  x   t  u  r  e  s

W  a  g  n  e  r   (   2   0

   0   7   )

   b   i  n   d  s   t  o  n  e  s   /   f  r  a  m  e  s   t  o  n  e  s

   b   i  o  s   t  a   b   i   l   i  z  a   t   i  o  n

l  o  s   t  o  n  e  s

t   h  o   l  o  g  y

h  y   d  r   i   t  e  s

   0

   1   0   0

   A   P   I

   D   E   P   T   H  (   m .  )

   L   i   t   h  o   f  a  c   i  e  s   l  o  g

   L   i   t   h  o   f  a  c   i  e  s   l  o  g

   S   T   R   A   T I   G   R   A   P   H   Y

    S   e    d    i   m   e   n    t   a   r   y

    t   e   x    t   u   r   e   s

    S   e    d    i   m   e   n    t   a   r   y

    t   e   x    t   u   r   e   s

   L i  t   h   o l   o   g   y

   L i  t   h   o l   o   g   y

   G  r  o   t   ó  w  -   1

 

   A   2    M   A I   N   D   O   L   O   M I   T   E

   A   1  g

   C   l  a  y  r  a   t  e

   A  n   h  y   d

  r   i   t  e

   D  o   l  o  m

   i   t  e

   P  o  r  o  s   i   t  y

   B  u   l   k  a  n  a

   l  y  s   i  s  o   f

   l   i   t   h  o   l  o  g   i  c  a   l  c

  o  m  p  o  s   i   t   i  o  n    0

   1

   C  a   l  c   i   t  e

   G   R   S

   0

   1   0   0

   A   P   I

   G   G

   3   2   0   0

   3   2   1   0

   3   2   2   0

   3   2   3   0

   N  a   2

   H   H

   H

   H

   0

   1   0   0

   A   P   I

   D   E   P   T   H  (   m .  )

   S   T   R   A   T I   G   R   A   P   H   Y

   A   2

   A   1

  g

   0

   1

   G   R   S

   0

   1   0   0

   A   P   I

   G   G

   3   3   0   0

   3   3   1   0

   3   3   2   0

   3   3   3   0

   3   3   4   0

   3   3   5   0

   3   3   6   0

   3   3   7   0

   3   3   8   0

   N  a

   2

   H

   H   H

   H

   H

   H H

   G  r

  o   t   ó  w  -   6

   S

a

 

e

p

u

e

o

h

P

s

u

p

e

p

a

o

m

 

L

S

T

e

y

l

a

e

H

F

L

S

2  -   B  a  s  a   l   A  n   h  y   d  r   i   t  e

  g  -   U  p  p  e  r   A  n   h  y   d  r   i   t  e

a   2  -   O   l   d  e  r   H

  a   l   i   t  e

   M   A I   N   D   O   L   O   M I   T   E

c  o  r  e  r  e  c  o  v  e

  r  y

   G

   R   O   T   O   W

   P   E

   N   I   N   S   U   L   A

   C   l  a  y  r  a   t  e

   A  n   h  y   d  r   i   t  e

   D  o   l  o  m   i   t  e

   P  o  r  o  s   i   t  y

   B  u   l   k  a  n  a   l  y  s   i  s  o   f

   l   i   t   h  o   l  o  g   i  c  a   l  c  o  m  p  o  s   i   t   i  o  n

   C  a   l  c   i   t  e

Page 15: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 15/20

229 M. Slowakiewicz and Z. Mikolajewski 

are overlain by shallow-water grain-rich carbonates.

A Ca2 profile is terminated by low-energy, bioturbated

facies deposited in restricted lagoonal and/or mud-

flat settings. These deposits pass gradually into

shallow-water anhydrites of the Basal Anhydrite (A2)

deposited in a sabkha environment.

However, our studies have shown that this model

differs in terms of sedimentologic lithofacies and

sequence stratigraphic interpretation. Thus, the Ca2

 platform on the Gorzów Block was subaeriallyexposed due to fluctuations of relative sea-level due

most probably according to our interpretation to

tectonic movements. However, exposure of the NW

 part of the Main Dolomite platform, where caliche,

desiccation cracks and fenestrae fabrics are common

in the upper parts of the Ca2 profiles, was more

significant than in the NE where microkarst and

microbial mounds occur. Therefore, the Gorzów Block 

in Main Dolomite time was probably inclined to the

 NE which caused the eastern part of the Ca2 carbonate

 platform to be partly submerged whereas the western part was exposed.

As interpreted by Zdanowski (2004a,b), lowstand

wedges built of oolitic dolograinstones in fact began

to be deposited during a relative sea-level highstand

and continued during the forced regression. This is

evidenced by the lack of any eroded or subaerial

material within these facies deposited at the foot of 

the Grotów Peninsula. Indeed, subaerial exposure has

 been recorded in platform interior wells (Grotów-5, -

6   and Sieraków-4), and can be interpreted as being

deposited during relative sea-level lowstand butrelated only to local small-scale fluctuations in sea

level.

lowermost part of sabkha-like Basal Anhydrite

sulphates. This is also evidenced by the sharp and

wavy surface (subaerial unconformity) marking the

 boundary between forced regressive and lowstand

deposits on the platform.

The next transgression occurred in the lower part

of the Basal Anhydrite evaporites. It is characterized

 by sabkha-like nodular anhydrites and is indicated by

a transgressive ravinement surface or maximum

regressive surface on the top of, and in the basinal parts of, the Ca2 platform. In late Main Dolomite time,

relative-sea levels dropped by at least 100 m with no

glacial mechanism (Zdanowski, 2004a,b) but mostly

as a result of evaporative drawdown (e.g. Maiklem,

1971; Mesolella et al ., 1974; Smith 1980; Warren,

2006), which led to extensive subaerial exposure of 

 platform tops.

During normal highstand regression, most

accommodation space was filled, leading to shedding

of oolitic dolograinstones down the slope. When the

Main Dolomite sea-level gradually fell, this led to arapid forced regression and the subaerial exposure of 

the platform top, which continued during the

subsequent lowstand regression. Thus, the falling-

stage to lowstand interval may be studied by a single

stage (see Catuneanu, 2007 and stage 2 in Fig. 6.49).

This principle can only be applied to escarpment-like

rimmed platforms such as the Ca2 platform (MacNeil

and James, 2006).

Subaerial exposure recognized in the uppermost

 part of the Ca2 carbonates marks a second sequence

 boundary ( sensu Wagner and Peryt, 1997) whichcorresponds to the lowest position of relative sea-level

(Hunt and Tucker, 1995). Strata deposited during

HST   TSTFSST   L   S   T

   H   S   Tsystems tracts

rise risefall

relative

sea-levelcurve

relativesea-level

 A   B

subaerial exposure A1g

 A1d

Na1

Ca2

 A2

PZ1

PZ2

LST

LSTTST

TST

HST

PZS3

PZS2

FSST

HH

HH

H

Fig.11. A. Sinusoidal sea-level curve showing systems tracts for the Main Dolomite carbonates.

HST – highstand systems tract, FSST – falling-stage systems tract, LST – lowstand systems tract,

TST – transgressive systems tract.

B. Sequence stratigraphy model of the Main Dolomite carbonates in eastern part of the Gorzów Block.

Page 16: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 16/20

230 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

falling-stage systems tract. Kaiser et al . (2003) were

the first to recognize “late” highstand (i.e. forced

regressive) deposits in the Zechstein German Basin.

Their “late” highstand facies correspond to the oolitic

grainstone facies shed down the platform slope anddeposited at the toe of the slope of the Grotów

Peninsula as potential traps for hydrocarbons. Hunt

and Tucker (1995) noted that “early” and “late”

lowstand systems tracts (Posamentier et al ., 1992;

Posamentier and Allen, 1993) are in fact falling-stage

systems tracts and lowstand systems tracts,

respectively. In conclusion, Figs. 11a and 11b illustrate

a new sequence stratigraphy model for the Main

Dolomite deposition.

Peryt and Dyjaczynski (1991) and Kotarba and

Wagner (2006, 2007) proposed that the Ca2 carbonate platform morphology and facies were controlled by

the configuration of the underlying A1sulphate

 platforms. However, at the end of the Zechstein first

cyclothem (PZ1 = Werra cyclothem), basinal areas

started to subside along deep-seated master faults

related to the Teisseyre-Tornquist Zone (Znosko,

1981; Krzywiec, 2006a). This extensional subsidence

associated with fault activity in the sub-Zechstein

 basement (Krzywiec et al ., 2006) may have been a

trigger mechanism (Peryt, 1992) which produced the

toe-of-slope deposits. Therefore we assume, as was

also suggested by Depowska (2005), that the tectonic

activity which controlled subsequent subsidence

accommodated by major sub-Zechstein faults (see the

model of Withjack and Callaway, 2000, and Krzywiec,

2006b) may have caused instability of the Ca2 carbonate

and A1 evaporite platforms during their deposition.

CONCLUSIONS

On the basis of new sedimentological data, a new

depositional model and sequence stratigraphic

interpretation of the Main Dolomite carbonates in theeastern part of the Notec Bay (Gorzów Block) have

 been proposed. A number of sequence stratigraphic

surfaces were identified. Transgressive deposits (TST)

are recognised in the upper part of the Upper 

Anhydrite, and mark the boundary between first and

second Polish Zechstein depositional sequences. The

deposits are mostly built of sulphate matrix-to-clast-

supported breccias representing an abrasive platform

environment. Subaerial unconformity, maximum

regressive sruface and transgressive ravinement

surface were recognized within the transgressivedeposits. The subsequent highstand facies are mainly

composed of intraclast-oolitic dolograinstones and

Falling stage systems tract deposits are composed

of carbonate facies initiated during the sea-level

highstand and deposited at the toe-of-slope in the form

of submarine fans which developed mostly during a

forced regression. The submarine fans do not displaya progradational profile. A slope onlap surface (SOS)

which is the basal boundary of the FSST was also

identified.

Lowstand facies were identified in the uppermost

 part of the Main Dolomite carbonates. The boundary

 between lowstand and forced regressive deposits is

marked by an erosive surface interpreted as a subaerial

unconformity on the platform and its slope, and a

transgressive ravinement surface in the basinal part.

Hence, the boundary between the second and third

Polish Zechstein depositional sequences occurs in theuppermost part of the Main Dolomite carbonates.

Transgressive deposits of the next depositional

sequence were found in the lower part of the Basal

Anhydrite sulphates and are characterized by the

upward transition from sabkha (LST) to salina (TST)

environments.

It is suggested that syndepositional tectonic activity

resulted in instability of the Ca2 carbonate and A1

sulphate platforms, and both resulted in highstand

shedding and controlled relative sea-level rises and

falls. However, evaporative drawdown was the main

factor causing significant sea-level fall in late Main

Dolomite times.

ACKNOWLEDGEMENTS

We are very much indebted to Ashton Embry for his

valuable comments on an early version of the paper.

Graham Aplin (Task Geoscience)  reviewed the

manuscript and is greatly acknowledged for 

improvements and useful suggestions. POGC Pila and

Geofizyka Torun are thanked for providing materials.

REFERENCES

AINSWORTH, R.B., BOSSCHER, H. and NEWALL, M.J., 2000.Forward stratigraphic modelling of forced regressions,evidence for the genesis of attached and detached lowstandsystems. In: Hunt, D., Gawthorpe, R.L. (Eds.) Sedimentaryresponse to forced regression. Geol. Soc. Lond. Spec. Publ.,172, 163-176.

BECKER, F. and BECHSTÄDT, T., 2006. Sequence stratigraphyof a carbonate-evaporite succession (Zechstein 1, HessianBasin, Germany). Sedimentology , 53, 1083–1120.

CATUNEANU, O., 2007. Principles of sequence stratigraphy.

Elsevier, Amsterdam, 375pp.CATUNEANU, O., ABREU V., BHATTACHARYA J.P., BLUMM.D., DALRYMPLE R.W., ERIKSSON P.G., FIELDING C.R.,FISHERWL GALLOWAYWE GIBLING M R GILESK A

Page 17: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 17/20

231 M. Slowakiewicz and Z. Mikolajewski 

standardization of sequence stratigraphy. Earth-ScienceReviews, 92, 1–33.

CLARK, D.N., 1980. The sedimentology of the Zechstein 2Carbonate Formation of Eastern Drenthe, theNetherlands. Contributions to Sedimentology , 9, 131-165.

CREVELLO, P.D., SCHLAGER, W., 1980. Carbonate debrissheets and turbidites, Exuma Sound, Bahamas.  Journal of Sedimentary Petrology , 30, 1121-1148.

DADLEZ, R., 2006. The Polish Basin – relationship betweenthe crystalline, consolidated and sedimentary crust.Geological Quarterly  50, 43-58.

DEPOWSKA, A., 2005. Sedimentary response on strike-slipplate reorganization: An example from the Zechstein MainDolomite in Wolsztyn High area, Western Poland.Schriftenreiche der Deutschen Gesellschaft fqr Geowissenschaften , 38, 46.

DEPOWSKI, S. and PERYT, T.M., 1985. Carbonate petroleumreservoirs in the Permian dolomites of the Zechstein, Fore-Sudetic area, western Poland. In: Roehl, P.O., Choquette,

P.W. (Eds.) Carbonate Petroleum Reservoirs. New York,253-264.DYJACZYNSKI, K., MAMCZUR S. and DZIADKIEWICZ

D.,2006. Od Rybaków do L-M-G 45 lat wydobycia ropynaftowej na Nizu Polskim. 50 lat poszukiwan ropy naftoweji gazu ziemnego w pólnocno-zachodniej Polsce. Tradycja inowe wyzwania. Konferencja Naukowo-Techniczna, Pila,59-76 (in Polish).

EMBRY, A.F., 1993. Transgressive-regressive (T-R) sequenceanalysis of the Jurassic succession of the Sverdrup Basin,Canadian Arctic Archipelago. Canadian Journal of EarthSciences, 30, 301-320.

EMBRY, A.F., 1995. Sequence boundaries and sequencehierarchies, problems and proposals. In: Steel, R.J., Felt, V.L.,

 Johannessen, E.P., Mathieu, C. (Eds). Sequence stratigraphyon the Northwest European Margin. Norwegian PetroleumSociety Special Publication 5, 1-11.

EMBRY, A.F., 2001a. The six surfaces of sequence stratigraphy.AAPG Hedberg Research Conference on SequenceStratigraphic and Allostratigraphic Principles and Concepts,Dallas, August 26-29, Program and Abstracts Volume, 26-27.

EMBRY, A.F., 2001b. In search of a practical correlativeconformity. AAPG Hedberg Research Conference onSequence Stratigraphic and Allostratigraphic Principles andConcepts, Dallas, August 26-29, Program and AbstractsVolume, 24.

EMBRY, A.F., 2008. Practical sequence stratigraphy VI. Thematerial-based surfaces of sequence stratigraphy, Part 3:

Maximum flooding surface and slope onlap surface.Canadian Society of Petroleum Geologists, The Reservoir , 10,36-40.

EMBRY, A.F., JOHANNESSEN E., OWEN D., BEAUCHAMP B.and GIANOLLA P., 2007. Sequence stratigraphy as a“concrete” stratigraphic discipline. Report of the ISSC task group on sequence stratigraphy, 104pp.

FAUGÈRE, J.-C. and STOW, D.A.V., 1993. Bottom-current-controlled sedimentation: a synthesis of the contouriteproblem. Sedimentary Geology , 82, 287-297.

GEIßLER, M., BREITKREUZ, C. and KIERSNOWSKI, H., 2008.Late Paleozoic volcanism in the central part of theSouthern Permian Basin (NE Germany, W Poland), faciesdistribution and volcano-topographic hiati. International 

 Journal of Earth Sciences, 97, 973-989.GRAMMER, G.M., GINSBURG, R.N. and HARRIS, P.M., 1993.

Timing of deposition, diagenesis, and failure of steep

Carbonate platforms, Exploration- and production-scaleinsight from modern analogs in the Bahamas. The Leading Edge, 3, 252-261.

GÓRECKI, W., GÓRKA, A. and WOLNOWSKI, T., 2008.Prognostyczne zasoby weglowodorów w Polsce. IV Krajowy 

 Zjazd Branzy Górnictwa Naftowego, 11-13 wrzeznia, LagówLubuski, 95-123 (in Polish).GÓRSKI, M., WOJTKOWIAK, Z. and RADECKI, S., 1999.

Barnówko-Mostno-Buszewo (BMB), the largest crude oildeposit in Poland. Petroleum Geoscience, 5, 5-15.

HANDFORD, C.R. and LOUCKS, R.G., 1993. Carbonatedepositional sequences and systems tracts – responses of carbonate platforms to relative sea-level changes. In: Loucks,R.G., Sarg, J.F. (Eds.) Carbonate sequence stratigraphy:Recent developments and applications. AAPG Memoir , 57,3-41.

HARDIE, L.A. and GINSBURG, R.M., 1977. Layering: The originand environmental significance of lamination and thinbedding. In: Hardie, L.A. (Ed.) Sedimentation on the modern

carbonate tidal flats of northwest Andros Island, Bahamas. Johns Hopkins Studies in Geology , 22, 50-123.HARWOOD, G.M. and TOWERS, P.A., 1988. Seismic

sedimentologic interpretation of a carbonate slope, northmargin of Little Bahama Bank. In: Austin, J.A., Jr., Schlager,W., et al . (Eds.). Proceedings of the Ocean Drilling Program,Scientific Results, 101, 263-277.

HELLAND-HANSEN, W., 1995. Sequence stratigraphy theory,remarks and recommendations. In: Steel, R.J., Felt, V.L.,

 Johannessen, E.P., Mathieu, C. (Eds.). Sequence stratigraphyon the Northwest European Margin. Norwegian PetroleumSociety Special Publication 5, 13-21.

HELLAND-HANSEN, W. and MARTINSEN, O.J., 1996.Shoreline trajectories and sequences, description of variable depositional-dip scenarios. Journal of Sedimentary Research, 66, 670-688.

HUNT, D. and TUCKER, M.E., 1992. Stranded parasequencesand the forced regressive wedge systems tract, depositionduring base-level fall. Sedimentary Geology , 81, 1-9.

HUNT, D. and TUCKER, M.E., 1995. Stranded parasequencesand the forced regressive wedge systems tract, depositionduring base-level fall – reply. Sedimentary Geology , 95, 147-160.

INESON, J.R. and SURLYK, F., 2000. Carbonate megabrecciasin a sequence stratigraphy context; evidence from theCambrian of North Greenland. In: Hunt, D., Gawthorpe,R.L. (Eds.) Sedimentary response to forced regression.Geol.Soc. Lond. Spec. Publ., 172, 47-68.

 JAWOROWSKI, K. and MIKOLAJEWSKI, Z., 2007. Oil- and

gas-bearing sediments of the Main Dolomite (Ca2) in theMiedzychód region, a depositional model and the problemof the boundary between the second and third depositionalsequences in the Polish Zechstein Basin. Polish Geological Review , 2/1, 1017-1024.

 JAMES, N.P. and MOUNTJOY, E.W., 1983. Shelf-slope break infossil carbonate platforms, An overview. SEPM Special Publication, 33, 189-206.

KAISER, R., 2001. Fazies und Sequenzstratigraphie, DasStaßfurtkarbonat (Ca2) am nördlichen Beckenrand dessüdlichen Zechsteinbeckens (NE-Deutschland). PhDdissertation. Cologne University, 1-173.

KAISER, R. NÖTH, S. and RICKEN, W., 2003. Sequencestratigraphy with emphasis on platform-related

parasequences of the Zechstein 2 carbonate (Ca2) – thenorthern platform margin of the Southern Permian Basin(NE Germany). International Journal of Earth Sciences, 92,

Page 18: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 18/20

232 Upper Permian Zechstein Main Dolomite carbonates in Western Poland 

In: Schreiber, B.C. (Ed.), Evaporites and Hydrocarbons.Columbia University Press, New York, 11-65.

KIERSNOWSKI, H., 2004. Rekonstrukcje paleogeografii isrodowisk sedymentacji osadów czerwonego spagowcawokól pólnocno-zachodniej czesci paleowyniesienia

brandenbursko-wolsztynskiego oraz paleotektoniczneuwarunkowania ich rozwoju. Archiwum PanstwowegoInstytutu Geologicznego, Warszawa (in Polish).

 KIERSNOWSKI, H., in prep. 2009. The Rotliegend. In: SouthernPermian Basin Atlas.

KOTARBA, M. and WAGNER, R., 2006. Perspektywyposzukiwawcze dolomite glównego w strefie Gorzów-Miedzychód w swietle wyników nowych badangeologiczno-geochemicznych. 50 lat poszukiwaD ropy naftowej i gazu ziemnego w pólnocno-zachodniej Polsce.Tradycja i nowe wyzwania.Konferencja Naukowo-Techniczna,Pila, 87-116 (in Polish).

KOTARBA, M. and WAGNER, R., 2007. Generation potentialof the Zechstein Main Dolomite (Ca2) carbonates in the

Gorzów Wielkopolski–Miedzychód–Lubiatów area,geological and geochemical approach to microbial-algalsource rock. Polish Geological Review , 2/1, 1025-1036.

KRZYWIEC, P., 2006a. Triassic-Jurassic evolution of thePomeranian segment of the Mid-Polish Trough – basementtectonics and subsidence patterns.Geological Quarterly ,50,139-150.

KRZYWIEC, P., 2006b. Structural inversion of the Pomeranianand Kuiavian segments of the Mid-Polish Trough – lateralvariations in timing and structural style.Geological Quarterly ,50, 151-168.

KRZYWIEC, P., WYBRANIEC, S. and PETECKI, Z., 2006.Basement tectonics of the Mid-Polish Trough in centraland northern Poland – results of analysis of seismicreflection, gravity and magnetic data. Prace PanstwowegoInstytutu Geologicznego,188, 107-130 (in Polish with Englishsummary).

LEYRER, K., STROHMENGER, C., ROCKENBAUCH, K. andBECHSTÄDT, T., 1999. High-resolution forwardstratigraphic modeling of Ca2-Carbonate platforms andoff-platform highs (Upper Permian, Northern Germany).In: Harff, J., Lemke, W., Stattegger, K. (Eds.) ComputerizedModeling of Sedimentary Systems. Springer, Berlin, 307– 339.

LORENC, S., MUSZYNSKI, A. and PROTAS, A., 1995. Permianvolcanism in NW Poland. 11th Meeting on Geodynamicsof the European Variscides, 2nd  Symposium on Permo-Carboniferous Igneous Rocks. GeoForschungsZentrum,Potsdam. Terra Nova, 7, 95-96.

LOWE, D.R., 1976. Grain flow and grain flow deposits. Journal of Sedimentary Petrology , 46, 188-199.

MacNEIL, A.J. and JONES, B., 2006. Sequence stratigraphy of aLate Devonian ramp-situated reef system in the WesternCanada Sedimentary Basin, dynamic responses to sea-levelchange and regressive reef development.Sedimentology ,53,321-359.

MAIKLEM, W.R., 1971. Evaporative drawdown – a mechanismfor water-level lowering and diagenesis in the Elk PointBasin. Bulletin of Canadian Petroleum Geology , 19, 487-503.

MALISZEWSKA, A., KIERSNOWSKI, H. and JACKOWICZ, E.,2003. Lower Rotliegend volcaniclastic rocks atWielkopolska (Western Poland). Prace PanstwowegoInstytutu Geologicznego, 179, 1-59 (in English with Polish

summary).MAUSFELD, S. and ZANKL, H., 1987. Sedimentology and facies

development of the Stassfurt Main Dolomite in some wells

MESOLELLA, K.J., ROBINSON, J.D., McCORMICK, L.M. andORMISTON, A.R., 1974. Cyclic deposition of Siluriancarbonates and evaporites in Michigan Basin. AAPG Bulletin,58, 34-62.

MIKOLAJEWSKI, Z. and SLOWAKIEWICZ, M., 2008.

Microfacies and diagenesis of the Main Dolomite (Ca2)strata in the Miedzychód barrier area (Grotów Peninsula,Western Poland). Biuletyn Panstwowego InstytutuGeologicznego , 429 , 191-198 (in Polish with Englishabstract).

MULLINS, H.T. and VAN BUREN, H.M., 1979. Modern modifiedcarbonate grain flow deposit. Journal of Sedimentary Petrology ,49, 747-752.

MULLINS, H.T., HEATH, K.C., VAN BUREN H.M. andNEWTON, C.R., 1984. Anatomy of modern deep-oceancarbonate slope, Northern Little Bahama Bank.Sedimentology , 31, 141-168.

NARKIEWICZ, M. and DADLEZ, R., 2008. Geological regionalsubdivision of Poland: general guidelines and proposed

schemes of sub-Cenozoic and sub-Permian units. Przegld Geologiczny , 56, 391-397 (in Polish with English abstract).NEWELL, N.D., RIGBY, J.K., FISCHER, A.G., WHITEMAN, A.J.,

HICKOX, J.E. and BRADLEY, J.S., 1953. The Permian reef complex of the Gaudalupe Mountains region, Texas andNew Mexico – A study in paleoecology. W.H. Freemanand Company, San Francisco, 1-236.

OGG, J.G., OGG, G. and GRADSTEIN, F.M., 2008. PermianPeriod. In: Ogg J.G., Ogg G. and Gradstein F.M. (Eds), Theconcise geologic time scale. Cambridge University Press,85-93.

PERYT, T.M., 1992. Debris-flow deposits in the Zechstein(Upper Permian) Main Dolomite of Poland, significancefor the evolution of the basin. Neues Jahrbuch fur Geologieund Paläontologie Abhandlungen, 185, 1-19.

PERYT, T. M. and DYJACZYNSKI, K., 1991. An iso latedcarbonate bank in the Zechstein Main Dolomite Basin,Western Poland. Journal of Petroleum Geology , 14, 445-458.

PLAYTON, T.E. and KERANS C., 2002. Slope and toe-of-slopedeposits shed from a late Wolfcampian tectonically activecarbonate ramp margin. Gulf Coast Association of Geological Societies Transactions, 52, 811-820.

PLAYTON, T.E. and KERANS C., 2007. Latest Wolfcampiantectonism as a control on early Leonardian carbonate slopechannel complexes, Victorio Flexure, West Texas. In: Raines,M.A. (Ed.), Resource plays in the Permian Basin: Resourcesto reserves. Fall Symposium, October 25-27 , West TexasGeological Society Publication, 06-117, 88-103.

PLINT, A.G. and NUMMEDAL, D., 2000. The falling stage systems

tract, recognition and importance in sequence stratigraphicanalysis. In: Hunt, D., Gawthorpe, R.L. (Eds), Sedimentaryresponse to forced regression. Geol. Soc. Lond. Spec. Publ.,172, 1-17.

POMAR, L. and WARD, W.C., 1994. Response of a late MioceneMediterranean reef platform to high-frequency eustasy.Geology , 22, 131-134.

POSAMENTIER, H.W. and ALLEN, G.P., 1993. Variability of thesequence stratigraphic model, effects of local basin factors.Sedimentary Geology , 86, 91-109.

POSEMENTIER, H.W., ALLEN, G.P., JAMES, D.P. and TESSON,M., 1992. Forced regressions in a sequence stratigraphicframework, concepts, examples, and explorationsignificance. AAPG Bull ., 76, 1687-1709.

POSAMENTIER, H.W. and MORRIS, W.W., 2000. Aspects of the stratal architecture of forced regressive deposits. In:Hunt, D., Gawthorpe, R.L. (eds.) Sedimentary responses

Page 19: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 19/20

233 M. Slowakiewicz and Z. Mikolajewski 

 – An integrated approach.SEPM Special Publication,42, 155-182.

SARG, J.F., 2001. The sequence stratigraphy, sedimentology, andeconomic importance of evaporite-carbonate transitions,a review. Sedimentary Geology , 140, 9-42.

SCHLAGER, W., 2005. Carbonate sedimentology and sequencestratigraphy. SEPM Concepts in Sedimentology and Paleontology , 8, 200pp.

SCHLAGER, W. and BOLZ, H., 1977. Clastic accumulation of sulphate evaporites in deep water.  Journal of Sedimentary Petrology , 47, 600-609.

SCHLAGER, W. and CHERMAK, A., 1979. Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas.In: Doyle, L.J., Pilkey, O.H. (Eds.) Geology of continentalslopes. SEPM Special Publication, 27, 193-207.

SCHLAGER, W., REIJMER, J.J.G. and DROXLER, A., 1994.Highstand shedding of carbonate platforms.  Journal of Sedimentary Research, 64, 270-281.

SHINN, E.A. and LIDZ, B.H., 1988. Blackened limestone pebbles:

fire at subaerial unconformities. In: James, N.P., andChoquette, P.W. (Eds.) Paleokarst. Springer-Verlag, New York,117-131.

SLOWAKIEWICZ, M. and MIKOLAJEWSKI, Z., 2008. Sequencestratigraphy of the Zechstein Main Dolomite (Ca2) in theFore-Sudetic Monocline, W Poland – a new approach.Schriftenreiche der Deutschen Gesellschaft fur Geowissenschaften , 58, 255.

SLOWAKIEWICZ, M., KIERSNOWSKI, H. and WAGNER, R.,2009. Advances in correlation of the Upper Permian marineand terrestrial sedimentary sequences within Polish,German, and USA Western Interior Basins, referred toglobal time markers. Palaeoworld , 18, (in press).

SMITH, D.B., 1979. Rapid marine transgressions and regressionsof the Upper Permian Zechstein Sea. Journal of the Geological Society , 136, 155-156.

SMITH, D.B., 1980. The evolution of the English Zechstein basin.Contributions to sedimentology, 9, 7-34.

SMITH, D.B., 1985. Gravitational movements in Zechsteincarbonate rocks in north-east England. In: Taylor, J.C.M.(Ed.) The role of evaporites in hydrocarbon exploration,F1-F12, London (JAPEC).

STANLEY, D.J., 1993. Model for turbidite-to-contouritecontinuum and multiple process transport in deep marinesettings: examples in the rock record. Sedimentary Geology ,82, 241-255.

STOW, D.A.V. and LOVELL, J.P.B., 1979. Contourites; theirrecognition in modern and ancient sediments. Earth-ScienceReviews, 14, 251-291.

STOW, D.A.V., READING, H.G. and COLLINSON, 1996.Deep seas. In : Reading, H.G. (Ed.) Sedimentaryenvironments, Blackwell Publishing, 395-453.

STRASSER, A., 1984. Black pebble occurrence and genesis inHolocene carbonate sediments (Florida Keys, Bahamas,and Tunisia). Journal of Sedimentary Petrology ,54: 1097-1109.

STROHMENGER C., ANTONINI, M., JÄGER, G.,ROCKENBAUCH, K. and STRAUSS, C., 1996a. Zechstein2 carbonate reservoir facies distribution in relation toZechstein sequence stratigraphy (Upper Permian,Northwest Germany) an integrated approach. Bull. CentresRecherches Exploration-Production Elf-Aquitaine, 20, 1–35.

STROHMENGER, C., VOIGT, E. and ZIMDARS, J., 1996b.Sequence stratigraphy and cyclic development of Basal

Zechstein carbonate-evaporite deposits with emphasis onZechstein 2 off-platform carbonates (Upper Permian,Northeast Germany). Sedimentary Geology , 102, 33–54.

Capitan depositional system, McKittrick Canyon, NewMexico and Texas. Journal of Sedimentary Research,68, 1146-1174.

TUCKER, M., 1991. Sequence stratigraphy of carbonate-evaporite basins, models and application to the Upper

Permian (Zechstein) of northeast England and adjoiningNorth Sea. Journal of the Geological Society 148, 1019–1036.VAN WAGONER, J.C., MITCHUM, R.M., CAMPION, K.M.

and RAHMANIAN, V.D., 1990. Siliciclastic sequencestratigraphy in well logs, cores and outcrops. AAPG Methodsand Exploration Series, 7, 1-45.

WAGNER, R., 1994. Stratigraphy and evolution of the ZechsteinBasin in the Polish Lowland. Prace Panstwowego InstytutuGeologicznego, 146, 1-71 (in Polish with English summary).

WAGNER, R., 2001. Fauna and flora in the Polish PermianBasin.  In : Pajchlowa, M., Wagner R. (Eds.),   Budowageologiczna Polski 3, Modszy Paleozoik, Perm, 16-18 (inPolish).

WAGNER, R. (Ed.), 2008. Stratigraphic Chart of Poland.

Warsaw.WAGNER, R. and PERYT, T.M., 1997. Possibility of sequencestratigraphic subdivison of the Zechstein in the Polish Basin.Geological Quarterly , 41, 457–474.

WAGNER, R., KOTARBA, M., JAWOROWSKI K.,SLOWAKIEWICZ M. and MIKOLAJEWSKI Z., 2008. Oil-and gas-bearing potential of the Zechstein Main Dolomitein Western Poland based on new data. 33rd InternationalGeological Congress, Oslo, 6-14 August, www.33igc.org.

WARD, R.F., KENDALL, C.G.ST.C. and HARRIS, P.M., 1986.Upper Permian (Guadalupian) facies and their associationwith hydrocarbons – Permian Basin, West Texas and NewMexico. AAPG Bull. , 70, 239-262.

WARREN, R., 2006. Evaporites: Sediments, Resources andHydrocarbons. Springer, 1036 pp.

WITHJACK, M.O. and CALLAWAY, S., 2000. Active normalfaulting beneath a salt layer: an experimental study of deformation patterns in the cover sequences. AAPG Bull.,84, 627-651.

WRIGHT, V.P. 1990. Peritidal carbonates. Peritidal carbonates.In : Tucker, M.E. and Wright, V.P. (Eds). CarbonateSedimentology. Blackwell Science, Oxford, 137–164.

ZDANOWSKI, P., 2003a. Lowstand systems tract depositionof the Main Dolomite in the Gorzów region (PolishZechstein Basin).22nd  IAS Meeting of Sedimentology , Opatija,225.

ZDANOWSKI, P., 2003b. Lowstand fans and wedges of theMain Dolomite in the Gorzów Wielkopolski region (PolishZechstein Basin). 12th  Bathurst Meeting International

Conference of Carbonate Sedimentologists, 8-10 July,Durham, 116.

ZDANOWSKI, P., 2004a. Stratygrafia sekwencji dolomituglównego (cechsztynu) w rejonie gorzowskim zeszczególnym uwzglednieniem utworów LST. VIII NationalMeeting of Sedimentologists, Polish SedimentologicalConference, 21-24 June, Zakopane, 133 (in Polish).

ZDANOWSKI, P., 2004b. Wide restricted lagoons (salinas) of the Main Dolomite as a final stage deposition of carbonatelowstand systems tracts in the Gorzów Wielkopolskiregion. 23 rd  IAS Meeting of Sedimentology, 15-17September, Coimbra, 291.

ZIEGLER, M.A., 1989. North German Zechstein facies patternsin relation to their substrate. Geologische Rundschau, 78,

105-127.ZNOSKO, J., 1981. Tectonic framework of the Permian events

in the Polish area.Proceedings of the International Symposium

Page 20: Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach Slowakiewucz, M.

7/21/2019 Seq. Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland a New Approach …

http://slidepdf.com/reader/full/seq-stratigraphy-of-the-upper-permian-zechstein-main-dolomite-carbonates-in 20/20