September 29, 2020we.prored the uniqueness 3. Let V be a real vector space, and W 1,W 2 are...

8
Week 3 MATH 2040B September 29, 2020 1 Concepts 1. T : V ! W is a linear transformation if (a) T (v 1 + v 2 )= T (v 1 )+ T (v 2 ) (b) T (v 1 )= T (v 1 ) 2. Let T : V ! V be linear, then a subspace W V is said to be T-invariant if T (W ) W . (We will use it later.) 2 Notations 1. N (T ) := {~ x 2 V : T (~ x)= ~ 0 W } V 2. R(T ) := {T (~ x): ~ x 2 V } W 3. Nullity(T ) = dim N (T ), Rank(T ) = dim R(T ) 3 Formula 1. Nullity(T ) + Rank(T ) = dim V 2. Two facts: (a) T is injective , N (T )=0 , Nullity(T ) = 0. (b) T is surjective , R(T )= W , Rank(T ) = dim W . 4 Problems 1. Let T : V ! W be a linear transfomation, and assume that dim V = dim W . Prove that T is injective , T is surjective 1 dvw are both vector space OTLWJCWTiv sw nn rnspnf.IO Nullitycntankcnedimvzdtlznnherri T is injective Nullity 0 Randi dimV dim w T is surjective d he

Transcript of September 29, 2020we.prored the uniqueness 3. Let V be a real vector space, and W 1,W 2 are...

  • Week 3

    MATH 2040B

    September 29, 2020

    1 Concepts

    1. T : V ! W is a linear transformation if(a) T (v1 + v2) = T (v1) + T (v2)

    (b) T (↵v1) = ↵T (v1)

    2. Let T : V ! V be linear, then a subspace W ⇢ V is said to beT-invariant if T (W ) ⇢ W . (We will use it later.)

    2 Notations

    1. N(T ) := {~x 2 V : T (~x) = ~0W } ⇢ V

    2. R(T ) := {T (~x) : ~x 2 V } ⇢ W

    3. Nullity(T ) = dimN(T ), Rank(T ) = dimR(T )

    3 Formula

    1. Nullity(T ) + Rank(T ) = dimV

    2. Two facts:(a) T is injective , N(T ) = 0 , Nullity(T ) = 0.(b) T is surjective , R(T ) = W , Rank(T ) = dimW .

    4 Problems

    1. Let T : V ! W be a linear transfomation, and assume that dimV = dimW .Prove that

    T is injective , T is surjective

    1

    dvw are both vectorspace

    OTLWJCWTivsw

    nn

    rnspnf.IONullitycntankcnedimvzdtlznnherriT is injective Nullity ㄒ 0

    Randi dimVdim w

    T is surjectived he

  • 2. Let T : R2 ! R3 be given by T (a, b) = (a+ b, 0, 2a� b)a) Show that it is a linear transformation.b) Is T injective?c) Is T surjective?

    3. Let T : R ! R be given by T (x) = x+ 1, is it linear?

    4. Let T : R2 ! R2 with T (1, 2) = (3, 4), T (3, 4) = (1, 2), what is T (1, 0)?

    2

    NG P 了

    fi憇

    位𦲀㠭a D T 122 123 1 ⻔盥b 0 dim RE rankreef _dim R2 0

    dim122

    a o T VI t 以 ⼆ 7417⼗化 dim pit dimR2⼀⽉ ㄒ a u a T411 T is not surjectiveWe can have to Cal bi bz

    Thi bi tlaz.bz ㄒ at az but红Cataztbltbz O 291 tzaz bl.bzal tbl 0 zai bytlaztbz.no292

    wrhthrrrrrnn

    renren.TLal bi t T az byㄒ ⼜ alibi ㄒ 这an ⼜⼩D 2 a 2bi o 2291 2

    b1

    2 at bi 0,2G bi

    ftㄒ 1 1 1 1 1 3

    2 intttthr2OTlltTl ltl ltl4tflltlTl tTll ㄒ 21 年 21 1

    3

    M泩世 正业 __ ___2 卂 ⼀

    l prif l i o 2 1.2 p 3.4we have This gives a system of linear equations

    䣎嚠 霝 9發管 启fi 2 1.2 轧怂了 是ㄒ 1.2 1ㄒ 34

    1 an assumption that cnn.ir

    fislineartranymation 2 3.4

  • 5. Let T : V ! V be linear,

    a) Show that N(T ), R(T ) are T-invariant.

    b) Suppose that T 2 = T , show that every v 2 V can be written asa sum v = a + b with a 2 N(T ), b 2 R(T ) , and the expression isunique.

    3

    I 141⼀⼆NCTIRCTjaresubsPT

    yg.BA

    Let a ENG then ㄒ a 8 EN T

    Let b E RCT then TLb E RCT

    iㄧ

    T 的 invariant

    b E rI.UU.EULE T Tu Tu

    b Existence i let UGV.ggSuppose U a b a ENG b

    E RCTat b T ⽐ KEV

    V a t ㄒ 凹 we let T maps bothsides化 ㄒ a ⼗⼆ 孔

    Ta t Ta0 t ㄒ 7

    7 TCU ㄒ 2

    ㄒ化 ⼆ 化

  • -

    4

    a V 化 ㄒ a ㄒ4 T 4ˇ

    V 4 化 t TU ⼆ 化 T v 0Lrt hd a E NCTNLT RCT

    we have showed that There actually exist

    i ⼼⼼ ⼭ ⼼5007suppose V a t b a EN CT

    b ⼆ TCDD

    then ㄒ4 T a t T b

    0 t ㄒ T ⽐了

    化 bere

    To b Y V a t b

    i ⼆ a V T

    In the end V lTCUDtiftthlwe.pro red the uniqueness

  • 3. Let V be a real vector space, and W1,W2 are subspaces of V . The sum ofW1 and W2 is defined as

    W1 +W2 := {w1 + w2 : w1 2 W1, w2 2 W2}

    (a) Show that W1 +W2 is a subspace of V .

    (b)If W1 = span (S1) ,W2 = span (S2) , show that W1 + W2 =span (S1 [ S2)(c) Suppose that W1 \ W2 = {0}. Then if R1 ⇢ W1, R2 ⇢ W2are linearly independent subsets, show that R1 [R2 is also linearlyindependent.

    4

    no

    proof i Verify three conditionsDOVEWHW2oitJEWltW2fr0i.jEwHW2

    aiEWHW2 frta EF and

    Firstly Or Q tou E withIt With

    Secondly if I wntwiz.EU it Nzand

    wi 品J W21 t W22 Ell tWz品 品

    then i 5 Wut WR t Wat W22huntW21st Wiz⼗ W22 E hit Uh

    n nW Wz

    In the end Let at FUR WE haveˊ

    a i a Wut Wiz awDt

    WizhEWtWziuNzThus.wecan get Wit Wz is a subspace ofV

  • -

    5

    b First we show WitWz C spanSt Uss

    For It 式 ⼆ W.tw 2 E W t Wz we have

    I ⼆ cnn.azvz ntammnntonnnn.ES pantstbiutbznztn.tbnunnnnrnnrenn.ESPansy

    where u ⼀ Um E SI Ui Un ES 2

    i.lu Um ui n un3C.SI US 2

    i By def we have E E Span cswsz

    Next for U EE Span Si US2 we can have

    I acu.tn tapUp where Ui Up了 C SI US2

    we rearrange all ui.ES and ujasz and if Ui ES 175

    we put it in StThen we can get

    i 志 ah ⼗点 ajujEW.tw 2

    As a result we have W.tw⼆SpanCSIUS is

    c Takeany elements from Rl and 122 Forexample u___u n c R

    U Um c.kz Consider

    志 ai Un⼗点bjvjLet w⼆点 ai Un Z ⼆点bjvj

    if We0 then Z then we get

    w ⼆ 点 ai Un ⼆0 z 恭bjuj

    Ui了 9Vj了 are independentrespectively

    i fail and 分了 are all 0

    if w z to then we have wzewnwzwspanlfuiDCmZEspanfvjDCWz.scm n m 101 ⼈ we get w z 0 we gobad

  • 4. Let A 2 Matn⇥n(R), and k be a positive integer such that Ak 6= 0, Ak+1 = 0

    (a) Show that�I, A,A2, . . . , Ak

    is linearly independent.

    (b) Show that�I, A+ I, (A+ I)2, . . . , (A+ I)k

    is linearly indepen-

    dent.

    6

    to the first case

    As a result we have all the elements from Mumare linearly independent

    O

    proof Ca considerUr a It a At aKAK 0

    Multiply AK a A K 0 toa 0

    Multiply A⼼ on both sidesa 1 A t O t 0 ⼆ 0

    a 0

    repeat Similar steps until we geta o 灬 0 In the end we only haveaKAK 0 aK 0

    i We have a ak ⼆ forall of them

    b First we introduce the binomial theoremones at by 志别akbmk where 只 1器_i

  • -

    7

    n n x n_n x ㄨ2 X 1

    Now we consider

    È ai At I 之⼆0

    È ail È问⼼ i贰贰 a 们⼼

    意志 a j i switch i j

    志 Èai 问 们 0

    Fom ca we knowall the coefficientsof Aj

    Should be Eu

    When Fk

    蕊 a i ⾼ Uk 0

    when j K 1

    点 a i i a ki㑎 tak 㓠Gk l 0 0

    ak ie.co

    Repeat all these stepsand then we have

    all Sai了 are Eu which completes

    thisproof