Seminar: Quarkonia-boundstatesofQCD,messengersofQGP … · 2007. 11. 5. · Motivation - History...

39
Motivation - History Quarks - the Elementary Particles Group Theory - the Symmetry of the Quarks Summary and Outlook The quark structure of matter - an introduction Seminar: Quarkonia - bound states of QCD, messengers of QGP Christopher Bauer Winter term 2007/08 25.10.2007 Christopher Bauer Quark structure

Transcript of Seminar: Quarkonia-boundstatesofQCD,messengersofQGP … · 2007. 11. 5. · Motivation - History...

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    The quark structure of matter - an introductionSeminar: Quarkonia - bound states of QCD, messengers of QGP

    Christopher Bauer

    Winter term 2007/08

    25.10.2007

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    1 Motivation - History

    2 Quarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    3 Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    4 Summary and Outlook

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    1 Motivation - History

    2 Quarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    3 Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    4 Summary and Outlook

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    History

    Steps through the structure of matter:

    1897 "Discovery" of the electron e(J.J. Thomson)1905 Photon is a particle (A. Einstein)1911 Discovery of the nucleus (Rutherford)1919 Discovery of the proton p (Rutherford)1932 Discovery of the neutron n(Chadwick)

    ↪→ Structure of the atoms is understood

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    History

    1928 Prediction of the positron (Dirac)1930 Prediction of the neutrino (Pauli)1933 Discovery of the positron (Anderson and Neddermeyer)

    ↪→ Explanation of the β decay↪→ Open question: What keeps the nucleus together?

    1935 First theory of the strong interaction (Yukawa)proton and neutron interact via pion exchange1947 Discovery and identification of the pion1947 Electromagnetic interaction described in QED

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    History

    1949ff Discovery of many other strong interaction particles("hadrons"):

    mesons (bosons, integer spin), e.g. pion πbaryons (fermions, half integer spin), e.g. proton and neutron

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    History

    1964 Quark model (Gell-Mann, Neeman, Zweig)hadrons consist of quarks q:baryons = qqq and mesons = qqthree "Flavours": up (u), down (d) and strange (s)further quarks:charm (c, 1974), bottom (b, 1977), top (t, 1995)

    1973 Theory of the strong interaction: "Quantumchromodynamics" (QCD) by Weinberg, Fritzsch, Gell-Mann,Leutwylerquarks interact via exchange of gluons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    1 Motivation - History

    2 Quarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    3 Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    4 Summary and Outlook

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Background of the Word "Quark"

    Word "quark" was coined by Murray Gell-Mann, having been takenfrom the phrase "Three quarks for Muster Mark" in FinnegansWake by James JoyceGell-Mann: "Quarks are merely convenient mathematicalconstructs, not real particles."

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Overview

    Gen. Weak Isospin Flavor Name Symbol Charge e Mass [MeV /c2]1 +1/2 Iz = +1/2 Up u +2/3 1.5− 3

    −1/2 Iz = −1/2 Down d -1/3 3− 72 −1/2 S = −1 Strange s -1/3 70− 120

    +1/2 C = 1 Charm c +2/3 1150− 13503 −1/2 B′ = −1 Bottom b -1/3 4100− 4400

    +1/2 T = 1 Top t +2/3 170900± 1800

    all quarks have spin 1/2 and baryon number 1/3for each quark a corresponding antiparticlequarkonium (pl. quarkonia) = a flavorless meson (quark andits own antiquark)

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Why Quarks need Color

    Combinations as proton (uud) and neutron (udd) etc.

    ∆++ = uuu with J = Ml = 32 would have three identicalfermions u in a completly symmetric ground state↪→ forbidden by the Pauli exclusion principleWhat about the the other possibilities such as qq, qq or singlequarks?

    ⇒ Introduction of a new quantum number for quarks: "Color"Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    The Color of the Quarks

    Quarks come in three primary colors:red (R), green (G), blue (B)all particle states observed in natureare postulated to be colorless/whitethis solves problem for the ∆++

    explains also the existence ofbaryons (RGB)antibaryons (RGB)mesons (RR + GG + BB)

    and that the others do not exist

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Quark-Confinement

    Quarks themselves are colored → not visibleexist just as constituents of hadrons → confinementHadrons carry no color charge

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Overview

    Gluons are the quanta of thecolor field, that

    bind quarks in nucleonsand also nucleons in nuclei

    EM: electrons interact byexchange of virtual photonsQCD: quarks interact by gluonexchange (strong interaction)Non-abelian gauge theory:gluons carry charge

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Screening of the Electric Charge

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Anti-Screening of the Color Charge - Asymptotic Freedom

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Momentum Space

    Coupling constant in momentumspace:

    αs(q2) =αs(µ

    2)

    1 + αs(µ2)b ln(|q|2/µ2)

    b =33− 2Nf

    12π

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Overview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Closer Look on Gluons

    Gluons can interact with themselves (6= EM interaction)carry color charge: bicolored objects

    9 bicolored states: RR,RG ,RB,GR,GG ,GB,BR,BG ,BBRR + GG + BB is a color singlet, no net color charge

    ⇒ 8 gluons in QCD instead of the single photon in QED↪→ in accordance with gauge theories for QED and QCD

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    1 Motivation - History

    2 Quarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    3 Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    4 Summary and Outlook

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    The Group SU(2)

    Special unitary group in 2 dimensions(j = 12) is lowest-dimension nontrivial representation of SU(2)(isomporphic to rotation group SO(3))Generators Ji = 12σi with i = 1, 2, 3

    σ1 =

    (0 11 0

    ), σ2 =

    (0 −ii 0

    ), σ3 =

    (1 00 −1

    )are traceless [S] and hermitian [U]

    Basis conventionally as eigenvectors of σ3:(10

    )and

    (01

    )describing a spin-12 particle, e.g. an electron

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Application to Isospin

    SU(2) symmetry with (n,p) as fundamental representationSU(2) algebra, defining the group:

    [Ij , Ik ] = iεjkl IlGenerators Ii = 12τi with τi equal to Pauli matrices

    Proton and neutron states represented by

    p =(

    10

    )and n =

    (01

    )

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    The Group SU(3)

    Special unitary group in 3 dimensions32 − 1 = 8 traceless and hermitian generatorsfundamental representation consisting of 3x3 matrices actingon triplet statesstandard choice for generators Fi = 12λi with Gell-Mannmatrices λi :

    λ1 =

    0 1 01 0 00 0 0

    , λ2 = 0 −i 0i 0 0

    0 0 0

    ,λ3 =

    1 0 00 −1 00 0 0

    , ... λ8 = 1√3

    1 0 00 1 00 0 −2

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    The Group SU(3)

    λ1, λ2, λ3 correspond to the Pauli matrices ⇒ SU(2) subgroupof SU(3)λ3 and λ8 are diagonal with simultaneous eigenvectors 10

    0

    , 01

    0

    , 00

    1

    Structure constants fijk define the SU(3) algebra:

    [Fi ,Fj ] = ifijkFk

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Color SU(3)

    Eigenvectors connected to 3 color charges of a quark:

    R =

    100

    , G = 01

    0

    , B = 00

    1

    Quarks interact via octet of vector bosons: the gluons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Flavour SU(3)

    in 1960’s experimental evidence for a second additive quantumnumber called "strangeness"Isospin I3 → SU(2); together with strangeness S → SU(3)

    Triplet |u〉 =

    100

    , |d〉 = 01

    0

    , |s〉 = 00

    1

    Hypercharge Y ≡ B + S (baryonnumber + strangeness) centersmultiplet at the originElectric charge Q = I3 + Y2

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Flavour SU(3)

    Analog antiquark multiplet:

    but Flavour SU(3) symmetry explicitly broken⇒ different masses of u, d, s quarksnevertheless very useful symmetry

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Mesons

    Combination of quark and antiquark qqPutting the triplets together: 3⊗ 3 = 8⊕ 1Spin 0 octet (negative parity)

    broken symmetry → different masses of hadronsChristopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Mesons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Combination of 3 quarks qqq or antiquarks qqqPutting the triplets together: 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1Spin 32 decuplet

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Combination of 3 quarks qqq or antiquarks qqqPutting the triplets together: 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1Spin 12 octet

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    SU(2) GroupsSU(3) Groups

    Baryons

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    1 Motivation - History

    2 Quarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    3 Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    4 Summary and Outlook

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Summary

    Quarks = elementary particles - building blocks of hadronscarry color chargeinteract by gluon exchangegluons as the exchange bosons of the strong force

    Theoretical description by group theorySU(2) for isospinSU(3) for colors (R,G,B) or isospin and strangeness (u,d,s)Meson and baryon multiplets

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Outlook

    Next topic:Evidence for a fourth quark from weak interactions - The GIMmechanism

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    The End

    Thank you for your attention!

    Christopher Bauer Quark structure

  • Motivation - HistoryQuarks - the Elementary Particles

    Group Theory - the Symmetry of the QuarksSummary and Outlook

    Sources

    F. Halzen and A. Martin, Quarks & Leptons, John Wiley &Sons (1984)Lecture notes by B. FrimanAitchison & Hey, Vol 2, eq. 15.51Figures: http://commons.wikimedia.org/wiki/Particle_physicsParticle Data Group(http://pdg.lbl.gov/2007/reviews/qcdrpp.pdf)Lecture notes by C. Fischer

    Christopher Bauer Quark structure

    Motivation - HistoryQuarks - the Elementary ParticlesOverview - the FlavorsColor - the Charge of the Strong InteractionGluons

    Group Theory - the Symmetry of the QuarksSU(2) GroupsSU(3) Groups

    Summary and Outlook