Semiconductors

77
Lecture 1, Slide # 1 ECE 217 © P.J. Burke, Spring 2002 Last modified 10/30/22 06:30 ECE217B, Spring 2002 Advanced Semiconductor Devices II Graduate Course, 3 units Professor & Class Schedule Peter Burke e-mail: [email protected] Office: EG 2232 Lect. Mo/We 3:00 – 4:20 pm in CS 219 Office hours 4:30-5:30 pm Lecture notes, HWs and solutions online at p://nano.ece.uci.edu/ece_217b_advanced_semiconductor_devices. and at copy center (ET base) by day of lecture Textbook: Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs William Liu, Wiley (1999), ISBN 0-471-29700-3 Grade: 60% Homework, 40% End-of-term presentation/paper

description

Band gap Engineering of Semiconductor materials

Transcript of Semiconductors

Page 1: Semiconductors

Lecture 1, Slide # 1 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

ECE217B, Spring 2002Advanced Semiconductor Devices II

Graduate Course, 3 units

Professor & Class SchedulePeter Burke

e-mail: [email protected]: EG 2232

Lect. Mo/We 3:00 – 4:20 pm in CS 219Office hours 4:30-5:30 pm

Lecture notes, HWs and solutions online athttp://nano.ece.uci.edu/ece_217b_advanced_semiconductor_devices.htm

and at copy center (ET base) by day of lectureTextbook:

Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTsWilliam Liu, Wiley (1999), ISBN 0-471-29700-3

Grade:60% Homework, 40% End-of-term presentation/paper

Page 2: Semiconductors

Lecture 1, Slide # 2 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Reference books:* means on reserve at the science libraryDevice physics:*Physics of Semiconductor Devices, S.M. Sze, Wiley (1981) ISBN 0-471-05661-8*Modern Semiconductor Device Physics, S.M. Sze, Wiley (1998) ISBN 0-471-15237-4*High Speed Semiconductor Devices, S.M. Sze, Wiley (1990) ISBN 0-471-62307-5*Physics of Semiconductor Devices, Michael Shur, Prentice Hall PTR (1996) ISBN 0-13-666496-2*Solid State Electronic Devices, 5th Edition, Ben G. Streetman (2000), ISBN 0-13-025706-0GaAs High-Speed Devices, C.Y. Chang and Francis Kai, Wiley (1994) ISBN 0-471-85641-X*InP-Based Materials and Devices: Physics and Technology, Osamu Wada and Hideki Hasegawa, Wiley (1994) ISBN 0-471-18191-9SiGe, GaAs, and InP Heterojunction Bipolar Transistors, Jiann S. Yuan, Wiley (1999), ISBN 0-471-19746-7*Semiconductor Device Fundamentals, Robert F. Pierret, Addison-Wesley (1995), ISBN 020154393-1*HEMTs and HBTs: Devices, Fabrication, and Circuits, Fazai Ali and Aditya Gupta, Artech House (1991), ISBN 0-89006-401-6InP HBTs: Growth, Processing, and Applications, B. Jalali and S.J. Pearton, Artech House (1994), ISBN 0-89006-724-4*Semiconductor Physics and Devices: Basic Principles, Donald A Neamen, McGraw-Hill (1997) ISBN 0-256-24214-3*Low Dimensional Semiconductor Structures: Fundamentals and Device Applications, Keith Barnham and Dimitri Vvedensky, Cambridge University Press (2001), ISBN 0-521-59103-1.Modern GaAs Processing Methods, Ralph E. Williams, Artech (1990), ISBN 0-89006-343-5, out of printElectrical and Thermal Characterization of MESFETs, HEMTs and HBTs, Robert R H Anholt, Artech House (1994), ISBN 0-89006-749-X*Fundamentals of Semiconductor Theory and Device Physics, Shyh Wang, Prentice Hall (1989), ISBN 0-13-344409-0 (out of print)*Device Electronics for Integrated Circuits, 2nd Edition, Richard S Muller and Theodore I Kamins, Wiley (1986), ISBN 0-471-88758-7, *Compound Semiconductor Device Physics, Sandip Tiwari, Academic Press (1991), ISBN 0-12-691740-X (out of print)High-frequency (microwave, mm-wave) engineering:*Microwave Engineering, 2nd Edition, David Pozar, Wiley (1997), ISBN 0-471-17096-8Microwave and RF Wireless Systems, David Pozar, Wiley (2000), ISBN 0-471-32282-2*Foundations for Microstrip Circuit Design, 2nd Edition, T.C. Edwards, Wiley (1991), ISBN 0-471-93062-8. (out of print)*Fields and Waves in Communications Electronics, 3rd Edition, Simon Ramo, John R. Whinnery, Theodore Van Duzer, Wiley (1994) ISBN 0-471-58551-3 (out of print)*Microstrip Lines and Slotlines, 2nd Edition, K.C. Gupta, Ramesh Garg, Inder Bahl, Prakash Bhartia, Artech House (1996), ISBN 0-89006-766-X*Transmission Line Design Handbook, Brian C. Wadell, Artech House (1991), ISBN 0-89006-436-9*Microwave Transistor Amplifiers: Analysis and Design, 2nd Edition, Guillermo Gonzalez, Prentice Hall (1997), ISBN 0-13-254335-4

Page 3: Semiconductors

Lecture 1, Slide # 3 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

ECE217B Advanced Semiconductor Devices II (3) S. Metal-semiconductor field-effect transistors (MESFET), heterojunction bipolar transistors (HBT), microwave semiconductor devices, equivalent circuits, device modeling and fabrication, microwave amplifiers, transmitters, and receivers. Prerequisite: ECE114A.

HW will be hard if you do not meet the prerequisite.

Page 4: Semiconductors

Lecture 1, Slide # 4 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Course Outline1. Review of basic semiconductor physics and III-Vs

2. Two-terminal devices

3. HBT DC properties

4. HBT high frequency properties

5. FET DC properties

6. FET high frequency properties

7. Noise models

8. Quantum devices: resonant tunneling diodes

9. Nano-scale devices: Landauer-Buttiker formalism, single electron transistors, quantum point contacts, quantum dots, carbon nanotubes

Page 5: Semiconductors

Lecture 1, Slide # 5 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Also

As needed by the class:

1. Electromagnetic wave propagation in infinite media

2. Coaxial and microstrip transmission lines

3. S-parameters, reflections, impedances, gains, and Smith chart

Page 6: Semiconductors

Lecture 1, Slide # 6 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

III-V vs. Silicon

• Silicon is inexpensive and mature

• Why bother with III-V?– Speed– Power– Noise– Optically active

• These are niche markets, but it’s a big niche

Page 7: Semiconductors

Lecture 1, Slide # 7 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Speed

From Sze, Physics of Semiconductor Devices

Page 8: Semiconductors

Lecture 1, Slide # 8 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Speed

From Sze, Physics of Semiconductor Devices

Page 9: Semiconductors

Lecture 1, Slide # 9 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

High speed HEMTs:

fT = vmax /(2 L )

Si 0.18 m CMOS @ 30 GHz

InP based @ 362 GHz (fastest)

Endoh et al, 12th Intl. Conf. on InP, 2000 (Fujitsu)

(draw in Si, SiGe)

Page 10: Semiconductors

Lecture 1, Slide # 10 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Noise

From Sze, Physics of Semiconductor Devices

Page 11: Semiconductors

Lecture 1, Slide # 11 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Optics

(Adapted from Streetman, Solid State Electronic Devices)

0.01

0.1

1

10

100A

tten

uatio

n (d

B/k

m)

1.81.61.41.21.00.8

Wavelength (m)

RayleighScattering

Infraredaborption

Page 12: Semiconductors

Lecture 1, Slide # 12 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Band gap engineering

• Controlled growth of any structure you can imagine in the z-direction

• Important to LATTICE MATCH

• Dislocations/misfits INCREASE the non-radiative recombination rate, causing higher laser threshold currents

• GaAs, InP typical substrates

• MBE, MOCVD, LPE

Page 13: Semiconductors

Lecture 1, Slide # 13 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

MBE

epitaxial growth

GaAs

AlAs

AlAs

1.4 eV2.2 eV

V

z

Also InP, InGaAs, InAlAs, InGaAsP …

Page 14: Semiconductors

Lecture 1, Slide # 14 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

MBE

4 atom per layer!

(From Streetman, Solid State Electronic Devices)

Page 15: Semiconductors

Lecture 1, Slide # 15 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Band gaps

Page 16: Semiconductors

Lecture 1, Slide # 16 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Outline• Quantum mechanics• Free electrons in a box (Fermi gas)• Band theory of solids• Fermi/Dirac distribution function• Doping• Electrical conduction in semiconductors

– Drift– Diffusion

• Haynes/Schockley experiment• All bulk this week (discuss)

Page 17: Semiconductors

Lecture 1, Slide # 17 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Free electron theory of solids• Each atom in the solid “gives up” one electron

• Each electron is free to move where-ever it wants, with no scattering

• Amazingly, this simple idea makes predictions that are true!

• Not for semiconductors, but metals

• Still need to understand this for semiconductors

Page 18: Semiconductors

Lecture 1, Slide # 18 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Electrons are waves, too.

Page 19: Semiconductors

Lecture 1, Slide # 19 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Quantum mechanics of free particles:

2),( tr

is probability of finding an electron at point r at time t.

is complex, and both real and imaginary parts are physical.

Page 20: Semiconductors

Lecture 1, Slide # 20 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Quantum mechanics of free particles:

2),( tr

is probability of finding an electron at point r at time t.

)(~),( trkietr

For a free particle:

kp

m

k

m

pE

2

)(

2

22

Momentum: Energy:

/E is complex, and both real and imaginary parts are physical.

Page 21: Semiconductors

Lecture 1, Slide # 21 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

(Time dependent)

(1 dimension)

Page 22: Semiconductors

Lecture 1, Slide # 22 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

)(),( tkxieAtx Let

(Time dependent)

A is a (complex) constant.

(1 dimension)

Page 23: Semiconductors

Lecture 1, Slide # 23 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

)(),( tkxieAtx Then

Let

)()( )(),( tkxitkxi eAiieAt

itrt

i

(Time dependent)

A is a (complex) constant.

(1 dimension)

Page 24: Semiconductors

Lecture 1, Slide # 24 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

)(),( tkxieAtx

),()( txEeAE tkxi

Then

Let

)()( )(),( tkxitkxi eAiieAt

itrt

i

(Time dependent)

A is a (complex) constant.

(1 dimension)

Page 25: Semiconductors

Lecture 1, Slide # 25 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

)(),( tkxieAtx

),()( txEeAE tkxi

Then

Let

)(22

)(2

22

2

22

22),(

2tkxitkxi eAik

meA

xmtx

xm

)()( )(),( tkxitkxi eAiieAt

itrt

i

(Time dependent)

A is a (complex) constant.

(1 dimension)

Page 26: Semiconductors

Lecture 1, Slide # 26 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

22

txxm

txt

i

)(),( tkxieAtx

),()( txEeAE tkxi

Then

Let

)(22

)(2

22

2

22

22),(

2tkxitkxi eAik

meA

xmtx

xm

)()( )(),( tkxitkxi eAiieAt

itrt

i

),(22

2)(

22

txm

peA

m

k tkxi

(Time dependent)

A is a (complex) constant.

(1 dimension)

Page 27: Semiconductors

Lecture 1, Slide # 27 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

(3 dimensions)

Page 28: Semiconductors

Lecture 1, Slide # 28 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

tzkykxkitrki zyxeAeAtr )()(),(Let

(3 dimensions)

Page 29: Semiconductors

Lecture 1, Slide # 29 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

tzkykxkitrki zyxeAeAtr )()(),(

Then

Let

),(),()(),( trEtriitrt

i

(3 dimensions)

as before.

Page 30: Semiconductors

Lecture 1, Slide # 30 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

tzkykxkitrki zyxeAeAtr )()(),(

Then

Let

)(2

2

2

2

2

22

2

2

2

2

2

22

2),(

2trkieA

zyxmtr

zyxm

),(),()(),( trEtriitrt

i

(3 dimensions)

as before.

But:

Page 31: Semiconductors

Lecture 1, Slide # 31 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

tzkykxkitrki zyxeAeAtr )()(),(

Then

Let

)(2

2

2

2

2

22

2

2

2

2

2

22

2),(

2trkieA

zyxmtr

zyxm

),(),()(),( trEtriitrt

i

(3 dimensions)

as before.

But:

),(2

)(

2

2222)(222

2

trm

kkkeAikikik

mzyxtrki

zyx

Page 32: Semiconductors

Lecture 1, Slide # 32 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Schrodinger equation:

),(2

),(2

),(2

2

2

2

2

222

2

trzyxm

trm

trt

i

tzkykxkitrki zyxeAeAtr )()(),(

Then

Let

)(2

2

2

2

2

22

2

2

2

2

2

22

2),(

2trkieA

zyxmtr

zyxm

),(),()(),( trEtriitrt

i

),(22

2)(

22

trm

peA

m

k trki

(3 dimensions)

as before.

But:

),(2

)(

2

2222)(222

2

trm

kkkeAikikik

mzyxtrki

zyx

Page 33: Semiconductors

Lecture 1, Slide # 33 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Quantum mechanics of free particles:

)(~),( trkietr

)()( )(),( tkxi

n

txkin ekAdkeAtr nn

Generally,

is also a possibility.

Page 34: Semiconductors

Lecture 1, Slide # 34 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

Page 35: Semiconductors

Lecture 1, Slide # 35 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

Page 36: Semiconductors

Lecture 1, Slide # 36 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

)(rCall this

Page 37: Semiconductors

Lecture 1, Slide # 37 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

)(rCall this

tiertr )(),(

Page 38: Semiconductors

Lecture 1, Slide # 38 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

)(rCall this

tiertr )(),(

),(2

),( 22

trm

trt

i

From:

Page 39: Semiconductors

Lecture 1, Slide # 39 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

)(rCall this

tiertr )(),(

),(2

),( 22

trm

trt

i

titititi erm

trm

erEeriiert

itrt

i

)(2

),(2

)()()(),( 22

22

From:

Page 40: Semiconductors

Lecture 1, Slide # 40 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Time-independent Schrodinger equation

)(),( trkieAtr

tizkykxkitzkykxki eeAeA zyxzyx )()(

)(rCall this

tiertr )(),(

),(2

),( 22

trm

trt

i

titititi erm

trm

erEeriiert

itrt

i

)(2

),(2

)()()(),( 22

22

From:

)()(2

22

rErm

Page 41: Semiconductors

Lecture 1, Slide # 41 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Confined particles: A box

L

L

L

Goal: find )(r

Similar to electric field inside the box.

Page 42: Semiconductors

Lecture 1, Slide # 42 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

L

L

L

z

y

x

Goal: find )(r

0)(2 r

Everywhere outside the box

In particular,

0)(2 r

on the boundaries.

As before, we will consider all six surfaces:

Page 43: Semiconductors

Lecture 1, Slide # 43 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

Try:

Page 44: Semiconductors

Lecture 1, Slide # 44 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

Does not solve boundary condition!!!

)()(),,0( zkykizkykxki zyzyx eAeAzyx 0

Try:

Page 45: Semiconductors

Lecture 1, Slide # 45 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

)( zkykxki zyxeA

Let’s try something:

Page 46: Semiconductors

Lecture 1, Slide # 46 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

)( zkykxki zyxeA )()( zkykixikxik zyxx eeeAr

baba eee

Let’s try something:

Page 47: Semiconductors

Lecture 1, Slide # 47 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

)( zkykxki zyxeA )()( zkykixikxik zyxx eeeAr

)(),,0( zkykixikxik zyxx eeeAzyx 0 0

baba eee

Let’s try something:

Page 48: Semiconductors

Lecture 1, Slide # 48 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

)( zkykxki zyxeA )()( zkykixikxik zyxx eeeAr

)(),,0( zkykixikxik zyxx eeeAzyx 0 0

baba eee

0)(00 zkyki zyeeeA

Let’s try something:

Page 49: Semiconductors

Lecture 1, Slide # 49 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

)()( zkykxki zyxeAr

z

y

x

The plane x=0:

Does solve boundary condition!!!

)( zkykxki zyxeA )()( zkykixikxik zyxx eeeAr

)(),,0( zkykixikxik zyxx eeeAzyx 0 0

baba eee

0)(00 zkyki zyeeeA

Let’s try something:

Page 50: Semiconductors

Lecture 1, Slide # 50 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

The plane x=L:

)()( zkykixikxik zyxx eeeAr

)()sin(2 zkykix

zyexkiA

?0)sin(2),,( )( zkykix

zyeLkiAzyLx

ii eei

2

1)sin(

Lnkn /

If and only if:

Page 51: Semiconductors

Lecture 1, Slide # 51 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

The plane x=L:

)()( zkykixikxik zyxx eeeAr

Page 52: Semiconductors

Lecture 1, Slide # 52 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

The plane x=L:

)()( zkykixikxik zyxx eeeAr

)()sin(2 zkykix

zyexkiA

ii eei

2

1)sin(

Page 53: Semiconductors

Lecture 1, Slide # 53 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

The plane x=L:

)()( zkykixikxik zyxx eeeAr

)()sin(2 zkykix

zyexkiA

?0)sin(2),,( )( zkykix

zyeLkiAzyLx

ii eei

2

1)sin(

Page 54: Semiconductors

Lecture 1, Slide # 54 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

The plane x=L:

)()( zkykixikxik zyxx eeeAr

)()sin(2 zkykix

zyexkiA

?0)sin(2),,( )( zkykix

zyeLkiAzyLx

ii eei

2

1)sin(

Lnkn /

If and only if:

Page 55: Semiconductors

Lecture 1, Slide # 55 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

)sin()sin()sin()2()( 3 zkykxkAirzynx nn

Lnk xnx/

We can do the same for y, z:

Lnk yny/Lnk znz

/

Page 56: Semiconductors

Lecture 1, Slide # 56 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Boundary conditions:

L

L

L

z

y

x

)sin()sin()sin()2()( 3 zkykxkAirzynx nn

Lnk xnx/

We can do the same for y, z:

)(2

)/(

2

)( 222222222

zyx

nnnnnn

m

L

m

kkkE zyx

These are the allowed energy levels, or “quantum states”

Lnk yny/Lnk znz

/

Page 57: Semiconductors

Lecture 1, Slide # 57 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Many electrons:

L

L

L

z

y

x

)(2

)/( 22222

zyx nnnm

LE

These are the allowed energy levels, or “quantum states”

Pauli exclusion principle: Each unique combination of nx, ny, nz canonly have two electrons (spin up, spin down).

Page 58: Semiconductors

Lecture 1, Slide # 58 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Energy spectrum of free particles:

nx=1, ny=1, nz=1

energy

nx=2, ny=1, nz=1 nx=1, ny=2, nz=1 nx=1, ny=1, nz=2

Etc.

Page 59: Semiconductors

Lecture 1, Slide # 59 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Density of states:

energy

?dENENumber of states with energy between E and E + dE

E

E+dE

How many states?

If L is large, states are very close together.Approximate as a continuum.

?)( dEENumber of states with energy between E and E + dE per volume.

Page 60: Semiconductors

Lecture 1, Slide # 60 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Density of states:Easier first to think of in k-space:

Density of states in k-space is uniform:

One state per (/L)3:

kx

ky

kz

Page 61: Semiconductors

Lecture 1, Slide # 61 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Density of states:Easier first to think of in k-space:

Density of states in k-space is uniform:

One state per (/L)3:

From Verdeyen

Page 62: Semiconductors

Lecture 1, Slide # 62 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Density of states:

kx

ky

kz

?dkNk

Number of states between k, k+dk:

222zyx kkkk

Lnk xnx/

Lnk yny/Lnk znz

/

From Verdeyen

Page 63: Semiconductors

Lecture 1, Slide # 63 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?dkNkVolume of spherical shell=4k2dk/88 is for upper right quadrant

Number of states in volume=Volume x States/volume

States/volume = 1 / (/L)3:

2

23

32 2

)/(

18/4

dkk

LL

dkkdkNk

2

2

volume dkkdkN

dk kk

HW you will do calculation for 2 dimensional world.

Page 64: Semiconductors

Lecture 1, Slide # 64 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

Page 65: Semiconductors

Lecture 1, Slide # 65 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

dEEdkk )( We use:

Page 66: Semiconductors

Lecture 1, Slide # 66 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

2

2

dkk

dkk

dEEdkk )( We use:

Page 67: Semiconductors

Lecture 1, Slide # 67 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

2

2

dkk

dkk

E

dEmdk

mEk

m

kE

2

22

2 22

22

dEEdkk )( We use:

Page 68: Semiconductors

Lecture 1, Slide # 68 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

2

2

dkk

dkk

E

dEmdk

mEk

m

kE

2

22

2 22

22

dEEdkk )( We use:

Page 69: Semiconductors

Lecture 1, Slide # 69 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

?)( dEE

2

2

dkk

dkk

E

dEmdk

mEk

m

kE

2

22

2 22

22

dEEdkk )( We use:

dEEm

dEE 2/12/32

2/32/32)(

Page 70: Semiconductors

Lecture 1, Slide # 70 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi gas:

energy

At zero temperature, as we add electrons to thebox, we gradually fill up all the states.(DISCUSS PAULI EXCLUSION PRINCIPLE-IMPORTANT!)

When we are done filling the box, the energyof the last electron is called the “Fermi energy.”

“Gas” means we neglect electron-electron interactions.

All these states are filled with electrons.

E=0

E=EFermi

energy

P(E

)

Page 71: Semiconductors

Lecture 1, Slide # 71 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi energy:

energy

All these states are filled with electrons.

E=0

E=EFermi

ff EE

dEEm

LN0

2/12/32

2/32/13

0 E

2dEelectrons #

Page 72: Semiconductors

Lecture 1, Slide # 72 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi energy:

energy

All these states are filled with electrons.

E=0

E=EFermi

ff EE

dEEm

LN0

2/12/32

2/32/13

0 E

2dEelectrons #

2/32/32

2/32/13

3

22electrons # fE

mL

Page 73: Semiconductors

Lecture 1, Slide # 73 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi energy:

energy

All these states are filled with electrons.

E=0

E=EFermi

ff EE

dEEm

LN0

2/12/32

2/32/13

0 E

2dEelectrons #

2/32/32

2/32/13

3

22electrons # fE

mL

3/2

3

3/43/22 electrons #

2

3

LmE f

Page 74: Semiconductors

Lecture 1, Slide # 74 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi energy:

energy

All these states are filled with electrons.

E=0

E=EFermi

ff EE

dEEm

LN0

2/12/32

2/32/13

0 E

2dEelectrons #

2/32/32

2/32/13

3

22electrons # fE

mL

3/2

3

3/43/22 electrons #

2

3

LmE f

In a typical metal, L ~ 0.1 nm.Ef ~ 10 eV

Page 75: Semiconductors

Lecture 1, Slide # 75 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Occupation probability:

E=EFermi

energy

P(E

)

P(E) = probability of occupying a state with energy E

What about finite temperature?

1

0

Page 76: Semiconductors

Lecture 1, Slide # 76 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Recall Boltzmann factor P():

“The probability for a physical system to be in a state with energy is proportional to .”

Boltzmann:

TkBe /

This is actually not quite true. It is classical.A quantum calculation shows for electrons:

1

1)( /)( kTEE fe

EP

Called Fermi-Dirac distribution function.Boltzman is high-energy limit (discuss!)

Page 77: Semiconductors

Lecture 1, Slide # 77 ECE 217 © P.J. Burke, Spring 2002 Last modified 04/08/23 00:31

Fermi-Dirac:

E=EFermi

energy

P(E

)

1

1)( /)( kTEE fe

EP

kTP=1/2 at Ef for all temperatures.

1

0