Selfsimilar solutions to coagulation and fragmentation...

46
Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation equations Institute for Mathematics Cons. Sup. de Investigaciones Científicas Joint with G. Breschi, ICMAT, Madrid

Transcript of Selfsimilar solutions to coagulation and fragmentation...

Page 1: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Marco A. Fontelos

Selfsimilar solutions to coagulation and

fragmentation equations

Institute for Mathematics

Cons. Sup. de Investigaciones Científicas

Joint with G. Breschi, ICMAT, Madrid

Page 2: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Contents

IntroductionTheevolutionproblemsSelf-similarity

IIºkindself-similarity: coagulationA visualoverviewoftheresultsThegellingcaseNon-gellingcase

Iºkindself-similarity: fragmentationThelinearproblemPropertiesofthesolutionsThecompactsupportcase

Page 3: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Theprocessesconsideredbythecoagulationandfragmentationtheory

Page 4: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

ApplicationstoCoagulation-fragmentation

Page 5: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Morecomplexapplications

Page 6: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Reddy, Banerjee, 2017

McKinley et al, 2016

Page 7: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Thecoagulation-fragmentationequationOnecanwritedownacoagulation-fragmentationequationofbalanceofmass:

d

dtc (x, t) = QC (c)−QF (c) ,

QC (c) :=1

2

x∫

0

K (x− y, y) c (x− y, t) c (y, t) dy − c (x, t)

∞∫

0

K (x, y) c (y, t) dy

QF (c) := β (x) c (x, t)−

∞∫

x

c (y, t)β (y)

yB

(

x

y

)

dy

where β (x) isthefragmentationrateofclustersofsize x and B (u) isthedaughterfragmentsdistributionkernel.Themassdependingandsymmetricoperator K(x, y) isknownasthecoagulationkernelanddescribestherateatwhichparticlesofthegivensizecoagulate.

Unfortunately, mostofthephysicallyinterestingmodelscorrespondtoequationsthatarenotexactlysolvable.

Page 8: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Purecoagulation: theSmoluchowskiequation

• Ithasbeenpossibletodiscoveranalyticalsolutionsexclusivelyforalimitednumberofkernels; theprincipalcasesinclude:Kc(x, y) = 1, K+ (x, y) = x+ y, K× (x, y) = xy.

• Formoregeneralkernels, studieshaveessentiallyreliedonnumericalmethods.

• Existence, positivityanduniquenessresultforalltimeforkernelsgrowingatmost linearly.

interests:

• singularities infinitetimeoccurforsomeKernels: verystrongcoagulationcreatesinfinitelydenseclusters.

• self-similarsolutions.

Page 9: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Laplace transform:

Regularized Laplace transform:

Fractional Burgers equation:

Page 10: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Nonlocal transport equation: MAF, Eggers, to appear in Nonlinearity 2019

Existence of singularities: A. Córdoba,

D. Córdoba, MAF, Ann. of Math. 2005

(Toy model for Euler eqn.)

Selfsimilarity of the second Kind (Barenblatt)

Page 11: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Singularity=gelation

gelation:

Starting from an initial particle size distribution c0 = c (x, 0) suchthatallitsmoments Mi(0) =

0xic0 (x) dx arebounded, thereisa

certaintime t∗ suchthatallmoments Mi(t) for i ≥ i0 diverge.

Thedistribution c (x, t) developsan heavyalgebraictailinfinitetime.

Upto t < t∗ totalconservationofmassisguaranteed, butafter t∗ thefirstmoment M1 isnolongerconservedandstartstodecrease.

Thisphenomenoniscalledfinitetimegelationandindicatestheaggregationoftheparticlesinaclusterofinfinitedensitythatdrainsmassfromthecoagulatingsystemwithfinite x-mass.

Aninterestingproblemisthecontinuationof post-gellingsolutions.

Page 12: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Somemathematicalwell-posednessresultsI

case: hypothesisandsetting: results: references:

purecoagulatio

n

asymptoticallysub-linearvsasymptoticallysub-quadratic:

K(x,y)≤κ0(1+x+y),or κ0(1+x+y)<K(x,y)≤κ1xy

∃!, T ∗=∞

∃!, T ∗<∞

(estimation)

Classicreference:e.g. Norris99

homogeneousnon-gellingcoagulation:

K(x,y)≤κ0(xλ+yλ), λ∈(−∞,1]∃! weaksense,T ∗=∞

Fournier-Laurençot2006

homogeneousgellingcoagulation:

κ1(xy)λ2 ≤K(x,y)≤κ2(xyλ−1+xλ−1y),

with λ thedegreeofhomogeneityof Kand λ∈(1,2]

∃! weaksense,T ∗<∞,lowerbound

Fournier-Laurençot2006

faster-growing,singularkernel:

variousformulations, forexample:K(x,y)≥A((1+x)λ+(1+y)λ), λ>1

instantaneousgellingsolutions

CarranddaCosta1992

Page 13: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Somemathematicalwell-posednessresultsII

case: hypothesisandsetting: results: references:

purefragmentatio

n

singularrateoffragmentation:

β(x)=xλ, λ<0

”shattering”critictimeisexplicitlyknown

McGrady–Ziff87Cheng–Redner90

non-singularcase:massconservingdistribution∫ x0 yb(y,x) dy=x

well-posedin L1xdx

mass-conservationLamb2004

homogeneousratewithinfinitefragments:

ν∈(−2,−1] and B(u)=(ν+2)uν well-posedness Cepeda2014

finitepositivemomentsinthenon-singularcase:

Mk(c0)<∞ forall k∈N Mk<∞

EquicontinuoussemigroupsinFréchetspaces:Banasiak-Lamb2014

Page 14: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Somemathematicalwell-posednessresultsIII

case: hypothesisandsetting: results: references:

coagulation-fragmentatio

n

fragmentationdominatesovercoagulation:

K(x,y)≤κ1(xy)λ,β(x)≥κ2x

γ,λ∈[0,1],γ∈(−1,∞),2+γ>2λ

amassconservingsolutionexists:T ∗=∞

Manystrategies,EscobedoLaurençotandPerthame2003

strongfragmentationandweakcoagulation:

β(x)=xλ,B(u)=(ν+2)uν ,ν∈(−1,0],0≤σ≤1,σ<λ, andK(x,y)≤κ2((1+x)σ+(1+y)σ)

global-in-timeandunicity

Banasiak, LambandLanger2013

strongfragmentationandstrongcoagulation:

thesameasaboveand0≤σ≤τ<λ andK(x,y)≤κ1(xσyτ+xτyσ)

localsolutionanduniqueness

asabove

detailedbalancecondition:

let M∈L11beanon-zerofunctionK(x,y)M(x)M(y)=b(x,y)M(x+y).

solutionsconvergetoanequilibrium:c[M1(0)] (x)

dependingonlyontheinitialmass

Carr-daCosta94,Dubowski-Stewart96

otherequilibria:strongfragmentation, smallinitialmass(thelatterisatechnicalcondition)

solutionsconvergetoanequilibriumc[M1(0)] (x)

L2 exponentialtrend

Fournier–Mischler2004

Page 15: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Smoluchowskicoagulationequationandself-similarity

A relevantfeatureisthe roleoftheself-similarsolutions.

Thelongtermregimeinknownmodelsapproachestoaself-similarprofile.

Page 16: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Self-similarapproach: gellingcase

• Homogeneusmultiplicativekernel K (x, y) = (xy)1−ε; for 0 ≤ ε < 1

2

weareingelationregime. Possiblesolutionscanbehaveasymptoticallyas t→ t∗:

c (x, t) = (t∗ − t)αψ(

(t∗ − t)βx)

• Inthiscase, theself-similarsolutionshavenotbeendeterminedexplicitlyand, moreremarkably, fromnumericalexperiments, thesimilarityexponentscannotbedeterminedfromsimpledimensionalconsiderations(cf. Lee, 2001).

• Sotheyseemtobelongtotheclassofthesocalled self-similarityofthesecondkind.

• Remember: when ε < 0, thestrongcoagulationrateyields instantaneous

gelation.

Page 17: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Substituting:

−(β(3−2ε)−1)ψ(ξ)−βξψ′(ξ)=

= 12

∫[0,ξ](ξ−y)

1−εψ(ξ−y) y1−εψ(y) dy−ξ1−εψ(ξ)∫R+ y1−εψ(y) dy.

where, again, α = (3− 2ε)β − 1, fromdimensionalconsidera-tions.

Wehave β < 0 innon-gellingcasesand β > 0 otherwise. Therefore,westudytheself-similarproblemforall λ−multiplicativekernels:

|β| T [ψ] + QC,λ [ψ] = 0

Page 18: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Theresultsoncoagulation

A visualoverview

Page 19: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Picture: self-similarityexponents

Page 20: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Picture: gellingsolutionsprofiles

Thesolutionsaremultipliedtimes ξ3−2ε− 1β . Twobehaviors: (I) polynomial

expansionattheorigin, (II) quasi-exponentialdecayatinfinity.

Page 21: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Thegellingcaseresult: mainingredients

Recall:

− (β (3− 2ε)− 1)ψ(ξ)− βξψ′(ξ) =

=1

2

[0,ξ]

(ξ − y)1−ε ψ (ξ − y) y1−εψ (y) dy−ξ1−εψ (ξ)

R+

y1−εψ (y) dy.

Page 22: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Laplacetransform

Westudiedthes.-s. solutionstoSmoluchowskiequationclosetotheproductkernel. Ourstrategyinvolvesa regularizedLaplacetransform:

• Transform: Φ(η) = −∫

R+

(e−ηξ − 1)ξψ (ξ) dξ.

• Inversetransform: ψ (ξ) = 12πi

1ξ2

∫ i∞

−i∞eηξΦ′ (η) dη.

one formally derives a new problem:

− ((1− 2ε)β − 1)Φ (η) + βηΦ′ (η) =1

2

d

[

D−εη Φ(η)

]2,

with:

D−εη Φ(η) = −

R+

(e−ηξ − 1)ξ1−εψ (ξ) dξ.

Page 23: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

TheexplicitcaseIf ε = 0, wecandeducepreviouslyknownresults:Laplacevariableequationreducestoafirstorderordinarydifferentialequation,andwecaneasilyobtaintheimplicitexpression:

η(Φ) = kΦβ

β−1 +Φ

Withthe specificelectionof β = 2, thisequationisasecondorderpoly-nomial; wecanfinditszerosandobtaintwopossiblesolutions, butweonlyconsidertheonegivingapositive ψ:

Φ0 (η) = 2π

(

−1 +

1 +η

π

)

, ψ (ξ) =1

ξ52

e−πξ.

Wecanalsostudytheequationfordifferentvaluesof β, buttheinversetransform ψ presentsalgebraictails.

Page 24: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

SmallperturbationoftheproductKernel

Startingfromanexplicitsolution, welookforabranchofsolutionsperturbatively.

β (ε) = 2 + ελ (ε)

Φ (η) = Φ0 (η) + εΦ1 (η)

where Φ1 shouldbecontrolledinasuitablenormandthedecaypropertiesof Φ permitstudingthedecaypropertiesof ψ

Page 25: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

ThefirstfixedpointtheoremTheorem. B.andFontelos

Thereexistsan ε0 > 0 andafunction

λ(ε) = 2 +O(ε)

suchthatforany 0 < ε < ε0 andwith β(ε) = 2 + ελ(ε) thereexistsauniquesolutiontoSmoluchowski’sself-similarequation(uptorescaling)satisfying:

∞∫

0

ξ72− δ

2ψ (ξ) dξ <∞

forany 0 < δ ≪ 1.

Boththe behaviourof Φ for η ∼ 0 andatinfinitymustbecontrolled. Then, decayingpropertiesof Φ giveestimatesonmomentslikethe 7

2-thabove.

Page 26: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Settingofthenonlinearproblem

Let Φ(η) = Φ0 (η) + εΦ1 (η). WegettheLaplaceself-similarequationfor Φ1:

Φ1 − 2ηd

dηΦ1 +

d

dη(Φ0Φ1) = F0(η) + εLΦ1 + εQ(Φ1,Φ1)

Linearandquadratictermsin Φ1 are O (ε), so, calling N [Φ1] therighthandside, wedefineamappingthatassignstoagiven Φ1 thesolutionto

Φ1 − 2ηd

dηΦ1 +

d

dη(Φ0Φ1) = N

[

Φ1

]

thisisdoneinthefollowing.

Page 27: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Steps

• EstablishaHardy-likeinequality:Mγ ≤

∫∞

−∞(W (|k|))2 |Φ′ (ik)|2 dk;

• thisgivesafunctionalspace Y tolookforasolution Φ (η).

• Thesolutionmustbeclose(asphereofsmallradius)toasuitablefunction h (η);

• anditsbehavior closetozero determinesthedecayof ψ (ξ) atinfinity. Wewant ψ todecayfasterthansomepower.

• Ananalyticityconditionon h (η) -thatis: eliminatingan η2 log ηterm-fixesthevalueof β andmakes ψ decayfasterthansuchpower.

• Nowuseafixed-pointtheorem(thetrickypartistodealwith h atthesametime).

• Finally, usethemoment-equationtoobtainthestrongresult: allhighermomentsarealsobounded.

Page 28: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Analysisoftheexpansion:

1. Given Φ1(η) = a1η − 1πa1η

2 + o(|η|2) onecancompute(

NΦ1

)

(η) = b1η + b2η2 +O(|η|3) as η → 0;

2. Consider ρ(η) = b1η+b2η2

1− η2

2

and

h(η) ≡ (√

1+ ηπ−1)

2

√1+ η

π

∫ η

η0

√1+w

π

(√

1+wπ−1)

2

ρ(w)Φ0(w)−2wdw;

3. Then, integratingthedifferentialequationfor Φ1,

Φ1 (η)−h(η) =(√

1 + ηπ− 1)2

1 + ηπ

∫ η

0

1 + wπ

(√

1 + wπ− 1)2

(

NΦ1

)

(w)− ρ(w)

Φ0 (w)− 2wdw;

4. Then Φ1 − h isa o(

η2)

andwecancomputeexplicitly

h(η) = b1η −1

πb1η

2 −(

b2 +3

4πb1

)

η2 ln η +O(|η|3 log |η|).

Page 29: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

TheanalyticityconditionThepresenceofthe η2 ln η logarithmictermintheLaplacesolutionimpliesthatthecorrespondinginversetransformpresentsanalgebraicdecay:

ψ (ξ) ≃ξ→∞

sin (|ε|π)ξ4+O(ε)

.

Fora fasterdecay,

b2 +3

4πb1 = 0

whichfixes β (ε) = 2 + 2ε+O(

ε2)

. Higherorderscanbealso explicitlycomputed imposingmoretermsintheexpansionof Φ1. This analyticitycondition characterizestheself-similarproblemasoneofthe secondkind.

Page 30: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

ThenormWeobtainestimatesof (Φ1 (η)− h (η)) intermsofJ(η) ≡

(

N[

Φ1

]

(η)− ρ(η))

inanappropriatefunctionalspace:

DefinitionLet X bethespaceoffunctions f suchthat:

∥f(k)∥X ≡∞∫

−∞

(

1

|k|3+

1

|k|32

)2

|f(k)|2 dk <∞.

Let Y bethesubspaceof X whosefunctionsaresuchthat:

∥f (k)∥Y ≡ ∥f (k)∥X +

kd

dkf (k)

X

<∞.

Page 31: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Howtoobtainthe 72 − th moment

ByBanach’sfixed-pointtheorem, wefindthesolutiontothenonlinearproblemsuchthat ∥Φ1 (ik)− h (ik)∥Y <∞ andhence:

∞∫

−∞

(

1

|k|2+

1

|k|12

)2∣

∣Φ′1 (ik)− h′ (ik)

2dk <∞.

Toconcludethetheorem, weemploy

R+

ξ(γ+2) |ψ (ξ)| dξ < C

R

∣Φ′ (k)∣

2(

|k|1−2γ−δ + |k|1−2γ+δ)

dk

with γ = 32 − δ

2 and 0 < δ ≪ 1.

Page 32: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Fasterdecayfortheself-similarsolution

Theorem. B.andFontelos

Undertheprevioushipotesis, wecanconcludethatforany |ε| <ε0 andwith the same β(ε) = 2 + ελ(ε) foundbefore, thereexistsauniquesolution(uptorescaling)withallitsmoments Mα

(α ≥ 2)bounded.

Remarkably, nofurtherrestriction isplacedupon ε0 or β.

Page 33: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Wemultiplythes.s. Smoluchowskiequationatbothsidesby ξα with α > 52

andintegratetoobtain:

(

α− 2 + 2ε+1

β

)

Mα =1

R+

[0,ξ]

((ξ − y) + y)α (ξ − y)1−ε y1−εψ (ξ − y)ψ (y) dydξ

−1

βMα+1−εM1−ε

andweuse:

(ξ − y)α + yα + C1

(

(ξ − y)α−1 y + yα−1 (ξ − y))

≤ ((ξ − y) + y)α ≤

≤ (ξ − y)α + yα + C2

(

(ξ − y)α−1 y + yα−1 (ξ − y))

.

Usingtheprecedinginequalities, wecanbound:

C1

βMα−εM2−ε ≤

(

α− (−2ε+ 2) +1

β

)

Mα ≤C2

βMα−εM2−ε

Page 34: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Weconsidernowthe purefragmentationequation.

Recall...

→֒

Page 35: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Theoriginalequation:

d

dtc (x, t) = −β (x) c (x, t) +

∞∫

x

c (y, t)β (y)

yB

(

x

y

)

dy

with β (x) = γxγ , and γ ≥ 0 (non-shatteringcase).B : [0, 1] → R

+ isthe relativefragmentationrate andverifiesthenormalizationproperty:

1∫

0

uB (u) du = 1.

Page 36: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Gettingtheself-similarfragmentationequationWeseekafunctionlike (t′)α φ

(

x

(t′)β

)

suchthatthemassmoment M1, andalsoallthe

othermomentsareconserved.

Suchsymmetryrequirementpermitsdeterminingtheself-similarformulationsothatthe

similarityproblemdoesactuallybelongtothe firstkindself-similarity.

a self-similar problem of the first kind:

c (x, t) = t2

γφ (ξ) ,

with ξ = xt1

γ . Imposingintheevolutionequation, weget:

2φ (ξ) + ξd

dξφ (ξ) = −γξγφ (ξ) +

∞∫

ξ

φ (η) γηγ−1 B

(

ξ

η

)

thatcanbealsowritten:

T [φ] (x) = QF [φ] (x)

Page 37: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

A generalwell-posednessresult

Both existence, uniqueness and convergence to the self-similarprofilescanbeobtainedundergeneralconditionsasithasbeendone in thework of Escobedo, Mischler andRodriguezRicard(2005).

Page 38: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

TheMellintransformapproach

• Considerthetransform Φ(z) =∫

0xz−1φ (x) dx.

• Wealsodefine Θ(z) =∫

1

0uz−1B (u) du.

Thenewproblem

(2− z) Φ (z) = (Θ (z)− 1) γΦ(z + γ) ,

Weareinterestedinevaluating Φ at z = is inordertoapplytheinverseMellintransform:

φ (x) =1

2πi

∫ i∞

−i∞

x−zΦ(z) dz.

Page 39: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

TheCarlemanproblemSomereferencestoWiener-Hopfmethodsandhowtosolvethisclassofproblemscan

befoundinEscobedoVelázquez(2010).

Firstofall, weintroducethenewvariable ζ = ez·2πi· 1

γ anddefinef (ζ) = Log (Φ (z)), T (ζ) = Θ (z).TheCarlemanproblemnowreads:

f (ζ + 0·i)− f (ζ − 0·i) = Log

(

γT (ζ)− 1

2− γ2πi

Logζ

)

= Logγ + Log (T (ζ)− 1)− Log(

2−γ

2πiLogζ

)

,

where f isanalyticin C \ R+.

Page 40: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Thetypicalstrategyandavariation

Thisproblembelongstothegeneralclassofproblemsoftheform:

f (ζ + 0·i)− f (ζ − 0·i) = G(ζ)

withsolution

f (ζ) =1

2πi

∞∫

0

G(s)ds

s− ζ,

provided G(s) decayssufficientlyfastatinfinitysothattheintegraliswelldefined.

Page 41: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

0 1

b(u)

Mitosis

z0

.

.

.

.

.

.

.

.

.

.

Page 42: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

0 1

b(u)

u0

Page 43: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Propertiesoftheself-similarsolution φ

Theself-similarsolution φ (ξ) givenastheinverseMellintransformof Φverifies:

∞∫

0

eξγ φ (ξ) dξ

ξ1+µ−τ + ξ1+µ+τ< ∞

forany 0 < τ < min {µ, γ}.Moreover, Mα =

∫∞0 ξαφ (ξ) dξ < ∞ foreach α > −µ − 1. The

solutionhasthefollowing regularityproperty: forall l > −µ+ n,

dn

dξn

(

ξlφ (ξ))

≤ 1

∫∞

−∞|(n−is)(n−1−is)···(1−is)||Φ(is+l−n)|ds < ∞,

oralso∣

dn

dξnφ (ξ)

≤ Cnξµ−n−δ, with δ > 0, δ ≪ 1.

Page 44: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Reddy, Banerjee, 2017

McKinley et al, 2016

Page 45: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Conclusions: Smoluchowskiequation

Weproposea generalscalinghypothesis forcoagulation:

• A firstexistenceanduniquenesstheoremforrapidlydecayingself-similarsolutionsinthegellingrange.

• Asymptoticandanalyticalresultsinwiderangesofhomogeneity λdegree.

• Differenttechniquestocompute β.

• Numericalevidences.

Ourworksonthissubject:

• Breschi-Fontelos, Nonlinearity2014. Self-similarsolutionsofthesecondkindrepresentinggelationinfinitetimefortheSmoluchowskiequation.

• Breschi-Fontelos. Onglobalintimeself-similarsolutionsofSmoluchowskiequationwithmultiplicativekernel. (inPhD theses, tosubmit).

Page 46: Selfsimilar solutions to coagulation and fragmentation ...benasque.org/2019pde/talks_contr/272_Fontelos.pdf · Marco A. Fontelos Selfsimilar solutions to coagulation and fragmentation

Introduction IIºkindself-similarity: coagulation Iºkindself-similarity: fragmentation Extracontents

Conclusions: fragmentationequation

WeemployedWiener-Hopf’stechniquesinthecomplexplanetoachieve:

• explicitformulas;

• controlonasymptoticbehaviorsoftheself-similarsolution;

• regularityproperties(underthehypothesisofcontinuousfragmentationkernel);

• newunexpectedasymptoticsforthecompactsupportcase(aswellasadifferentexplicitformulafortheMellintransform).

Stillmanyinterestingproblemstostudy! Animportantone: whataboutnon-continuouskernels?