Self-consistent screening in graphene · Baowen Li Feng Yuan Ping Hsin Lin Vitor Pereira Zhang Chun...

34
Self-consistent screening in graphene FOR1807 workshop: Advanced computational methods for strongly correlated quantum systems, Würzburg University February 26 th 2015 Shaffique Adam Yale-NUS College and Center for advanced 2D materials (formerly Graphene Research Center) Department of Physics National University of Singapore

Transcript of Self-consistent screening in graphene · Baowen Li Feng Yuan Ping Hsin Lin Vitor Pereira Zhang Chun...

Self-consistent screening in graphene FOR1807 workshop: Advanced computational methods for strongly correlated quantum systems, Würzburg University February 26th 2015

Shaffique Adam Yale-NUS College and

Center for advanced 2D materials (formerly Graphene Research Center)

Department of Physics National University of Singapore

[email protected]! 2  

Center for Advanced 2D materials (formerly Graphene Research Center)"

Theory colleagues"

Antonio Castro Neto

Showing NUS physicists and collaborators… (not shown: chemists, engineers, people at NTU etc.)!

Baowen Li Feng Yuan Ping

Hsin Lin Vitor Pereira

Zhang Chun

Experimental colleagues"

Barbaros Özyilmaz

Su Ying Quek

Giovanni Vignale Kian Ping Loh

Andrew Wee Goki Eda Jens Martin

Ji Wei

Slaven Garaj Utkur Misaidov

Sow Chorng Haur

Peter Ho

Jose Gomes

Lay-Lay Chua Wei Chen Christian Nijhuis

[email protected]! 3  

Research Group"Postdoctoral Research Fellows!

Jeil Jung" Mirco Milletari" Derek Ho"

3  

Graduate Student Researchers!

Indra Yudhistira " Navneeth Ramakrishnan" Tang Ho Kin"

Joao Rodrigues"

Jia Ning Leaw"

[email protected]!

The perfect 2DEG"

4  

1  nm    

Graphene is all surface and no bulk!

“God made the bulk; surfaces were invented by the devil”! – Wolfgang Pauli!

Figure from G. Rutter

[email protected]!

Delicate interplay between disorder, interactions and quantum effects"

5  

Most experiments are in the regime, where all these effects are relevant, but not dominant!!

Disorder

Electron!Interactions

Quantum !Interference

Image credits: Fuhrer, Geim, Westervelt,

See e.g. !!

M. S. Fuhrer and S. Adam,!Nature, news and views, 458 38 (2009); and!!

S. Das Sarma, S. Adam, E. Hwang and E. Rossi, !Reviews of Modern Physics 83 407 (2011)

[email protected]!

Semi-classical picture"

6  

Disorder

Figure from M. Wayne

Disorder!Potential!

Electron gas!

[email protected]!

Map to classical percolation"

7  

M. Isichenko, Rev. Mod. Phys. (1992)

Potential !Maxima!

Potential !Minima!

Saddle !Point != bond!

Metal above percolation threshold, !!Insulator below percolation threshold!

Unlike conventional 2DEGs, graphene remains metallic even for strong disorder

Disorder

[email protected]!

Dirac materials: interaction strength and density tuned independently"

8  

Interactions rs =

e2

vFrs =

e2

vF κ1 +κ2( )

C. Juang, S. Adam, J-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, Phys. Rev. Lett. 101, 146805 (2008).

[email protected]!

Fermi liquid away from DP"

9  

ε(q)=1+ 2πe2

κqΠ(q) §  Screening is “metallic” on distances larger than the Fermi wavelength !

§  Screening is like a dielectric “insulator” on shorter distances!§  Long-range nature of coulomb tail can not be screened

Weak Interactions = Screening

[email protected]!

What about the Dirac point?"

10  

e.g. Sorella et al. Sci. Rep. (2012) F. Assaad (2012-2014) Semi-metal to AFM phase transition consistent with SU(2) SU(2) Heisenberg Gross-Neveu universality class

U = 0 U = oo

Uc

For strong interactions, !Monte Carlo reveals gapped phase (anti-ferromagnet)

Strong Interactions

[email protected]!

Divergent Fermi velocity"

11  

"

V. Kotov, B. Uchoa, V. Pereira, A. H. Castro Neto and F. Guinea, Rev. Mod. Phys. (2012)

G(k + q)

V (q)ε(q)

ve↵v0

= 1 +

rs4

log

⇠ 1

ka

�For weak interactions, perturbation theory reveals diverging Fermi velocity

[email protected]!

No consistent picture at DP"

12  

1. Renormalization Group [e.g. Sachdev (1998) / Guinea (1997) ]

U = 0 U = oo

Fixed point is free Dirac theory where interactions are “dangerously irrelevant”

2. Diagrammatic perturbation approaches [e.g. Das Sarma et al. (2007)] “marginal Fermi liquid”

3. Hubbard model on a honeycomb lattice (semi-metal to AFM Mott transition occurs at interaction strengths outside the experimental window) e.g. Sorella, Assaad, Katsnelson (2012-2014). “qualitatively similar to a Fermi liquid”

4. Lattice Monte Carlo applied to Dirac fermions with momentum cut-off e.g. Drut and Lahde (2009-2014). “chiral symmetry breaking insulating state for suspended graphene”

U = 0 U = oo

Uc

[email protected]!

Perfect transmission"

13  

Classical world

Quantum world

Klein world

P-N junctions are completely transparent for direct incidence. Results in beam collimation.

Quantum Interference

[email protected]!

Universal ballistic σmin"

14  

N"

N"

N"

N"

P"

N"

→4e2

πh

M. Katsnelson (2006);!C. Beenakker et al. (2006)

Without disorder and without interactions, both Kubo and Landauer formalisms give a universal ballistic minimum conductivity at the Dirac point.

Quantum Interference

[email protected]!

Delicate interplay between disorder, interactions and quantum effects"

15  

Most experiments are in the regime, where all these effects are relevant, but not dominant!!

Disorder

Electron!Interactions

Quantum !Interference

[email protected]!

Scaling theory of localization"

16  

Schrödinger 2DEG

2DEG with SOC

Graphene Disorder + Quantum Interference

[email protected]!

No Anderson localization"

17  

0 # per puddle2K electronsπ≈

Semi-classical regime Quantum regime

S. Adam, P. W. Brouwer and S. Das Sarma, Phys. Rev. B R 79, 201404 (2009)

Self-consistent diffusive Boltzmann transport theory

Ballistic universal quantum theory

Dirac point conductivity (numerically exact)

[email protected]!

How does an inhomogeneous Fermi liquid screen external potentials? "

18  

Vscreened =Vbareε[q]

Example of Thomas-Fermi screening: Interactions + Disorder

[email protected]!

How does an inhomogeneous Fermi liquid screen external potentials? "

19  

Vscreened =Vbareε[q]

Regular 2DEG: ✏(q) = 1 +2e2

~2me

q

Example of Thomas-Fermi screening: Interactions + Disorder

[email protected]!

How does an inhomogeneous Fermi liquid screen external potentials? "

20  

Vscreened =Vbareε[q]

Regular 2DEG: ✏(q) = 1 +2e2

~2me

q

Dirac electrons: ✏(q) = 1 +

e2

~vF

p⇡n

q

Example of Thomas-Fermi screening: Interactions + Disorder

[email protected]! 21  

Vscreened =Vbareε[q]

Regular 2DEG: ✏(q) = 1 +2e2

~2me

q

Dirac electrons: ✏(q) = 1 +

e2

~vF

p⇡n

q

Example of Thomas-Fermi screening:

vF2DEG�! ~

p⇡n

2m

How does an inhomogeneous Fermi liquid screen external potentials? "

Interactions + Disorder

[email protected]!

How does an inhomogeneous Fermi liquid screen external potentials? "

22  

Vscreened =Vbareε[q]

Regular 2DEG: ✏(q) = 1 +2e2

~2me

q

Dirac electrons: ✏(q) = 1 +

e2

~vF

p⇡n

q

Example of Thomas-Fermi screening:

Inhomogeneous Dirac: ✏(q) = 1 +

e2

~vF

p⇡nrmsp3q

Interactions + Disorder

[email protected]!

What is nrms(nimp)?"

23  

250 nm x 250 nm

2. Screened potential correlation function:

( ) (0)V r V

ξ

1. Histogram of the carrier density (distribution function):

[ ]P nrmsn∝

r

2 (0)V

Characterizes the puddle depth and length n

Any physical observable could then be calculated

Statistical properties of density fluctuations and the Dirac point

[email protected]!

What is nrms(nimp)?"

24  

250 nm x 250 nm

2. Screened potential correlation function:

( ) (0)V r V

ξ

1. Histogram of the carrier density (distribution function):

[ ]P nrmsn∝

r

2 (0)V

Characterizes the puddle depth and length n

Any physical observable could then be calculated

Statistical properties of density fluctuations and the Dirac point

Calculate dimensionless quantity: ?=imp

rms

nn

[email protected]!

Ansatz for Inhomogeneous screening"

25  

),,()()(nrqqqs

barescr ε

φφ =

+ + -

n(r)

c)(dielectriconst )( =qε

(metal) q

q 1 )( TF+=qε(Dirac)

k 2q ;41

2 ;2

1 ),,(

F⎪⎪⎩

⎪⎪⎨

>>+

<<+=

qrk

kqr

rkqsF

Fs

sF

π

ε

[email protected]!

Ansatz for Inhomogeneous screening"

26  

( )0,,)()(=

=nrqqq

s

barescr ε

φφ

( ),...,,,])[,,( 32 nnrqnPrq ss εε →

[email protected]!

Ansatz for Inhomogeneous screening"

27  

( )0,,)()(=

=nrqqq

s

barescr ε

φφ

( ),...,,,])[,,( 32 nnrqnPrq ss εε →

[email protected]!

Ansatz for Inhomogeneous screening"

28  

),,()()(rmss

barescr nrq

qqεφ

φ ≈

( )2,,])[,,( nrqnPrq ss εε ≈

[email protected]!

Ansatz for Inhomogeneous screening"

29  

),,()()(rmss

barescr nrq

qqεφ

φ ≈

[ ]rmsssimp

rms ndrCrnn , 2 0

2=

S. Adam, E. H. Hwang, V. M. Galitski and S. Das Sarma Proc. Nat. Acad. Sci. USA 104, 18392 (2007).

[email protected]!

Local screening vs. global screening"

30  

S. Adam, E. H. Hwang, V. Galitski, S. Das Sarma, Proc. Nat. Acad. Sci. USA 104, 18392 (2007). !

E. Rossi and S. Das Sarma !PRL 101, 166803 (2008)!!E. Rossi, S. Adam and S. Das Sarma, PRB 79, 245423 (2009) !

Vscreened =Vbare

ε[q,nrms ]

ε[q,nrms ]

[email protected]!

Numerical verification"

31  

nrms

nimpS. Adam, E. H. Hwang, V. M. Galitski and S. Das Sarma Proc. Nat. Acad. Sci. USA 104, 18392 (2007).

E. Rossi, S. Adam and S. Das Sarma Phys. Rev. B 79, 245423 (2009)

[email protected]!

Puddle Formation"

32  

20 nm !

STM topography image!

Electron"puddle"

Hole "puddle!

20 nm !20 nm !

Single Layer Graphene" Bilayer Graphene"

Electron puddle!

Hole puddle!

With J. A. Stroscio (NIST) Phys. Rev. B 84, 235421 (2011)

[email protected]! 33  

Agreement with experiments [1]"

33  

20 nm !

STM topography image!

Electron"puddle"

Hole "puddle!

20 nm !20 nm !

Single Layer Graphene" Bilayer Graphene"

Electron puddle!

Hole puddle!

Collaboration with J. A. Stroscio (NIST) Phys. Rev. B 84, 235421 (2011)

No adjustable parameter!

[email protected]!

Monolayer graphene from a Brian LeRoy (Arizona)"

34  

Agreement with experiments [1]"

34  

20 nm !

Electron"puddle"

Hole "puddle!

20 nm !

Bilayer Graphene"

Electron puddle!

Hole puddle!

Collaboration with J. A. Stroscio (NIST) Phys. Rev. B 84, 235421 (2011)

No adjustable parameter!

No adjustable parameter!