Select Thermodynamic Models for Process Simulation - A Practical Guide to a Three Steps Methodology

12
HOME CHAPTERS CASE STUDIES AUTHORS Order the book Select thermodynamic models for process simulation A Practical Guide to a Three Steps Methodology Case study 1: Crystallization of trace components in natural gas liquefaction process (LIQUEFIN TM ) The continuous expansion of liquefied natural gas (LNG) trade for now more than three decades has been achieved thanks to the permanent search for cost reduction, mainly using the size effect. To pursue this expansion at the same sustained rate of up to 10 % percent per year, some operators are now seriously considering trains with capacities of 6, 7 or even 8 Mt/a. In order to reach such capacities, with always higher efficiency and without adding complexity in the process, it is necessary to depart from the traditional scheme. IFP and Axens have developed the LIQUEFIN TM process with the aim of producing an LNG cheaper than with any other process, at good conditions of reliability and safety, and friendlier to environment. Due to the increase of the world natural gas consumption, the distance between production and consumption sites is ever increasing. Pipeline transportation is not economical for these long distances and only liquid phase transportation is feasible. As a consequence, many high capacity gas liquefaction plants are presently in project. In natural gas liquefaction processes, the gas feed is cooled to very low temperatures (113 K or 160 °C). The presence of traces of heavy hydrocarbons components in the liquefied natural gas (LNG) may therefore result in crystallization, and therefore plugging the installation. The present work investigates the vapourliquidsolid equilibrium and proposes a way to predict the risks of crystallization. In a first section, the process will be described to explain the different steps involved in the liquefaction of natural gas. The operating conditions will be specified in the crucial points of the process and a specific emphasis will be given on the risk of crystallization of heavy elements present in very low proportions. In a second section, the three basic questions to be asked to give a correct answer to a thermodynamic problem will be analyzed: What are the properties given and to be calculated to obtain the solution? What are the components present in the mixture? What are the phases present in the different part of the process? In a third part, in the light of the previous answers, a thermodynamic model will be developed. Here, a cubic EoS coupled with a HuronVidal mixing rule will be used. The choice of adequate experimental data will be discussed as well as the way to regress them. The model will be applied at the different zones of the LIQUEFIN TM process established as potentially risky operating conditions and some recommendations will be given for how to operate the process and how to enhance the model. 1 Process description All processes for LNG productions are based on compression/expansion and heat exchangers. Some separation vessels and/or distillation columns are present in the process to satisfy commercial purities of products. An interesting comparison of different processes can be found in Martin et al. (2002 [1]) or in Mokhatab and Economides (2006 [2, 3]). The case study presented here is based on the LIQUEFIN TM process sold by Axens. The LIQUEFIN TM process operates according to the basic flow scheme presented in figure 61. At the exit of the precooling, the gas is scrubbed from its heavy end; the top is further refrigerated in the precooling section and the condensate is used as scrubbing fluid. The vapour then enters the cryogenic section. The liquid (bottom) of the scrubber is introduced to a demethanizer to remove the heavy components that may represent a risk of crystallization. The head of the demethanizer is introduced in the cryogenic exchanger, reaching a temperature of 113 K.

description

Thermodynamics

Transcript of Select Thermodynamic Models for Process Simulation - A Practical Guide to a Three Steps Methodology

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 1/12

    HOME CHAPTERS CASESTUDIES AUTHORS Orderthebook

    SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    Casestudy1:Crystallizationoftracecomponentsinnaturalgasliquefactionprocess(LIQUEFINTM)

    Thecontinuousexpansionofliquefiednaturalgas(LNG)tradefornowmorethanthreedecadeshasbeenachievedthankstothepermanentsearchforcostreduction,mainlyusingthesizeeffect.Topursuethisexpansionatthesamesustainedrateofupto10%percentperyear,someoperatorsarenowseriouslyconsideringtrainswithcapacitiesof6,7oreven8Mt/a.Inordertoreachsuchcapacities,withalwayshigherefficiencyandwithoutaddingcomplexityintheprocess,itisnecessaryto

    departfromthetraditionalscheme.IFPandAxenshavedevelopedtheLIQUEFINTMprocesswiththeaimofproducinganLNGcheaperthanwithanyotherprocess,atgoodconditionsofreliabilityandsafety,andfriendliertoenvironment.

    Due to the increaseof theworldnaturalgasconsumption, thedistancebetweenproductionandconsumptionsites isever increasing.Pipeline transportation isnoteconomicalfortheselongdistancesandonly liquidphasetransportationisfeasible.Asaconsequence,manyhighcapacitygasliquefactionplantsarepresently inproject.

    Innaturalgasliquefactionprocesses,thegasfeediscooledtoverylowtemperatures(113Kor160C).Thepresenceoftracesofheavyhydrocarbonscomponentsin the liquefiednaturalgas(LNG)maythereforeresult incrystallization,andthereforepluggingthe installation.Thepresentwork investigates thevapourliquidsolidequilibriumandproposesawaytopredicttherisksofcrystallization.

    Inafirstsection,theprocesswillbedescribedtoexplainthedifferentstepsinvolvedintheliquefactionofnaturalgas.Theoperatingconditionswillbespecifiedinthecrucialpointsoftheprocessandaspecificemphasiswillbegivenontheriskofcrystallizationofheavyelementspresentinverylowproportions.

    Inasecondsection,thethreebasicquestionstobeaskedtogiveacorrectanswertoathermodynamicproblemwillbeanalyzed:

    Whatarethepropertiesgivenandtobecalculatedtoobtainthesolution?

    Whatarethecomponentspresentinthemixture?

    Whatarethephasespresentinthedifferentpartoftheprocess?

    Inathirdpart,inthelightofthepreviousanswers,athermodynamicmodelwillbedeveloped.Here,acubicEoScoupledwithaHuronVidalmixingrulewillbeused.Thechoiceofadequateexperimentaldatawillbediscussedaswellasthewaytoregressthem.

    ThemodelwillbeappliedatthedifferentzonesoftheLIQUEFINTMprocessestablishedaspotentiallyriskyoperatingconditionsandsomerecommendationswillbegivenforhowtooperatetheprocessandhowtoenhancethemodel.

    1Processdescription

    AllprocessesforLNGproductionsarebasedoncompression/expansionandheatexchangers.Someseparationvesselsand/ordistillationcolumnsarepresentintheprocess to satisfy commercial purities of products. An interesting comparison of different processes can be found inMartinetal. (2002 [1]) or in Mokhatab and

    Economides(2006[2,3]).ThecasestudypresentedhereisbasedontheLIQUEFINTMprocesssoldbyAxens.

    TheLIQUEFINTMprocessoperatesaccordingtothebasicflowschemepresentedinfigure61.Attheexitoftheprecooling,thegasisscrubbedfromitsheavyendthe top is further refrigerated in the precooling section and the condensate is used as scrubbing fluid. The vapour then enters the cryogenic section. The liquid(bottom)ofthescrubberisintroducedtoademethanizertoremovetheheavycomponentsthatmayrepresentariskofcrystallization.Theheadofthedemethanizerisintroducedinthecryogenicexchanger,reachingatemperatureof113K.

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 2/12

    Figure61:LIQUEFINTMgeneralscheme.

    Thepresenceoftracesofheavycompounds(mainlyaromaticsandcyclohexane)inthenaturalgas,associatedtotheverylowtemperatureofthecryogenicprocess,createadistinctriskofplugginginthelinesandtheheatexchangersasaresultofcrystallization.Thisisthereasonoftherequestedthermodynamicstudy.

    2Thermodynamicanalysisoftheprocess

    Accordingtothephilosophyproposedinthisbook(seechapter1),theanalysisiscentredonthreemainquestions:properties,componentsandphases.

    2.1Properties

    Themainriskintheprocess,fromathermodynamicpointofview,istheriskofplugging,i.e.toobserveasolidtocrystallizeinthelinesorintheexchangers.Fromathermodynamicpointofview,thephenomenonunderconsiderationisafluidsolidequilibrium.Yet,thiscrystallizationisnotwantedand,therefore,thetruechangeinphasecompositionwhenlargeamountsofsolidsareformed(socalledflashcalculation,asintroducedinchapter2,section2.3.1.3)isnotneeded.Instead,theonsetof crystallization, or the phase split boundary is the true quantity that is required here. The problem of phase boundary calculation has been discussed insection2.3.2.4.ofchapter2:themostgeneralapproachistoinvestigatethetangentplanecriterionusinganalgorithmasproposedbyMichelsen[4].Yet,aslongastheprecipitatingphasecanbeconsideredasapurecomponent (which is thecase in thiswork), it issufficient tocompare the fugacity (Gibbsenergy)of thatcomponent in theprecipitatingphase (solid)with the fugacityof this component in the fluidphase.Whenever the fugacity in theprecipitatingphase is lower, thencrystallizationwilloccur.Thealgorithmissummarizedinfigure62.

    Figure62:Phaseborderevaluationbetweenliquidandsolid.

    Itisconcludedthatinthisanalysis,aspecialattentionwillbegiventothefugacitycalculationofthecomponentsthatmaypotentiallycrystallize.

    2.2Components

    A typical feed for the process can be seen in table 61. All the components present in a natural gas are well known and belong to the type called "databasecomponents"inchapter3,section1.2.1.Subsequently,thecrystallizationtemperatureofallcomponentscanbefoundindatabases.Thesearediscussedinsection1.1.1.6ofchapter3,andintable62ofthatsection.

    Table61:Typicalcompositionofanaturalgaswithahighbenzenecontent.

    Feed

    Component Composition(molar%)

    N2 4.91

    CH4 86.06

    C2 5.45

    C3 1.97

    iC4 0.36

    nC4 0.57

    iC5 0.21

    nC5 0.09

    nC6 0.12

    nC7 0.07

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 3/12

    nC8 0.04

    nC9 0.01

    CO2 0.01

    Benzene 0.05

    Cyclohexane 0.05

    nCxstandsfornalkanewithxatomsofcarbon

    Table62:Purecomponentscrystallizationdata(DIPPR,2008[12]).

    TriplepointTemperature(K) TriplepointPressure(Pa) Enthalpyoffusion(J/kmol) Volumeoffusion(m3/kmol)

    Cyclohexane 279.7 5.36E+03 2.74E+06 8.30E03

    Benzene 278.7 4.76E+03 9.87E+06 1.04E02

    nC9 219.7 4.31E01 1.55E+07 2.17E02

    nC8 216.4 2.11E+00 2.07E+07 1.97E02

    nC7 182.6 1.83E01 1.41E+07 1.39E02

    nC6 177.8 9.02E01 1.31E+07 1.26E02

    Thecrystallization temperatureofanumberofpurecomponents, fromcyclohexane tonC6 is lower than theprocess temperature (near160K).Nevertheless, thepresenceofothercomponentsinthemixtureactsasasolventandlowerstheriskofcrystallization.Thefugacitycalculationwillgivethedefinitiveanswer.

    Inthiswork,focuswillbecentredonbenzene.Compositionmayvarywiththegasinexploitation,butforriskanalysis,itisgoodtotakeacompositionthatisrichinbenzeneandotherheavycomponents.Someheaviercomponents likedecanesorxylenesoralkylcyclohexanescanbepresentbut insolowquantitiesthatthecrystallizationrisksareneglected.CarbondioxidemayalsobeanissueasdiscussedbyEggemanandChafin(2005[5]).

    Asseenintable61,theconcentrationofbenzeneinthefeedisverylow.Asaresult,thebehaviour(activity)ofthiscomponentisverydifferentfromthatofthepurecomponent (asdiscussed inchapter3,section4.1. In fact, it shouldbealmostconsideredasan infinitelydilutedcomponent,andsection5.2.3discussedhow intheseconditions,veryspecificdatashouldbeused(evenmixturedatashouldbeconsideredwithcaution).Theavailabilityofthedatawillhoweverleadtoconsiderseveraltypesofinformationinthenextsection.

    2.3Phases

    Initially, thefeedisfoundasavapour,directlyproducedfromgasfield.Theobjectiveof theprocess istocondensethisvapourtofacilitatetransportation.Thus,aliquid isobtainedasa resultof theprocess.Due to thevery low temperatureof thecryogenicplant, somesolidmayappearasananomalousbehaviour.For thisreason,studyisconcernedwiththreephases:vapourliquidsolidequilibrium.

    In chapter 4, fluidsolid equilibria of mixtures containing organic compounds was discussed in section 2.2.3.1. Pressuretemperature phase diagrams ofmulticomponentmixturesmaybecomecomplexifsolidphasesareconsidered(Tiffinetal.1979[6]).Luksetal.(1981[7],1984[8])hasclassifiedthegasliquidsolidphase diagrams into four types.Only the first type is of interest here, as it is the one encountered for themethane + benzene system. Its pressuretemperatureprojection issketched in figure63.For the light component, thevapourpressure line, thesolidus lineand thesublimation lineareeasily recognized.For the lightcomponent, only the vapour pressure line is drawn. The locus of critical points is visible as a doted line that connects the critical point of each of the purecomponents.Inthisdiagram,thislineiscutbytwodashedlinesthatrepresentthreephasevapourliquidsolidequilibria(VLSE).

    Themeaningofthesecurvesisbestunderstoodwheninvestigatingacutatconstantpressure.Anintermediatepressure(lineP1onfigure63),thatishigherthanthethree phase points of either components, but lower than the critical point of both components (i.e., for themethane + benzenemixture, that yields that type ofdiagram,between4.7kPaand4.6MPa)isanalyzed.Intheseconditions,thediagramsketchedonfigure64)isfound.

    Figure63:PTvapourliquidsolidsketchforamethane+benzenemixture.

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 4/12

    (61)

    (62)

    At high temperature, the mixture is always in the vapour phase. In a mixture rich in benzene (dotted line), the vapourliquid equilibrium (VLE) region is firstencountereduponcooling(dewpointinfigure64).Aliquidphaseappears,thatisricherinbenzenethanthevapourphase.Iftheinitialmixturewassufficientlyrichinbenzene(doteddashedline),themixturemaybecomeentirelyliquid(reachitsbubblepoint)beforeformingasolid(pointA).Inthiswork,itisassumedthattheheavycomponentalwayscrystallizesasapurecomponent.Thismaynotalwaysbetrue,butitrepresentsthehighestriskofcrystallizingatagiventemperature.Coolingonthemixture,a threephase line is reachedbefore themixturecanbecomeentirely liquid.Thishigh temperaturevapourliquidsolid threephaseequilibrium line (HTVLSE)formsthelimitbelowwhichtheliquidcrystallizesentirely:onlyavapourandasolidphasecoexistbelowthisline.Atstill lowertemperature,asecondthreephase line is encountered, where the vapour condenses to form a liquid. The solid phase remains. This is the low temperature vapourliquidsolid three phaseequilibriumline(LTVLSE).

    Now,considerthecaseofamixturewiththecompositionshownasadashedline,stillricherinmethane(whichisthecaseinnaturalgasliquefactionprocesses).Inthiscase,decreasingthetemperaturewillresultincrystallizingdirectlyfromthevapourphase(noHTVLSEisencountered).Sofar,whenthetemperatureisfurtherlowered,thevapourwillcondenseinaliquidphase,thathasahighercapacityofdissolvingthemeltand,asaresult,belowtheLTVLSEthreephaseline,nocrystalisleft,butonlyaliquidandavapourphase:thisisthefarleftendoftheregularvapourliquidbiphasicequilibriumregion.Thevapourkeepscondensinguponfurthercoolinguntilthebubbletemperature,andeventually,atstilllowertemperature,benzenecrystals(SLE)willappearagain.

    Figure64:Txyvapourliquidsolidsketchforamethane+benzenemixture.

    3ProblemSolvingProcedure

    3.1Evaluationofthemostappropriatemodel

    Modelsforthecalculationofphaseequilibriumarebasedonthefugacities:phaseequilibriumisobservedwhenthefugacitiesofeachcomponentineachphaseareequal.Afugacitymodelisneededforeachphaseunderconsideration(seefigure62).

    3.1.1Fluidphasefugacity

    As themixture contains only hydrocarbons (see chapter 4, section 2.2), a wide choice ofmodels is available for calculating these fugacities: activity coefficientmodelsaregenerallynotrecommendedforgases(not impossible,butmorecomplextouse).Amongtheequationsofstate, thecubicequationsarethemostwellknown,andwillbeusedhere.Acubic,PengRobinson[9]equationofstateisselectedhereforcalculatingtheliquidandvapourfugacities(chapter3,section4.3.4).

    Theparameterizationrequiresspecialcarefortworeasons:

    1. Theequationisusedatverylowtemperature,inaregionwhereveryfewdataexistformodelvalidationand

    2. Thecomponentofinterestisverydilutedinamajoritycomponentthatismethane.Asaresult,specialattentionneedstobegiventothemixingrule.

    3.1.1.1Selectionofthe(T)function

    Thefirststep inparameterizingacubicequationofstate is tomakesure that thepurecomponentvapourpressuresarecorrectlymodelledusing theselected(T)function. The usual model is that of Soave, which is very acceptable for alkanes, but considering that the benzene properties will be extrapolated at very lowtemperatures,itwaspreferredtousetheTwuequation[10](seesection4.3.4.2,chapter3):

    3.1.1.2Selectionofthemixingrule

    Inordertobeabletoreachtheinfinitedilutionpropertiesofbenzene,itisimportanttohaveapowerfulmixingrule.Inthiswork,itwaschosentousethemixingruleofHuronVidal(1979[11]):

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 5/12

    (63)

    (64)

    (65)

    with,forthePengRobinsonequation:

    TheexcessGibbsenergyinequation(62)isexpressedusingamodifiedNRTL:

    3.1.2Solidphasefugacity

    Asolidphaseappearsif,foranyofthecomponents,thesolidfugacityislowerthanthefugacityoftheequilibriumphase.ThissolidfugacityfS0, iscalculatedusingthegeneralthermodynamicrelationships(seechapter3,section4.4.1).:

    ThisequationexpressesthechangeinGibbsenergybetweentheliquidandthesolidphase,atthesystempressureandtemperature.Onthelefthandside,fL0is thefluidphasefugacityofthepurecomponentatthesystemtemperatureandpressure.Itiscalculatedusingthefluidstateequationofstate.On the right hand side, the two first terms express the deviation due to the temperature difference between the fusion temperature and the system temperature.

    Usually,onlythefirstterm,thatisproportionaltothefusionenthalpy(Hif)isused.However,verylargetemperaturedeviations(morethan100K)areconsidered,it

    is important to includethesecondtermthat takes intoaccount that this fusionenthalpyvarieswith temperature.Theproportionality factor isherecpif , the fusionheatcapacitydifferencebetweensolidand liquid.Finally, thethird termofequation(65) isrequiredwhenthesystempressurediffers fromthatatwhichthefusionpropertiesareprovided (which isusuallyatmosphericpressure).This last term isproportional to thevolumeof fusion,i .Bothenthalpyof fusionandvolumeoffusionareavailableindatabases(table62).

    3.2Datarequiredanddataavailable

    Inorder to construct amodel it is essential tohaveexperimental data, either for regressingparameters, or for validating the results.As it hasbeenshown in theprevious point the selected equation(s) require(s) parameters. These parameters may be physical properties, available in data bases, or will be regressed fromexperimentaldata.

    3.2.1Purecomponentdata

    3.2.1.1Characteristicparameters

    Thechosenmodel(PengRobinson)requirestheuseof thecriticalparametersforeverypurecomponentof themixture.Thankstothefact thatallcomponentsaredatabasecomponents,theycanreadilybefoundintheDIPPRdatabase.

    Thesolidfugacitymodelequation(65),inadditionrequiresfourmorepurecomponentproperties:Tif,Hif,cpifandi.ThetwofirstareavailabletoointheDIPPR

    database, butcpif will have to be determined. As a first approximation, the last parameter will be neglected (this Poyntingtype correction affects the pressuredependenceofthesolidfugacity,whichisgenerallysmall).

    3.2.1.2Temperaturedependentdata

    Inordertoparameterisethe(T)function(61),vapourpressuredataareneeded.Again,theDIPPRdatabaseprovidesanaccuratecorrelationofvapourpressureforallcomponentsofinterestinthiswork.

    Finally,consideringthe lowtemperatures,andthefact thata fluidsolidequilibriumisconsidered,purecomponentsublimationpressureswillbeuseful (seesection1.1.2.3ofchapter3).ThisinformationisavailabletoointheDIPPRdatabase.

    Table73:Dataforpurecomponents

    Dataneeded Dataavailable

    Criticaltemperature Inallcommondatabaseandprocesssimulators

    Criticalpressure Inallcommondatabaseandprocesssimulators

    Acentricfactor Inallcommondatabaseandprocesssimulators

    TwuconstantsSomepublishedinoriginalpublication.Availableinmostsimulatorsorfittedfromvapourpressure

    Fusiontemperature Inmostcommondatabaseandprocesssimulators

    Fusionenthalpy Inmostcommondatabaseandprocesssimulators

    Heatcapacityoffusion Unavailable

    3.2.2Mixturedata

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 6/12

    3.2.2.1Fluidsolidequilibriumdata

    Sincethisworkdealswithcrystallizationoftracecomponentsfromagasmixture,itisessentialtofinddataofthesamekindthatcanvalidatetheapproach.Afteracarefulliteraturesearch,followingtypesofdatacouldbeidentified(seetable64):

    Table64:Availablefluidsolidequilibriumdataforthemethane+benzeneequilibrium

    Reference Pointsnumber Temperaturerange(K) Datatype

    Kuebler,G.P.McKinley,C.{Kuebler,19742391/id} 39 99200 lowtemperatureSLE

    Neumann,A.etal.[13] 12 104185 lowtemperatureSLE

    Luks,K.D.Hottovy,J.D.Kohn,J.P.[7] 23 165278 2SLVElines

    Rijkers,M.P.W.Malais,M.Peters,C.J.DeSwaanArons,J.[14] 100 262298 lowandhightemperatureSLE+VSE+HTVLSEline

    Neumannetal. (1972 [13]) havemeasuredbenzeneandcyclohexanecrystallizationoutofmethane.As it canbeseenon figure65, the riskof crystallizationofbenzeneisgreaterthanforcyclohexane,becauseatthesametemperature,alowercompositionofbenzenecanleadtosolidprecipitation.Yet,thetemperatureandconcentrationsdonotfitwiththoseoftheprocess.

    The data of Neumannetal. don't provide pressure information. This is a clear drawback in using them. Nevertheless, it can be considered that pressure has anegligibleeffectonphaseequilibriumofcondensedphases,asitisthecasehere.

    Figure65:CrystallizationofCyclohexaneandbenzeneinmethane(dataofNeumannetal.1972[13]).

    IthasbeenobservedthattheconditionsthatmaybeofinteresttoLNGprocessesarethosewherevapoursolidequilibrium(VSE)isencountered.Unfortunately,veryfewsuchdatahavebeenfound.OnlyRijkersetal.(1992[14])publishessuchdata,butforveryhighbenzeneconcentrations(10%benzene).

    Theother informationfoundin literature isgivenbyLuksetal. [7].Theyprovidethreephasevapourliquidsoliddata.Twobranchesareobservedonfigure66,onecorresponding to the high temperature branch (HTVLSE) and the other corresponding to the low temperature branch (LTVLSE), information compatible with thedescriptionoffigure63.

    Figure66:PressureTemperatureprojectionofthemethane+benzenethreephaselines,accordingtothedataofLuksetal.(1981)

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 7/12

    (66)

    (67)

    (68)

    (69)

    Theyprovideasa functionof temperatureandpressure, thecompositionof the liquidphase.Thegraphof figure66clearly showshow the two threephase lineschangewithpressure.Thelowerthreephaselineendsatthemethanecriticalpoint.Asamatteroffact,fromthatpointonward,itbecomesimpossibletomakethedifferencebetweentheliquidandthevapourphase.Thehightemperaturethreephaselinecontinuesuntilmuchhigherpressuresbecausethecriticalpointslocusofthemethane+benzenemixturereacheshighpressures.

    3.2.2.2Vapourliquidequilibriumdata

    In order to determine parameters for the HuronVidal mixing rule, vapourliquid equilibria are generally used. Most often, bubble pressures are regressed, andsometimesvapourcomposition,asdiscussedinchapter3,section3.

    Methane (majority component) and benzene (crystallizing component) are the key components and will be focused on. Vapourliquid equilibrium data for thesemixturesexist,butat temperatures thatarewellabove theprocess temperature.The lowest temperaturedata thatwere foundoriginate fromRijkersetal. {Rijkers,19921537/id},andcovereightdifferentisotherms,between270and330K.

    3.3Parametersfitting

    Inordertousethemodeldefinedabove,followingparametersneedtobedetermined:

    Twu'sparametersfor(T)functiontousewiththePREoS.

    BinaryinteractionparameterstousewiththeHuronVidalmixingrule.

    Heatcapacityoffusiontouseinthesolidfugacitycalculation.

    3.3.1Purecomponentparameters

    Thevery firststep isalways toverify thepurecomponentparametersof theequationofstate.Useofvalidatedcriticalparameters,and regressionof theL,M,Nparametersofequation(61)foreachcomponentofthemixtureisaprerequisiteforthefurtheranalysis.Inthiswork,noemphasiswillbegiventothisfirststep.

    3.3.2Binaryinteractioncoefficients

    ThechoiceoftheHuronVidalmixingrule,that isbasedonthemodifiedNRTLequation(64)results inthreeinteractionparametersatanygiventemperature:ji,ijandji.Inaddition,theseparametersareafunctionoftemperature:

    ThestrengthoftheHuronVidalmixingruleisthat,whennodataisavailable,anadequatechoiceoftheinteractionparametersisequivalenttoasimplecubicmixingrulewithij:takingij=0,itispossibletofind:

    Ontheotherhand,whensufficientdataexist,itispossibletoregressthemallinordertoimprovetheaccuracyofthecalculations.Inthiswork,focuswillbecentredonthemethane+benzenebinarymixture.

    Thebinary interactionparameters (BIP)aregenerally fittedonvapourliquidequilibria. In thecaseof themethane+benzenemixture, thesedataareabundant,butexist only at temperatures that are well above the process temperatures. The parameters available in the simulator that was used so far, were fitted on hightemperaturedata.Inthiswork,focuswillbeondataofRijkersetal.astheygoto250K,thelowestofallisothermsknownforthatmixture.Forcomparison,afirstsetofBIPhasbeenobtainedwithdatathatdonotincludetheRijkersetal.dataset.

    The deviation table 65 clearly shows that the first parameters were adapted to the high temperature conditions, but provide large deviations for the lowertemperatures.Thesecondsetwasadjustedonalldatausingfollowingobjectivefunction:

    Rijkersetal.providenodataonthevapourcomposition,sothatthiscouldnotbeincludedintheregression.

    Table65:Deviationtableforbinaryinteractionparametersets

    Datasource(K)parameters

    ij=0Firstset Secondset

    270 15.05% 39.36% 46.0%

    280 8.91% 32.20% 39.0%

    290 6.40% 26.03% 33.0%

    300 6.94% 21.28% 27.0%

    310 8.53% 17.13% 23.0%

    320 11.00% 14.11% 19.0%

    330 11.18% 10.86% 16.0%

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 8/12

    (610)

    (611)

    340 12.30% 7.41% 15.0%

    3.3.3Heatcapacityoffusion

    Theparametersofthesolidfugacityfunction,equation(65),areallknownquantities(HifJ/molandifm3/mol)excepttheheatcapacityoffusionCpif.Asafirstapproximation,itispossibletoassumeitisnegligible.

    Inordertovalidatethisapproach,thefirststepistoevaluatethepurecomponentfluidsolidequilibriumline,i.e.thesublimationline.Doingso,andassumingthatthevapourfugacityequalsthepartialpressure:

    where istherighthandsideofequation(65)withoutthePoyintingcorrectionterm(pressureislowandthistermisverysmall).

    Figure67:Evaluationofthecorrectionterm(equation(610))asafunctionoftemperatureforbenzenecrystallization.

    Figure67showstheresultofthiscalculation.Obviously,atthetriplepoint,allfugacitiesareequal(thisissobyconstructionofequation(65),butitisclearthatatlowtemperature,thebenzenesublimationpressuredeviatesfromthesimplifiedmodel.Correctiontermcannotbeneglected.Itcanbeconcludedthatthesolidheat

    capacityuponfreezing,Cpif,willneedtobefitted.Consideringtheexpressionsused,thecorrectiontermhasbeenchosenintheobjectivefunction:

    Indeed,itisrathereasytocalculatetheexperimentalvalueofln(fi/fL0)byobservingthatwhencrystallizationoccurs,fi=fS0,wherefiisthefugacityofcomponentiinthestablephase(calculatedusingtheequationofstateattheexperimentaltemperature,pressureandcomposition),whileiscalculatedusingthesameequationofstate,forpurebenzeneatintheliquidphaseatthesametemperatureandpressure.

    Inadditiontothepurecomponentsublimationpressure,itispossibletoconsiderthemixtureLSEdatabyNeumannetal.,Itisessentialtoreproducecorrectlytheselatterdatasince the temperatureandconcentrationconditionsareclose to theprocessconditions.Figure68shows the logarithmof the fugacity ratio for the twotypesofsolidequilibriumdata. It isclearlyvisible that thetwocurvesarenotcolinear.Thereasonfor this ismostprobablydueto the imperfectionsof theHuronVidal mixing rule that is used. When sublimation data are used, no mixing rule is needed, as all data concern the pure component. On the opposite, the lowtemperatureLSEdataconcernverysmallbenzeneconcentrations inalmostpuremethane.Hence, in the lattercase, the infinitedilution fugacity isused,which isextrapolatedfromtheequationthathasbeenvalidatedonhightemperatureVLEdata.

    Yet,inthepresentstudy,attentionhasbeenfocusedonthelowtemperatureandhighdilutionbehaviour.Doingsoforbenzene,ithasbeenfound,withafewtrialand

    error,thevalueofCpif=200kJ/(kmol.K).

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 9/12

    Figure68:Correctionterm(equation(65))asafunctionoftemperatureforbenzenecrystallization.Thediamondsrefertosublimationdatathetrianglestobenzenecrystallizationinmethane.

    3.4Modelvalidation

    Firstatall,itisimportanttocheckthevalidityofthesolidificationmodel.Evolutionofbothfugacities(thebenzenesolidfugacityandthebenzenefluidfugacityinthemixturecalculatedwithEoS)iscomparedasafunctionoftemperature.Whenfugacitiesarethesame,afluidsolidequilibriumisexpected.Itcanbeappreciatedinfigure69thatthismodelpredictscorrectlythethreecasesshowninfigure64(thedashedlineatlowbenzenecomposition).

    Figure69:Correctionterm(equation(65))asafunctionoftemperatureforbenzenecrystallization.Thediamondsrefertosublimationdatathetrianglestobenzenecrystallizationinmethane.

    Themodelthatisthusdevelopedhasbeenfirstvalidatedbyextrapolationofpressureandtemperatureconditions,usingthedataofRijkersetal.(1992)asshowninfigure610.Thisplotshowstwodistincttypesofbehaviour.Athighertemperatures,andhighconcentrationsofbenzene,LSElinesareseen.Thedatapointsandthemodel (line) agree within 5 K. The model overpredicts crystallization temperatures which is acceptable for a safe design. At lower temperature, a vapoursolidequilibriumlineisshown.Again,themodelqualitativelyagreeswiththedata.Thecrystallizationtemperatureincreaseswhilepressuredecreases.Atlowerpressures(processconditions), it isexpectedtooverpredict thecrystallization temperature,againasaferesult.Unfortunately,nodatacouldbefoundshowingcrystallizationfromthevapourphaseatbenzeneconcentrationsthatareclosertotheprocessconditions(lessthan1%).

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 10/12

    Figure610:ModelvalidationonthebenzenecrystallizationdataoutofmethaneofRijkersetal.(1992).

    4Applicationtoprocessanalysis

    Asmentionedpreviously,fourdifferentpointshavebeenselectedforanalyzingtheriskofcrystallization.ThefeedtoLNGprocessisofcourseofmainimportanceduetothepresenceofthehighercontent inheavycomponents.Othercriticalflowsarethoseofthecryogenicsectionoftheexchangeratthelowertemperatureoftheprocess.Twodifferentflows,withsimilarcomposition,areanalysed:theheadofdemethanizerandtheLNGproductavailableatthetopofthevessel.Finally,thebottomofthescrubberhasverydifferentcompositionandisanalyzedtoo.Thecompositionofthedifferentcurrentsissummarizedintable66.

    Table66:Typicalmolarcompositionofthepointsanalyzedinprocess

    ComponentFeed

    Composition(molar%)HeadofdemethanizerComposition(molar%)

    N2 5 1.64

    CH4 86 91.66

    C2 5 5.71

    C3 2 0.96

    iC4 0.5 0.01

    nC4 0.8

    iC5 0.1

    nC5 0.3

    nC6 0.1

    nC7 0.06

    nC8 0.02

    nC9 0.01

    CO2 0.01 0.02

    Benzene 0.05 10ppm

    Cyclohexane 0.05

    4.1Feedcrystallizationphasediagram

    Using the feedcompositiongiven in table61, figure611shows thecrystallizationofbenzeneatdifferent temperaturepressureconditions.Thevapourliquid (VL)phaseenvelopeispredicted.Thereisaclearriskbelow90C,butpressurehasaneffectaswell:

    When pressure is very low (atmospheric), solid appearsmuch earlier (i.e. at higher temperature). This can be explained rather easily by observing that in theseconditions,theliquidphaseisratherconcentratedinbenzene.

    Intheliquidregion,itisseenthatincreasingpressureresultsinahighersolubilityofthesolid.Thisisbecausethisliquidphaseremainssomewhatcompressibleasitisessentiallycomposedofmethane,andthereforethetemperatureisclosetothecriticaltemperature.Hence,athigherpressure,theliquidisdenserwhichmeansitisabettersolventforthebenzenecrystals.Notethatthephenomenonhadbeenoppositeiftheliquidhadbeenlesscompressible,asisthecasewithpurebenzene:thehigherthepressure,thelargerthetendencytoformasolidphase.

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 11/12

    Figure611:Phasediagramofthefeed,givenintable61.LVmeansvapourliquidFmeansfluidphase.When'S'isincluded,benzeneiscrystallized.

    4.2Demethanizerdiagram

    A typical composition of the head of the demethanizer is shown in table 66. For this exercise, Benzene specification in the demethanizer and the LNG productoverheadhavebeenrelaxedto10ppminsteadofthegenerallyconsidered1ppm.

    Thecorrespondingphasediagramsarepresentedinfigure66.

    Figure612:Phasediagramoftheheadofthedemethanizerwith10ppmofbenzene(asshownintable66.

    Thisfigure612againshowsthevapourliquidequilibriumzoneas'LV',andthesinglephaseregionas'F'.Threedifferentcrystallizationzonescanbeidentified:

    Below115Kbenzenecrystallizesfromtheliquidphase.

    Inthesamewayasinthefeed,benzenecrystallizationcanbeobservedatlowpressurewithinthevapourliquidzone.Inoppositionwithwhatisseeninfigure611,thefluidisveryrichinmethane,andasaresultthevapourzone,belowthevapourliquidequilibrium,isvisible.Inthiszone,wherethefluidissinglephasevapour,crystallizationalsooccurs,atratherhightemperatures(upto200K),eventhoughthebenzeneconcentrationisassmallas10ppmmolar.

    ThislastcrystallizationzonecanbeexplainedwhenconsideringtheTxysketchof64.Itwasexplainedhow,atafixedpressure,afirstcrystallizationzonefromthevapourphasecouldbeobservedatmoderate temperature.When temperaturedecreases, thecrystalsdissolve in the liquid thatappears.Thecrystals reappearatmuchlowertemperature,outoftheliquidmethane.

    Unfortunately,noexperimentaldataillustratingthisbehaviourcouldbefound.

    5Conclusions

    ThisworkwasexecutedinordertoevaluatetheriskofbenzenecrystallizationintheLIQUEFINTMgasliquefactionprocess.Theworkispresentedinthreestages:

    Inordertounderstandthephysicalphenomenonofcrystallization,thephasediagramofthemethane+benzenebinarysystemisfirstinvestigatedindetail.Itisshownthattwoliquidsolidandonevapoursolidequilibriumzonesexist,inadditiontothewellknownvapourliquidequilibrium.

    Inasecondstage,athermodynamicmodelisdeveloped,thatusesthePengRobinsonequationofstatewiththeHuronVidalMixingrule.Theparametersfor

  • 6/1/2015 SelectthermodynamicmodelsforprocesssimulationAPracticalGuidetoaThreeStepsMethodology

    http://books.ifpenergiesnouvelles.fr/ebooks/thermodynamics/studies/06_Liquefin_2009_August.html 12/12

    thismodelhavebeendeterminedbasedonhightemperatureVLEdata.Itisobviousthatthemodelisusedattemperaturesthatarewellbelowthetemperatureofthedataused.Hence,carehasbeentakenthattheextrapolationtolowertemperaturesisasacceptableaspossible.Anadditionalparameter(fusionheatcapacity)isdeterminedusinglowtemperatureLSEdata.

    Inafinalstage,themodelisusedtocalculatethephasediagramoftwotypicalcompositionsencounteredintheLIQUEFINTMprocess.Thefirstcompositionisrichinheavyendcomponents.Asaresult,aliquidphaseisalwayspresent.Thisliquidmaybeconcentratedinbenzene,whichincreasesthecrystallizationriskathighertemperaturesandlowpressures.Thesecondcompositionisverypuremethane.Asaresult,asinglevapourphasemayexistathightemperatureandlowpressure.Eventhoughthebenzeneconcentrationisverysmallinthiscontext(10ppmmolar),acrystallizationriskfromthevapourphaseexistswhichjustifythechoiceforalowerbenzenespecificationinthedemethanizeroverhead.ThisphenomenonisofimportanceforthedesignoftheLNGprocess,butnoexperimentaldatavalidatingthisbehaviourhasbeenfound.

    Contacts TermsofUse 2011IFPEnergiesnouvelles