Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

23
Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang

Transcript of Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Page 1: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Seismic Scanning Tunneling Macroscope

Gerard T. Schuster, Sherif M. Hanafy,

and Yunsong Huang

Page 2: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 3: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 4: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Resolution

Z

Super Resolution ?

L

Δx

Dep

th

Δx

Rayleigh Resolution:∆ 𝑥=𝜆 𝑧2𝐿

∆ 𝑥<𝜆2

Abbe Resolution: ∆ 𝑥=𝜆2

Page 5: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 6: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

MotivationMotivation: Achieve super resolution

IBM, 1986, Scanning Tunneling Microscope

Problem: Source and receiver need to be in the near-field

Solution: Use scatterer points

IBMSample

Key Idea: slight changes in sample topography lead to enormous changes in Amps, as long as stylus is within l/2 of surface

Scanning paths IBM

Page 7: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 8: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Time Reversal Mirrors (TRM)

𝒔 ′ImagePlane

𝒔𝒐

Page 9: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Time Reversal Mirrors (TRM)

𝑮(𝒈∨𝒔𝒐 )

Migration Formula

𝒎 (𝒔′ )=∑𝒈

𝑮∗(𝒈∨𝒔′ )𝑮(𝒈∨𝒔𝒐 )  

𝒔 ′ImagePlane 𝒔𝒐

MeasuredData

MeasuredData

𝒔 ′

CalculatedData

TRM Profile

Page 10: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Point Scatterer

𝑮(𝒈∨𝒔𝒐 )

𝒎 (𝒔′ )=∫−𝝎

𝝎

∫−𝑳

𝑳

𝑮 (𝒔𝒐|𝒔 )𝑮 (𝒈|𝒔𝒐 )𝑮∗ (𝒔𝒐|𝒔 ′ )𝑮∗ (𝒈|𝒔𝒐 )𝒅𝒈𝒅𝝎

𝒔 ′ImagePlane

𝒔𝒐

𝒔

𝑮(𝒔𝒐∨𝒔)

Target Location Trial Location

Page 11: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Point Scatterer𝒎 (𝒔′ )=∫

−𝝎

𝝎

∫−𝑳

𝑳

𝑮 (𝒔𝒐|𝒔 )𝑮 (𝒈|𝒔𝒐 )𝑮∗ (𝒔𝒐|𝒔 ′ )𝑮∗ (𝒈|𝒔𝒐 )𝒅𝒈𝒅𝝎

𝑮 ( 𝒙|𝒙′ )= 𝒆𝒊𝝎|𝒙−𝒙′|/𝒄

¿ 𝒙−𝒙 ′∨¿¿

𝒎 (𝒔′ )=∫−𝝎

𝝎𝒆𝒊 𝝎(|𝒔−𝒔𝒐

❑|−|𝒔 ′−𝒔𝒐❑|)/𝒄

(|𝒔−𝒔𝒐❑||𝒔 ′−𝒔𝒐

❑|)𝒅𝝎∫

−𝑳

𝑳𝟏

¿𝒈−𝒔𝒐¿𝟐 𝒅𝒈

𝒎 (𝒔′ )=𝒔𝒊𝒏 ¿¿

𝒎 (𝒔′ )=𝑨 .𝑩

0.2 0.7S’

|s-s0| ~ l

S’0.2 0.7

|s-s0| ~ l/40

Near-field: super-resolution Far-field: Rayleigh resolution

Page 12: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

TRM Profile

1. Near Field Case, |s-s0| << l

𝑶𝒏𝒍𝒚 𝑩 𝑶𝒏𝒍𝒚 𝑨 𝒎 (𝒔′ )=𝑨 .𝑩

2. Far Field Case, |s-s0| = l

𝑶𝒏𝒍𝒚 𝑩 𝑶𝒏𝒍𝒚 𝑨 𝒎 (𝒔′ )=𝑨 .𝑩

Page 13: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 14: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Field Test

X

t

SET 1: Raw Data

X

t

SET 2: Raw Data + Scat.

X

t

SET 3: Scattered Data

Page 15: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

scatterer

24 geophones / line

Rec. Line 1

Rec. Line 2

Rec. Line 3

Rec. Line 4

Rec. Line 5

0.5 m

0.5 m

0.2 m

1 m

1 m

1 m

5 m

10 m

0.2 m 24 sources

Rec. Line

Experimental Setup

Page 16: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Site Photos

Page 17: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

TRM Profiles

Using SET 3 CSGs

Page 18: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

TRM Profiles

Before vs. After Scatterer

SET 3

SET 1

Page 19: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

TRM Profiles

Bandpass test

SET 3

SET 1

Page 20: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Outline

• Introduction• Motivation. Get super resolution by TRM• Method. Time Reversal Mirrors (TRM)• Field Test. Qademah Site• Conclusions

Page 21: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Conclusions

• TRM profiles have the shape of a sink curve if no scatterer in the near-field of the shot point

• TRM profiles have the shape of a spike if scatterer exists in the near-field of the shot point

• Field data shows that super resolution can be achieved if scatter points exists in the source near field

0.2 0.7S’

|s-s0| ~ l

S’0.2 0.7

|s-s0| ~ l/40

Page 22: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Points for future research

• What if scatter points are at the far field of both sources and receivers?

• Can we increase the resolution of migration images?

• Can we use SSP data?

Page 23: Seismic Scanning Tunneling Macroscope Gerard T. Schuster, Sherif M. Hanafy, and Yunsong Huang.

Thank You

Questions?