Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire...

29
Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure aboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Transcript of Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire...

Page 1: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Seismic energy radiation from dynamic faulting

Raúl MadariagaEcole Normale Supérieure

Laboratoire de Géologie

(from Aochi and Madariaga, BSSA 2003)

Page 2: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

1. Slip distributions and ruptures are complex at all scales.

2. Very large variations of stress change.

3. Slip weakening is a substantial fraction of static slip

4. Self-healing rupture (Heaton pulses) is the rule.

5. Energy release rate (Gc) is of the same order as strain energy density U

6. Local control of rupture

7. How about Energy and High frequencies?

Some inferred properties of seismic ruptures

Page 3: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Earthquake energy balance

U

Page 4: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Slip weakening model with healing

This is an average

global model

not a local model

(Rivera and Kanamori, 2004)

All the terms scale with

earthquake size (Aki, 1967)

Event dependent

Page 5: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Es= Gc(qs) – Gc(dyn)

Page 6: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Radiation from a simple circular crack

This

This model has just 3 parameters:Radius R

Stress drop Rupture velocity vr

Plus elasticity

Actually it has only one : R

Page 7: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Gc, vr

Radiated Energy

Displacement field

w

Er ~ R3

Gc ~ R

Etc.

Mo ~ R3

Page 8: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Possible rupture scenarios for the Izmit Earthquake

Possible modelsA seismic (Bouchon)B GPS (Wright)C Spot ImagesD FDM HarrisE Aochi Madariaga

Page 9: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Modelling complex fault geometries

Fault model

Rupture propagation model

Wave propagation model

BIE

FD

SE

M/B

IEM

Page 10: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Bouchon like « smooth » model Harris-like « rough» model

Two reasonable models of the Izmit earthquake

After Aochi and Madariaga (2003)

Page 11: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Model B Model E

The « smooth » fault modeldevelops supershear shocks

The « rough » fault models produces

subshear ruptures

Why? Detailed energy balance

Page 12: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

There is an apparent paradox:

Supershear

Little high frequency radiation along the way

Subshear

A lot of high frequency radiation

Es

The higher the speed, the less energy is absorved, the less is radiated

Page 13: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Seismic radiation from a kink in an antiplane fault

At t = tc the crack kinks

Emits a strong highfrequency wave

of ---2 type

(Jump in velocity)

( Adda-Bedia et al, 2003-2005)

Page 14: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Radiation from an antiplane crack moving along a kink

Displacement Shear stress

Analytical solution from Adda-Bedia et al (2003-2005)

Page 15: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Radiation from an antiplane crack moving along a kinkRadiation from an antiplane crack moving along a kink

Shear stress Particle velocity

Page 16: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Energy balance

If rupture propagates very slowly there is no seismic radiation

If rupture does not absorb available strain energy, Rupture accelerates and radiates. Neglecting Kostrov’s term

Is this localizable ?

(Kostrov, Husseini, Freund, etc )

quasistatic dynamic

Page 17: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Constant radiation

Es =Gc(qs)-Gc(Dyn)

Constant ra

diation

How are High Frequencies generated ?

High frequency S wave frontRadiation density

Local strain energy

Along the fault

Page 18: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Solution by spectral elements

Propagation solvedby SEM

(Vilotte, Ampuero, Festa and Komatisch)

Fracture solvedby BIEM-like

boundary conditions

(Cochard,Fukuyama, Aochi, Tada,

Kame,Yamashita)

Typical grid

The in-plane kink

Page 19: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Displacement field for a rupture moving along a kinkWrinkle

Slip discontinuity

Slip is frustrated by the kink

Residual stress concentration

(King, Yamashita, Kame, Polyakov, etc)(Williams, 1952)

X component

Y component

Page 20: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Vorticity of the particle velocity field

Computed by Festa and Vilotte April 2005

Page 21: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Rupture moves along the kinkVelocity along yVelocity along x

Page 22: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

CONCLUSIONS

1. High frequencies play a fundamental rôle in energy balance

2. Fault kinks produce radiation so that they reduce available energy

3. Kinks reduce rupture speed

4. Kinks can stop rupture

5. Kinks are the site of residual stress concentrations

Page 23: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Rupture stops rapidly after the kink

P

S

R

Figures show particlevelocity at three

succesive instantsof time

Along x Along y

Page 24: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Radiation from a suddenly starting antiplane crack

Velocity Stress

(Madariaga, 1977)Analytical solution from Madariaga (1977)

(or stopping)

Page 25: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Why ?

Energy Partition into radiation, fracture and Kostrov energies

rupture onset

Simple mode II fault kink model

by Aochi et al, 2004

Page 26: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Stopping phase

Normal displacement.Parallel displacement

Supershear

After Aochi et al (2004)

Page 27: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Rupture stops rapidly after the kinkVertical displacementHorizontal displacement

Page 28: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Rupture moves along the kink

Horizontal displacement Vertical displacement

Page 29: Seismic energy radiation from dynamic faulting Raúl Madariaga Ecole Normale Supérieure Laboratoire de Géologie (from Aochi and Madariaga, BSSA 2003)

Seismic energy radiated by an earthquake

Strain energy release>0

Kostrov Termany value

Rupture energy>0

T stress changeT stress change rateu displacementGc energy release rate

.