Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell...

27
Section 3.2 Measures of Dispersion 1. Range 2. Variance 3. Standard deviation 4. Empirical Rule for bell shaped distributions 5. Chebyshev’s Inequality for any distribution 3-1

Transcript of Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell...

Page 1: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

Section 3.2 Measures of Dispersion

1. Range

2. Variance

3. Standard deviation

4. Empirical Rule for bell shaped distributions

5. Chebyshev’s Inequality for any distribution

3-1

Page 2: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

Range

The range of a set of data is the difference between the maximum value and the minimum value.Range = (maximum value) – (minimum value)

Page 3: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE

The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company.

23, 36, 23, 18, 5, 26, 43

Find the range.

Range = 43 – 5

= 38 minutes

Page 4: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The population variance is the sum of squared deviations about the population mean divided by the number of observations in the population, N.

That is it is the mean of the sum of the squared deviations about the population mean.

3-4

Variance

Page 5: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The population variance is symbolically represented by σ2 (lower case Greek sigma squared).

3-5

Page 6: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Population Variance

The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company.

23, 36, 23, 18, 5, 26, 43

Compute the population variance of this data. Recall that

17424.85714

7

3-6

Page 7: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

xi μ xi – μ (xi – μ)2

23 24.85714 -1.85714 3.44898

36 24.85714 11.14286 124.1633

23 24.85714 -1.85714 3.44898

18 24.85714 -6.85714 47.02041

5 24.85714 -19.8571 394.3061

26 24.85714 1.142857 1.306122

43 24.85714 18.14286 329.1633

902.8571 2

ix 2

2 902.8571

7ix

N

129.0 minutes2

3-7

Page 8: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The sample variance is computed by determining the sum of squared deviations about the sample mean and then dividing this result by n – 1.

3-8

Page 9: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Sample Variance

For the travel time data assume we obtained the following simple random sample: 5, 36, 26.

Compute the sample variance travel time.

Travel Time, xi Sample Mean, Deviation about the Mean,

Squared Deviations about the Mean,

5 22.333 5 – 22.333

= -17.333

(-17.333)2 = 300.432889

36 22.333 13.667 186.786889

26 22.333 3.667 13.446889

xix x 2

ix x

2500.66667ix x

2

2 500.66667

1 3 1

ix xs

n

250.333 square minutes

3-9

Page 10: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

Standard Deviation

The standard deviation of a set of sample values is a measure of variation of values about the mean.

Page 11: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

Population standard deviation:

= square root of the population variance

Sample standard deviation: s

= square root of the sample variance, so that

2s s3-11

Page 12: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Population Standard Deviation

The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company.

23, 36, 23, 18, 5, 26, 43

Compute the population standard deviation of this data.

Recall, from the last objective that σ2 = 129.0 minutes2. Therefore,

2 902.857111.4 minutes

7

3-12

Page 13: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Sample Standard Deviation

Recall the sample data 5, 26, 36 results in a sample variance of

2

2 500.66667

1 3 1

ix xs

n

250.333 square minutes

Use this result to determine the sample standard deviation.

2 500.66666715.8 minutes

3 1s s

3-13

Page 14: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

1.50 0.79 1.01 1.66 0.94 0.672.53 1.20 1.46 0.89 0.95 0.901.88 2.94 1.40 1.33 1.20 0.843.99 1.90 1.00 1.54 0.99 0.350.90 1.23 0.92 1.09 1.72 2.00

3.50 0.00 0.38 0.43 1.82 3.040.00 0.26 0.14 0.60 2.33 2.541.97 0.71 2.22 4.54 0.80 0.500.00 0.28 0.44 1.38 0.92 1.173.08 2.75 0.36 3.10 2.19 0.23

Wait Time at Wendy’s

Wait Time at McDonald’s

3-14

EXAMPLE Comparing Standard Deviations

Page 15: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Comparing Standard Deviations

Determine the standard deviation waiting time for Wendy’s and McDonald’s.

Which is the better company in terms of waiting times?

3-15

Page 16: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Comparing Standard Deviations

Determine the standard deviation waiting time for Wendy’s and McDonald’s.

Sample standard deviation for Wendy’s:

0.738 minutes

Sample standard deviation for McDonald’s:

1.265 minutes

3-16

Page 17: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

For many observations – especially if their histogram is bell-shaped

1. Roughly 68% of the observations in the list lie within 1 standard deviation from the average

2. And 95% of the observations lie within 2 standard deviations from the average

AverageAve-s.d. Ave+s.d.

68%

95%

Ave-2s.d. Ave+2s.d.

The empirical rule for bell shaped distributions

Page 18: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

3-18

Page 19: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The Empirical Rule

Page 20: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The Empirical Rule

Page 21: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

The Empirical Rule

Page 22: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Using the Empirical RuleThe following data represent the serum HDL cholesterol of the 54 female patients of a family doctor.

41 48 43 38 35 37 44 44 4462 75 77 58 82 39 85 55 5467 69 69 70 65 72 74 74 7460 60 60 61 62 63 64 64 6454 54 55 56 56 56 57 58 5945 47 47 48 48 50 52 52 53

3-22

Page 23: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

(a)Compute the population mean and standard deviation.

(b) Draw a histogram to verify the data is bell-shaped.

(c) Determine the percentage of patients that have serum HDL within 3 standard deviations of the mean according to the Empirical Rule.

(d) Determine the percentage of patients that have serum HDL between 34 and 69.1 according to the Empirical Rule.

(e) Determine the actual percentage of patients that have serum HDL between 34 and 69.1

(use the raw data directly, not the empirical rule for this question. See how close the empirical rule approximation was!)

3-23

Page 24: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

(a) Using a TI-83 plus graphing calculator or Excel, we find

(b)

7.11 and 4.57

3-24

Page 25: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

22.3 34.0 45.7 57.4 69.1 80.8 92.5

(e) 45 out of the 54 or 83.3% of the patients have a serum HDL between 34.0 and 69.1.

(c) According to the Empirical Rule, 99.7% of the patients that have serum HDL within 3 standard deviations of the mean.

(d) 13.5% + 34% + 34% = 81.5% of patients will have a serum HDL between 34.0 and 69.1 according to the Empirical Rule.

3-25

Page 26: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

Empirical rule for any shape distribution• Chebyshev’s Inequality

3-26

Page 27: Section 3.2 Measures of Dispersion 1.Range 2.Variance 3.Standard deviation 4.Empirical Rule for bell shaped distributions 5.Chebyshev’s Inequality for.

EXAMPLE Using Chebyshev’s Theorem

Using the data from the previous example, use Chebyshev’s Theorem to

(a) determine the percentage of patients that have serum HDL within 3 standard deviations of the mean.

(b) determine the actual percentage of patients that have serum HDL between 34 and 80.8.

2

11 100% 88.9%

3

2

11 100% 75%

2

3-27