SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover...

19
SECTION 10.1 GENERAL 10.1.1 SCOPE This part of the Manual covers the structural design and installation of reinforced concrete pipe for railway culverts. Pipe geometry may be circular, arch, or elliptical. 10.1.2 DEFINITIONS 10.1.2.1 Pipe Installation Conditions a. Trench Installation. The pipe is installed in a relatively narrow trench excavated in undisturbed soil and then covered with backfill extending to the ground surface. b. Positive Projecting Embankment Installation. The pipe is installed on original ground or compacted fill with the top of the pipe above the ground, or compacted fill and then covered with embankment. c. Negative Projecting Embankment Installation. The pipe is installed within a relatively narrow trench with the top of the pipe below the natural ground or compacted fill, and then covered with embankment. d. Induced Trench Installation. The pipe is installed in a trench, backfilled with compressible material over the pipe, and then covered by a high embankment. e. Jacked or Tunneled Installation. The pipe is installed without removal of the ground above the pipe. Grouting of the exterior annular space around the pipe may be required to ensure full contact with the soil around the pipe. If existing soil conditions require an oversized tunnel, or if anticipated service conditions require access to the pipeline, a carrier pipe may be installed within the tunnel or casing pipe. 10.1.2.2 Direct Bury Pipe Installation Types Concrete Pipe may be installed in accordance with the requirements for a Type 1 through Type 4 Installation as shown in Figure 8101, and defined in Tables 8101, and 8102. The default installation for design shall be a Type 2 Installation, unless otherwise designated by the Engineer. Draft Not Yet Approved

Transcript of SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover...

Page 1: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

SECTION  10.1  GENERAL  

10.1.1  SCOPE  

This  part  of  the  Manual  covers  the  structural  design  and  installation  of  reinforced  concrete  pipe  for  railway  culverts.    Pipe  geometry  may  be  circular,  arch,  or  elliptical.  

10.1.2  DEFINITIONS  

10.1.2.1  Pipe  Installation  Conditions  

a.   Trench  Installation.    The  pipe  is  installed  in  a  relatively  narrow  trench  excavated  in  undisturbed  soil  and  then  covered  with  backfill  extending  to  the  ground  surface.  

b.   Positive  Projecting  Embankment  Installation.    The  pipe  is  installed  on  original  ground  or  compacted  fill  with  the  top  of  the  pipe  above  the  ground,  or  compacted  fill  and  then  covered  with  embankment.  

c.   Negative  Projecting  Embankment  Installation.    The  pipe  is  installed  within  a  relatively  narrow  trench  with  the  top  of  the  pipe  below  the  natural  ground  or  compacted  fill,  and  then  covered  with  embankment.  

d.   Induced  Trench  Installation.    The  pipe  is  installed  in  a  trench,  backfilled  with  compressible  material  over  the  pipe,  and  then  covered  by  a  high  embankment.  

e.   Jacked  or  Tunneled  Installation.    The  pipe  is  installed  without  removal  of  the  ground  above  the  pipe.    Grouting  of  the  exterior  annular  space  around  the  pipe  may  be  required  to  ensure  full  contact  with  the  soil  around  the  pipe.    If  existing  soil  conditions  require  an  oversized  tunnel,  or  if  anticipated  service  conditions  require  access  to  the  pipeline,  a  carrier  pipe  may  be  installed  within  the  tunnel  or  casing  pipe.  

10.1.2.2  Direct  Bury  Pipe  Installation  Types  

Concrete  Pipe  may  be  installed  in  accordance  with  the  requirements  for  a  Type  1  through  Type  4  Installation  as  shown  in  Figure  8-­‐10-­‐1,  and  defined  in  Tables  8-­‐10-­‐1,  and  8-­‐10-­‐2.    The  default  installation  for  design  shall  be  a  Type  2  Installation,  unless  otherwise  designated  by  the  Engineer.  

Draft

Not Yet

Approv

ed

Page 2: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

 

Figure  8-­‐10-­‐1  Standard  Trench/Embankment  Installation  

(Circular  Pipe  shown;  also  applies  to  arch  and  elliptical  pipe)  

Draft

Not Yet

Approv

ed

Page 3: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

 

Table  8-­‐10-­‐1  Standard  Installations  Soil  and  Minimum  Compaction  Requirements  

(Note:  Compaction  is  a  percentage  of  ASTM  D698)  

Draft

Not Yet

Approv

ed

Page 4: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

                                           

Table  8-­‐10-­‐2  Equivalent  USCS  and  AASHTO  Soil  Classifications  for  Soil  Designations  

 

 

 

 

Draft

Not Yet

Approv

ed

Page 5: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

10.1.2.3  Symbols  

Bc  =  Outside  width  of  the  pipe  (ft)  

Bd  =  Width  of  the  pipe  trench  (ft)  

Bf  =  Bedding  factor,  defined  as  the  ratio  between  the  supporting  strength  of  buried  pipe  to  the  strength  of  the  pipe  determined  in  the  three-­‐edge  bearing  test  obtained  according  to  requirements  of  ASTM  Designation  C497.  

Bfe  =  Bedding  factor  for  earth  loads;  the  ratio  of  maximum  moment  in  the  three-­‐edge  bearing  test  to  the  maximum  moment  in  the  buried  condition  when  the  vertical  soil  load  and  three-­‐edge  bearing  load  are  equal.    

Bfll  =  Bedding  factor  for  live  loads;  the  ratio  of  maximum  moment  in  the  three-­‐edge  bearing  test  to  the  maximum  moment  in  the  buried  condition  when  the  vertical  live  load  and  the  three-­‐edge  bearing  load  are  equal.  

Coeffd  =  Coefficient  of  live  load  distribution  through  the  pipe.  

D  =  inside  diameter  (or  horizontal  width)  of  the  pipe  (in)  

Do  =  outside  diameter  (or  horizontal  width)  of  the  pipe  (in)  

D-­‐Load  =  the  supporting  strength  of  a  pipe  loaded  under  three-­‐edge  bearing  test  conditions,  expressed  in  pounds  per  linear  foot,  per  foot  of  inside  diameter  or  horizontal  span.  (lbs/ft/ft)  

D0.01  =  the  maximum  three-­‐edge  bearing  test  load  supported  by  a  concrete  pipe  before  a  crack  having  a  width  of  0.01  inch  occurs  throughout  a  continuous  length  of  1  foot.  (lbs/ft/ft)  

Dult  =  the  maximum  three-­‐edge  bearing  test  load  supported  by  a  concrete  pipe  

Dist  =  Distribution  of  live  load  through  the  pipe  (ft)  

FS  =  Factor  of  Safety;  normally  taken  as  1.0  for  the  D0.01  inch  service  D-­‐load.  

H  =  Height  of  cover  over  the  top  of  the  pipe  (ft)  taken  from  the  base  of  rail  to  the  top  of  the  pipe  (ft.)  

I  =  the  impact  load  applied  to  the  top  of  the  pipe  as  a  fraction  of  the  live  load.    

LT  =  Length  of  tie  (ft)  

IM  =  impact  load  factor  

Draft

Not Yet

Approv

ed

Page 6: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

P  =  Train  Axle  Load  (lbs)  =  80,000  lbs  for  Cooper  E-­‐80  Loading  

S  =  axle  spacing  (ft.)  =  5  ft.  between  80  kip  axles  

Si  =  inside  span  of  pipe  (in)  

w  =  unit  weight  of  the  backfill  material  (lbs  per  cubic  foot)  

WE  =  earth  loads  transmitted  to  the  pipe  (lbs  per  linear  foot)  

WF  =  weight  of  fluid  carried  in  the  pipe  (lbs  per  linear  foot)  

Wl  =  live  load  at  the  top  of  the  pipe  (lbs  per  square  foot)  

WL  =  live  load  including  impact  transmitted  through  the  pipe  (lbs  per  linear  foot)  

WS  =  other  loads  transmitted  to  the  pipe  (lbs  per  linear  foot)  

 

SECTION  10.2  MATERIALS  

10.2.1  PIPE  

Pipe  shall  conform  to  the  following  ASTM  Standards  for  type,  size,  shape,  manufacturing,  testing  and  strength  requirements  as  specified  by  the  Engineer.  

a. ASTM  Designation  C76,  Specification  for  Reinforced  Concrete  Culvert,  Storm  Drain,  and  Sewer  Pipe.  

b. ASTM  Designation  C506,  Specification  for  Reinforced  Concrete  Arch  Culvert,  Storm  Drain,  and  Sewer  Pipe.  

c. ASTM  Designation  C507,  Specification  for  Reinforced  Concrete  Elliptical  Culvert,  Storm  Drain,  and  Sewer  Pipe.  

d. ASTM  Designation  C655,  Specification  for  Reinforced  Concrete  D-­‐Load  Culvert,  Storm  Drain,  and  Sewer  Pipe  

10.2.2  RUBBER  GASKETS  

Rubber  gaskets,  if  specified,  shall  conform  to  ASTM  Designation  C443,  Specification  for  Joints  for  Concrete  Pipe  and  Manholes,  Using  Rubber  Gaskets.  

10.2.3  ACID  RESISTANT  COATINGS  OR  LINERS  

Acid  resistant  coatings  or  liners  shall  be  specified  by  the  Engineer  for  the  particular  condition  required.  

Draft

Not Yet

Approv

ed

Page 7: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

SECTION  10.3  DESIGN  

10.3.1  GENERAL    

The  design  of  reinforced  concrete  pipe  culverts  must  take  into  account  the  type  of  installation  and  bedding,  the  soil  constants  of  the  natural  ground  and  backfill,  the  relative  settlements  of  the  pipe,  pipe  foundation,  bedding,  backfill  and  natural  ground,  acidity  of  the  flow,  the  physical  measurements  such  as  depth  of  cover  and  width  of  cut,  determination  of  earth  load,  live  load,  impact,  and  any  additional  loading.  

10.3.2  REFERENCES  

Satisfactory  design  methods,  utilizing  more  exact  design  procedures,  are  referenced  for  the  use  of  the  Engineer.  

a. American  Concrete  Pipe  Association  Concrete  Pipe  Design  Manual  b. American  Concrete  Pipe  Association  Concrete  Pipe  Handbook  c. ASCE  15-­‐98,  Standard  Practice  for  the  Direct  Design  of  Buried  Precast  Reinforced  

Concrete  Pipe  Using  Standard  Installations  (SIDD)  

10.3.3  LOADS  

a.   Design  loading  on  the  pipe  shall  include  Dead  (Earth)  Load,    Live  (Railroad)  Load,  Impact,  and  any  other  surcharge  loads.    Unless  otherwise  specified  by  the  Engineer,    Live  (Railroad)  Load  shall  be  Cooper  E  80.  Earth  Loads  and  Cooper  E  80  Live  Loads  may  be  obtained  from  Figure  8-­‐10-­‐2.  

Draft

Not Yet

Approv

ed

Page 8: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

 

Figure  8-­‐10-­‐2  Loads  on  Concrete  Pipe  

 

b.   The  Engineer  may  use  the  equation  below  to  determine  the  earth  load  transmitted  to  the  pipe.    Other  acceptable  methods  of  analyses  are  given  in  Article  10.3.2  

  WE  =  1.45  x  Bc  x  H  x  w         EQ.  10-­‐1    

c.   Track  loading  to  be  supported  by  the  pipe  is  shown  in  Figure  8-­‐10-­‐2.    The  indicated  loading  includes  a  variable  Impact  Load  of  40%  at  1.5  feet  below  the  base  of  rail,  and  0%  at  10  feet.    The  equation  for  this  is  shown  below:  

  𝐼𝐼𝐼𝐼 = 1 − ..

∗ 0.40       EQ.  10-­‐2  

d. The  Engineer  may  calculate  the  E  80  live  load  on  the  pipe  in  (psf)  by  dividing  the  80  kip  axle  load  by  the  5  foot  spacing  length  between  axles,  and  a  total  width  of  8  feet  for  the  track  

Draft

Not Yet

Approv

ed

Page 9: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

plus  the  load  distribution  through  the  height  of  cover  using  a  ratio  of  1:1  as  shown  in  Figure  8-­‐10-­‐3:  

 

Figure  8-­‐10-­‐3  Live  Load  Distribution  Through  the  Soil  

 

e. The  following  equation  may  be  used  to  calculate  the  live  load  at  the  top  of  the  pipe  in  pounds  per  square  foot:  

  𝑊𝑊 = ∗∗

          EQ.  10-­‐3  

f. Where  the  live  load  spread  from  multiple  tracks  running  side  by  side  overlap  (center-­‐to-­‐center  spacing  of  tracks  is  less  than  LT  +  H),  the  live  load  distribution  shall  consider  the  area  that  encompasses  the  spread  from  all  interacting  tracks.    That  load  shall  be  assumed  uniform  over  the  entire  area  of  the  live  load  spread.  

 

Draft

Not Yet

Approv

ed

Page 10: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

g. When  the  live  load  reaches  the  top  of  the  pipe,  it  is  further  dissipated  through  the  structure  of  the  pipe  a  distance  of:  

Coeffd  =  242  Do  -­‐1.97  +  0.855       EQ.  10-­‐4  

Dist  =  Coeffd  x  Do    <  54  inches       EQ.  10-­‐5  

h. Live  load  pressure  at  the  top  of  the  pipe  is  independent  of  the  direction  the  train  travels  with  respect  to  the  axis  of  the  pipe.  i. For  track  running  perpendicular  to  the  longitudinal  axis  of  the  pipe,  the  live  load  in  pounds  per  linear  foot  for  design  shall  be:    

𝑊𝑊 = ∗ ∗           EQ.  10-­‐6  

      For  track  running  parallel  to  the  longitudinal  axis  of  the  pipe,  the  live  load  in  pounds  per  linear  foot  for  design  shall  be:    

𝑊𝑊 = 𝑊𝑊 ∗ 𝐵𝐵             EQ.  10-­‐7    j. Any  surface  surcharges,  other  than  track  load  shall  be  converted  to  additional  height  of  fill  to  determine  their  loading  on  the  pipe.  k. Loading  on  a  carrier  pipe,  that  is  within  a  casing  pipe,  shall  be  taken  as  the  full  Dead  +  Live  +  Impact  Load  without  consideration  of  the  presence  of  the  casing,  unless  the  casing  is  permanently  protected  from  corrosion  using  such  means  as  providing  extra  pipe  thickness  or  a  resistant  coating.  l. If  a  trench  design  is  utilized,  the  design  trench  width  shall  be  indicated  on  the  construction  drawings  as  a  maximum  width  of  trench.    The  minimum  width  of  trench  shall  be  Bc  +2  feet,  or  1.33  Bc,  whichever  is  greater.  

 

 

 

 

 

 

Draft

Not Yet

Approv

ed

Page 11: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

10.3.4  BEDDING  FACTORS  

a.   Earth  load  bedding  factors  to  be  used  in  the  equation  for  determination  of  the  D-­‐Load  shall  be  obtained  from  Table  8-­‐10-­‐3  or  as  permitted  by  interpolation.  

Pipe  Installation  Methods  

Standard  Installation  Types  (Note  1)  1   2   3   4   Tunnel  

Direct  Bury  (Note  2)            D  =  12  inches   4.4   3.2   2.5   1.7    D  =  24  inches   4.2   3.0   2.4   1.7    D  =  36  inches   4.0   2.9   2.3   1.7    D  =  72  inches   3.8   2.8   2.2   1.7    

     D  =  144  inches   3.6   2.8   2.2   1.7    Jacked  or  Tunneled  (all  

sizes)           3.0  

Carrier  Pipe  (all  sizes)   3.6   2.8   2.2   1.7    Casing  Pipe  (all  sizes)           3.0  

Note  1:  See  Figure  8-­‐10-­‐1  and  Tables  8-­‐10-­‐1  and  8-­‐10-­‐2  Note  2:  For  pipe  diameters  other  than  listed  in  Table  8-­‐10-­‐3,  earth  load  bedding  factors  can  be  obtained  by  interpolation  

 

Table  8-­‐10-­‐3  Earth  Load  Bedding  Factors  

 

 

 

 

 

 

 

 

 

 

Draft

Not Yet

Approv

ed

Page 12: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

b.   Live  load  bedding  factors  to  be  used  in  the  equation  for  determination  of  the  D-­‐Load  shall  be  obtained  from  Table  8-­‐10-­‐4,  or  as  permitted  by  interpolation.      

Fill  Height  

(ft)  

Pipe  Diameter,  inches  12   24   36   48   60   72   84   96   108   120   144  

1.0   2.2   2.2   1.7   1.5   1.4   1.3   1.3   1.3   1.1   1.1   1.1  1.5   2.2   2.2   2.1   1.8   1.5   1.4   1.4   1.3   1.3   1.3   1.1  2.0   2.2   2.2   2.2   2.0   1.8   1.5   1.5   1.4   1.4   1.3   1.3  2.5   2.2   2.2   2.2   2.2   2.0   1.8   1.7   1.5   1.4   1.4   1.3  3.0   2.2   2.2   2.2   2.2   2.2   2.2   1.8   1.7   1.5   1.5   1.4  3.5   2.2   2.2   2.2   2.2   2.2   2.2   1.9   1.8   1.7   1.5   1.4  4.0   2.2   2.2   2.2   2.2   2.2   2.2   2.1   1.9   1.8   1.7   1.5  4.5   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.0   1.9   1.8   1.7  5.0   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.0   1.9   1.8  5.5   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.0   1.9  6.0   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.1   2.0  6.5   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2  

Note  1:  For  pipe  diameters  other  than  listed  in  Table  8-­‐10-­‐4,  Bfll  values  can  be  obtained  by  interpolation  Note  2:  For  fill  heights  equal  to  or  greater  than  6.5  feet,  the  live  load  bedding  factor  shall  be  2.2    

Table  8-­‐10-­‐4  Live  Load  Bedding  Factors  

 

10.3.5  MINIMUM  PIPE  STRENGTH  

Pipe  subjected  to  track  loads  shall  have  a  minimum  strength  of  D0.01  =  1350  lbs/ft/ft  (Class  III)  even  if  analysis  indicates  that  a  lower  D-­‐Load  is  satisfactory.  

10.3.6  FACTOR  OF  SAFETY  

The  standard  Factor  of  Safety  of  1.0  against  a  0.01  inch  crack  D-­‐Load  should  be  used  for  design  unless  the  Engineer  indicates  that  a  higher  factor  of  safety  is  required.  

10.3.7  PIPE  STRENGTH    

The  required  D-­‐Load  of  the  pipe  shall  be  determined  by  the  following  equation:  

D . =   + ×       EQ.  10-­‐8  

Draft

Not Yet

Approv

ed

Page 13: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

10.3.8  ALTERNATE  DESIGN  PROCEDURE    

In  lieu  of  carrying  out  the  complete  design  analysis  required  by  these  guidelines,  the  Engineer  may  choose  the  required  pipe  strength  for  E  80  loading  based  on  Table  8-­‐10-­‐5.  

 

Type 2

Installation_

Fill Height (ft) – From Base of Rail to Top of Pipe 1 1.5 2 3 4 5 6 7 8 9 10

Insi

de D

iam

eter

, Di (

inch

es)

12 1386 1371 1342 1297 1270 1257 1255 1262 1277 1298 1326 15 1507 1319 1291 1251 1226 1215 1215 1223 1239 1261 1288 18 1290 1279 1254 1217 1196 1187 1189 1199 1216 1239 1267 24 1227 1220 1199 1170 1156 1152 1158 1172 1193 1219 1250 30 1313 1197 1157 1135 1125 1126 1136 1153 1175 1205 1236 36 1434 1183 1123 1107 1103 1108 1121 1141 1167 1197 1232 42 1463 1223 1135 1082 1082 1091 1107 1129 1156 1188 1224 48 1515 1283 1160 1067 1070 1081 1099 1123 1152 1185 1222 54 1562 1384 1212 1071 1074 1086 1104 1128 1157 1190 1227 60 1614 1506 1271 1076 1080 1092 1110 1135 1164 1197 1235 66 1670 1555 1369 1138 1087 1099 1118 1142 1172 1206 1243 72 1732 1607 1487 1209 1094 1107 1126 1151 1181 1215 1253 78 1735 1611 1491 1238 1116 1112 1131 1156 1186 1221 1258 84 1740 1616 1496 1269 1138 1118 1138 1162 1192 1226 1264 90 1745 1673 1544 1301 1181 1125 1144 1169 1199 1233 1270 96 1750 1733 1595 1336 1227 1132 1151 1176 1205 1239 1277 102 1884 1739 1601 1403 1255 1168 1158 1182 1212 1246 1283 108 2041 1745 1607 1478 1284 1207 1165 1190 1219 1253 1290 114 2047 1752 1662 1485 1315 1232 1185 1197 1226 1260 1297 120 2053 1758 1721 1492 1347 1257 1206 1204 1234 1267 1305 126 2060 1824 1728 1518 1381 1274 1221 1212 1241 1275 1312 132 2067 1895 1735 1544 1416 1292 1236 1219 1249 1283 1320 138 2073 1971 1742 1572 1454 1309 1251 1227 1257 1290 1327 144 2081 2053 1750 1600 1493 1327 1266 1235 1264 1298 1335

Table  8-­‐10-­‐5  Reinforced  Concrete  Pipe  Fill  Height  Tables  for  E  80  Loading  

Class III = 1350 lbs/ft/ft Class IV = 2000 lbs/ft/ft Class V = 3000 lbs/ft/ft

Draft

Not Yet

Approv

ed

Page 14: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

Type  2  Installation  

Fill  Height  (ft)  11   12   13   14   15   16   17   18   19   20  

Insi

de  D

iam

eter

,  inc

hes  

12   1381   1438   1497   1558   1621   1684   1749   1815   1882   1949  15   1343   1399   1457   1517   1578   1640   1704   1768   1833   1899  18   1321   1378   1435   1495   1556   1618   1681   1744   1809   1875  24   1305   1362   1421   1481   1542   1605   1668   1733   1798   1864  30   1292   1350   1409   1470   1532   1594   1658   1722   1788   1853  36   1289   1348   1408   1470   1532   1595   1660   1725   1791   1857  42   1282   1341   1401   1463   1526   1589   1654   1719   1784   1851  48   1280   1339   1400   1462   1525   1589   1653   1718   1784   1851  54   1286   1345   1406   1468   1531   1595   1659   1724   1790   1857  60   1293   1353   1414   1476   1539   1603   1667   1733   1799   1865  66   1302   1362   1423   1485   1549   1613   1677   1743   1809   1876  72   1312   1372   1433   1496   1559   1624   1689   1754   1821   1887  78   1317   1377   1438   1500   1564   1628   1692   1758   1824   1891  84   1323   1382   1443   1505   1568   1632   1697   1762   1828   1895  90   1328   1388   1449   1511   1574   1638   1702   1767   1833   1899  96   1335   1394   1455   1517   1580   1643   1708   1773   1838   1905  

102   1341   1401   1462   1523   1586   1649   1714   1779   1844   1910  108   1348   1408   1468   1530   1592   1656   1720   1785   1850   1916  114   1355   1415   1475   1537   1599   1662   1726   1791   1857   1922  120   1363   1422   1482   1544   1606   1669   1733   1798   1863   1929  126   1370   1429   1489   1551   1613   1676   1740   1805   1870   1936  132   1377   1437   1497   1558   1620   1683   1747   1812   1877   1943  138   1385   1444   1504   1566   1628   1691   1756   1819   1884   1950  144   1393   1452   1512   1573   1635   1698   1762   1826   1891   1957  

 

Table  8-­‐10-­‐5  Reinforced  Concrete  Pipe  Fill  Height  Tables  for  E  80  Loading  (Cont.)  

Notes:  Values  in  the  Table  are  D-­‐Load  values  for  the  D0.01,  D-­‐Load  strengths  of  the  pipe  in  lbs/ft/ft.    The  assumptions  used  to  determine  the  values  in  the  table  are:  

o W  =  120  pcf  unit  weight  of  soil  o Live  Load  =  E  80  o Installation  Type  =  Type  2  Installation  using  a  granular  soil  compacted  to  90%  

Standard  Proctor  o Installation  Condition  =  positive  projecting  embankment  condition  

 

 

 

Draft

Not Yet

Approv

ed

Page 15: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

SECTION  10.4  INSTALLATION  

10.4.1    PREPARATION  OF  SUBGRADE  

10.4.1.1  Excavation  

a.   Trenches  shall  be  excavated  in  accordance  with  bank  stability  requirements  to  a  width  sufficient  to  allow  for  proper  joining  of  the  pipe  and  thorough  compaction  of  the  bedding  and  backfill  material  under  and  around  the  pipe.    The  completed  trench  bottom  shall  be  firm  and  cleaned  for  its  full  length  and  width.  

b.   The  pipe  trench  bottom  shall  be  cambered  longitudinally  if  settlement  after  installation  is  expected.    If  camber  of  the  pipe  trench  is  required,  the  indicated  camber  must  be  shown  on  the  plans.  

c.   Where  specified  on  the  plans,  the  excavation  for  a  pipe  to  be  placed  within  embankment  fill  shall  be  made  after  the  embankment  has  been  completed  to  the  specified  height  above  the  top  of  the  pipe.  

10.4.1.2  Foundation  

a.   If  the  foundation  is  incapable  of  supporting  the  pipe  loads,  an  adequate  support  shall  be  specified  or  approved  by  the  Engineer.  

10.4.2  PIPE  INSTALLATION  

10.4.2.1  Laying  Pipe  

a.   Pipe  laying  shall  begin  at  the  downstream  end  of  the  culvert.    The  bell  or  groove  end  of  the  pipe  shall  be  placed  upstream.    No  culvert  shall  be  put  into  service  until  a  suitable  outlet  is  provided  for  the  water.  

b.   Elliptical  pipe  shall  be  placed  with  the  vertical  axis  within  5  degrees  of  a  vertical  plane  through  the  longitudinal  axis  of  the  culvert.  

10.4.2.2  Bedding  

a.   Pipe  bedding  and  placement  shall  be  specified  to  conform  to  one  of  the  Installations  denoted  in  Table  8-­‐10-­‐1.  

b.   When  pipe  cannot  be  placed  on  a  prepared  surface,  but  must  instead  be  placed  on  an  unprepared  surface,  the  installation  shall  be  considered  to  be  a  Type  4  Installation.    Type  4  Installations  should  only  be  used  for  emergency  work,  and  are  not  recommended  for  

Draft

Not Yet

Approv

ed

Page 16: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

permanent  installations  unless  authorized  by  the  Engineer.    For  typical  Type  4  Installations,  see  Figure  8-­‐10-­‐1,  and  Table  8-­‐10-­‐1.  

10.4.2.3  Joining  Pipe  

a.   Pipe  may  either  be  bell  and  spigot  or  tongue  and  groove  design  unless  otherwise  specified.    When  bell  pipe  is  used,  a  shallow  excavation  shall  be  made  underneath  the  bell  of  sufficient  depth  so  that  the  bell  does  not  rest  on  the  bedding  material.  

b.   Pipe  sections  shall  be  joined  so  that  the  ends  are  fully  entered  and  the  inner  surface  areas  are  flush  and  even  per  pipe  manufacturer’s  recommendations.  

c.   Joints  shall  be  made  with  grout,  rubber  gaskets,  plastic  mastic  compounds,  or  other  combination  of  these  types  as  approved  and  specified  by  the  Engineer.    Mortar  joints  in  pipe  that  is  jacked  into  place  shall  not  be  sealed  with  mortar  until  the  culvert  jacking  is  complete.  

d.   In  areas  where  pipe  sections  could  separate,  suitable  ties  should  be  specified  to  prevent  pipe  section  separation.  

e.   Endwalls  or  headwalls  may  be  used  for  culverts  under  tracks  and  designed  to  resist  pipe  separations  as  well  as  to  retain  the  embankment.  

10.4.2.4  Leak  Resistance  

If  leak  resistant  joints  are  required,  rubber  gasketed  pipe  is  recommended.    When  such  joints  are  specified,  the  pipe  should  be  tested  for  infiltration  and  exfiltration  as  specified  by  the  Engineer.    The  maximum  rate  of  leakage  shall  conform  to  the  following  accepted  requirements,  or  to  other  standards  set  forth  by  the  Engineer.  

Infiltration  –  0.6  gallons  per  hour  per  inch  of  diameter  per  100  feet  of  pipe   Exfiltration  –  0.6  gallons  per  hour  per  inch  of  diameter  per  100  feet  of  pipe  when  

subjected  to  an  internal  head  of  2  feet,  and  increased  by  10%  for  each  additional  2  feet  of  head.  

10.4.2.5  Culverts  Carrying  High  Acid  Fluids  

Where  the  pH  of  the  conducted  fluid  is  less  than  4.5,  the  internal  surfaces  of  the  culvert  shall  be  protected  from  acid  attack  by  a  suitable  permanent  coating  or  liner.    The  Engineer  shall  specify  the  type  of  protection  and  the  means  of  application.  

 

 

Draft

Not Yet

Approv

ed

Page 17: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

10.4.3  BACKFILL  AND  EMBANKMENT  

10.4.3.1  General  

a.   The  backfill  around  the  culvert  shall  be  placed  in  accordance  with  the  installation  requirements  denoted  in  Table  8-­‐10-­‐1  and  Figure  8-­‐10-­‐1,  and  other  requirements  of  Section  8,  Part  10.  

b.   All  culverts  that  are  to  carry  track  load  shall  have  the  backfill  thoroughly  compacted  to  a  minimum  density  of  95%  as  determined  by  ASTM  D698,  and  as  specified  elsewhere  in  the  project  specifications  for  adjacent  embankment.  

10.4.3.2  Embankment  Bedding  

a.   Where  rock  or  noncompressible  foundation  material  is  encountered,  the  hard  unyielding  material  should  be  excavated  below  the  elevation  of  the  bottom  of  the  pipe  or  pipe  bell  to  a  depth  in  accordance  with  Table  8-­‐10-­‐1,  or  ½  inch  for  each  foot  of  fill  over  the  top  of  the  pipe,  whichever  is  greater,  but  need  not  be  more  than  ¾  of  the  diameter  (or  horizontal  span)  of  the  pipe.  

b.   For  a  negative  projecting  embankment  condition,  the  width  of  the  excavation,  Bd,  shall  be  at  least  1.33  Bc  and  with  a  minimum  of  2  feet  greater  than  the  outside  diameter  of  the  pipe  for  thorough  filling  and  compaction  of  the  void  space  under  the  pipe  haunch.  

 

10.4.3.3  Trench  Bedding  

a.   Materials  for  backfill  on  each  side  of  the  pipe  for  the  full  width  of  the  trench  and  to  an  elevation  of  1  foot  above  the  pipe  shall  not  contain  frozen  lumps,  stones  that  would  be  retained  on  a  2  inch  sieve,  chunks,  highly  plastic  clay,  or  other  objectionable  material.    Granular  backfill  material  shall  have  100%  passing  a  ¾  inch  sieve,  not  less  than  95%  passing  a  ½  inch  sieve,  and  not  less  than  95%  retained  on  a  No.  16  sieve.    Oversized  material  shall  be  removed  at  the  source  of  the  material,  except  as  directed  by  the  Engineer.  

b.   When  the  top  of  the  pipe  is  even  with  or  below  the  top  of  the  trench,  backfill  material  shall  be  placed  at  or  near  the  optimum  moisture  content  and  compacted  in  layers  not  exceeding  6  inches  (compacted)  on  both  sides  of  the  pipe  for  the  full  required  length.  

c.   Backfill  material  shall  be  placed  and  compacted  for  the  full  depth  of  the  trench,  unless  induced  trench  installation  is  used.  

Draft

Not Yet

Approv

ed

Page 18: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

d.   When  the  top  of  the  pipe  is  above  the  top  of  the  trench,  backfill  shall  be  placed  at  or  near  optimum  moisture  content  and  compacted  in  layers  not  exceeding  6  inches  (compacted)  and  shall  be  brought  up  evenly  on  both  sides  of  the  pipe  for  its  full  length  to  an  elevation  1  foot  above  the  top  of  the  pipe.    The  width  of  backfill  on  each  side  of  the  pipe  for  the  portion  above  the  top  of  the  trench  shall  be  equal  to  twice  the  diameter  of  the  pipe  or  12  feet,  whichever  is  less.    The  backfill  material  used  in  the  trench  section  and  the  portion  above  the  top  of  the  trench  for  a  distance  on  each  side  of  the  pipe  equal  to  the  horizontal  diameter  and  to  1  foot  above  the  top  of  the  pipe  shall  conform  to  the  requirements  for  backfill  in  paragraph  a.    The  remainder  of  the  backfill  shall  meet  the  requirements  for  embankment  construction.  

e.   The  width  of  the  trench  Bd,  shall  be  1.33  Bc,  but  not  less  than  2  feet  greater  than  the  outside  diameter  of  the  pipe  in  order  to  completely  fill  the  void.  

10.4.3.4  Induced  Trench  Method  (Special  Design)    

a.   The  Induced  Trench  method  shall  not  be  used  when  the  pipe  is  subjected  to  track  loading  without  making  a  complete  investigation  of  settlements  involved.  

b.   When  the  Induced  Trench  method  is  used,  design  and  installation  requirements  shall  follow  the  recommendations  set  forth  in  the  references  in  Article  10.3.2.    The  embankment  shall  be  completed  as  required  in  Article  10.4.3.3  to  a  height  above  the  pipe  equal  to  the  vertical  outside  diameter  of  the  pipe  plus  1  foot.    A  trench  equal  in  width  to  the  outside  horizontal  diameter  of  the  pipe,  in  depth  equal  to  the  vertical  outside  diameter  of  the  pipe,  and  to  the  length  shown  on  the  plans  shall  then  be  excavated  to  within  1  foot  of  the  top  of  the  pipe,  trench  walls  being  as  nearly  vertical  as  possible.    This  trench  shall  be  loosely  filled  with  highly  compressible  material.    Construction  of  the  embankment  above  the  pipe  shall  then  proceed  in  a  normal  manner  using  regular  fill  material.  

c.   The  length  of  the  Induced  Trench  method  shall  be  determined  by  the  Engineer  in  keeping  with  the  design  assumptions  and  the  pipe  strength  being  used.  

d.   When  the  Alternate  Induced  Trench  method  is  used,  the  embankment  shall  be  constructed  in  a  normal  manner  to  a  height  above  the  culvert  bedding  elevation  equal  to  twice  the  outside  diameter  of  the  pipe.    A  trench  as  required  shall  then  be  excavated  with  the  walls  as  nearly  vertical  as  possible,  and  the  pipe  bedded  and  backfilled  to  1  foot  above  the  pipe  as  called  for  in  Article  10.4.3.3.    The  remaining  portion  of  the  trench  shall  then  be  loosely  filled  with  highly  compressible  material.    Construction  of  embankment  shall  then  proceed  in  a  normal  manner.  

e.   In  no  case  shall  the  length  of  compressible  material  extend  to  the  ends  of  the  culvert.  

Draft

Not Yet

Approv

ed

Page 19: SECTION 10.1 GENERAL 10.1.1 SCOPE 10.1.2 … · Equivalent USCS and AASHTO Soil ... depth of cover and width of cut, ... c. ASCE 15-‐98, Standard Practice for

f.   Rock  fill  shall  not  be  dumped  over  the  culvert  without  a  sufficient  cushion  of  earth  to  prevent  breakage  of  the  pipe.  

 

10.4.3.5  Jacking  Pipe  

a.   Pipe  used  for  jacking  shall  form  a  continuous  smooth  outside  surface  when  placed  in  contact  with  the  adjacent  pipe.    The  tongue  or  spigot  shall  preferably  be  at  the  downstream  end.    Jacking  frames  shall  be  so  constructed  as  to  avoid  breaking  the  pipe  or  forcing  it  out  of  alignment.    The  pipe  shall  preferably  be  jacked  upgrade  in  order  to  provide  drainage  at  the  heading  during  excavation.    Satisfactory  means  shall  be  provided  for  maintaining  the  lead  pipe  at  the  correct  line  and  grade.  

b.   The  pipe  shall  be  installed  according  to  plans  and  specifications.    The  contractor’s  submittal  shall  document  the  construction  procedure,  extra  pipe  reinforcement,  jack  shield  (if  required),  jacking  pit  location,  shoring,  estimated  deformation,  track  monitoring  procedures,  and  other  features  for  the  safe  and  satisfactory  completion  of  the  work.    Plans  prepared  by  the  contractor  giving  the  construction  details  shall  be  submitted  to  the  Engineer  for  review.  

c.   Voids  created  during  jacking  operations  shall  be  filled  with  a  suitable  grout  material.    Grout  shall  be  pumped  through  grout  ports  integrally  cast  into  the  pipe,  or  drilled  after  production.    Locations  shall  be  recorded  after  mining  is  completed.  

d.   Monitor  elevation  and  alignment  of  the  railroad  track  above  during  the  jacking  procedures.    Jacking  must  be  stopped  and  any  problems  corrected  if  track  movement  is  detected.  

10.4.3.6  Installing  Pipe  in  Tunnels  

When  it  is  necessary  to  place  culvert  pipe  by  tunneling,  plans  and  specifications  for  the  completed  structure  shall  be  prepared  by  the  Engineer.    The  contractor  shall  set  forth  the  construction  procedures  and  other  necessary  details  and  submit  them  to  the  Engineer  for  review.  

Draft

Not Yet

Approv

ed