Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC...

25
Klimenko, September 19, SAMSI workshop, NC 1 LIGO-G1200737 Credit: AEI, CCT, LSU Searches for Gravita/onal Waves with groundbased Interferometers Sergey Klimenko University of Florida for LSC Collaboration

Transcript of Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC...

Page 1: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 1 LIGO-G1200737 Credit: AEI, CCT, LSU

Searches  for  Gravita/onal  Waves  with  ground-­‐based  Interferometers  

Sergey Klimenko University of Florida for LSC Collaboration

Page 2: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 2 LIGO-G1200737

Astrophysical  Sources  

Credit: Chandra X-ray Observatory

Casey Reed, Penn State

NS-NS

Credit: AEI, CCT, LSU

binary neutron stars

binary black holes pulsars

supernovae

gamma ray bursts

soft gamma repeaters

•  and  other  violent  astrophysical  phenomena  in  the  Universe  •  objec8ves  of  GW  experiments:  test  of  GR  &  GW  astronomy    

Page 3: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 3 LIGO-G1200737

An8cipated  Signals  

•  “chirps” - compact binary coalescence Ø  neutron stars / black holes

•  “bursts” - Supernovae / GRBs/ BH mergers/SGRs/…. Ø  any relatively short GW transient (few minutes or less)

•  “periodic” - pulsars in our galaxy Ø  GWs from neutron stars (Doppler modulated)

•  “stochastic” - cosmological/astrophysical signals Ø  Early universe (like CMBR) and unresolved sources

use different data analysis and statistical methodologies

Page 4: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 4 LIGO-G1200737

Detectors  

�  Ini/al  (1G)  LIGO  detectors  were  in  opera/on  for  a  decade  Ø 6  data  taking  runs  (~1.5  years  of  2D  live  /me)  Ø reached  its  design  sensi/vity  during  the  S5  run:  2005-­‐2007  

     Virgo  detector  joined  in  May  2007  (VSR1  run)  Ø run  enhanced  configura/on  during  the  s6  run:  2009  –  2010  Ø decommissioned  in  October  2010    

�  Initial LIGO data: GW strain ~ 16TB, AUX ~ 3PB  

Livingston, LA (LLO)

L1: 4km x 4km

Hanford, WA (LHO) H1: 4km x 4km H2: 2km x 2km

Cacsina,Italy V1: 3km x 3km

GEO600, Germany G1: 600m x 600m

Page 5: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 5 LIGO-G1200737

Sensi8vity  of  ini8al  (1G)  Interferometers  

Hz1 102

4000)()( 23−×≈

Δ=

mfLfSstrain noise:

fermi 10~100)( 3−×Δ HzfL

150 Gm h~

Page 6: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 6 LIGO-G1200737

Detector  Antenna  Sensi8vity  

•  Detector response

•  Several detectors increase coverage of the sky and detection confidence

ξ = F+h+ +F×h×

L1

V1

×+ FF

Page 7: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 7 LIGO-G1200737

Compact  Binary  Coalescence    

LTC1rate∝

  The  most  efficient  emiUers  among  expected  GW  sources                                        up  to  10  %  of  total  mass  à  GWs  

Well  understood      accurate  analy/cal  (PN)  and  numerical  (NR)    GR  models    NS-­‐NS,  NS-­‐BH,  BH-­‐BH  with  total  mass  up  to  500Mo  are  in  

the  sensi/ve  band  of  ini/al  detectors  

inspiral: PN merger: NR ringdown

Page 8: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 8 LIGO-G1200737

Detec8on  horizon  &  Astrophysical  rates  

LIGO&Virgo  rate  limits  

astrophysical  predic/ons  

 horizon  vs  mass  

PRD  85,  082002  (2012)  PRD  83,  12005  (2011)  

  intermediate  mass  compact  binaries:  100<M<450Mo  

  low/high  mass  compact  binaries:  M<100Mo  

Page 9: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 9 LIGO-G1200737

IMBH  binaries  •  Internediate  Mass  Black  Holes  –  missing  link  between  stellar  mass  BHs  

(<100Mo)  and  supermassive  BHs  (>104  Mo)  •  A  single  detec/on  of  a  IMBH  binary  system  would  be  first  unambiguous  

confirma/on  of  their  existence.  This  alone  is  a  major  discovery.  

 100≲  M/Mo  ≲450

PRD 85 (2012) 102004  

Best Rate UL90% 0.13 Mpc-3 Myr-1

Average Rate UL90%

0.9 Mpc-3 Myr-1

Expected Astro Rates ~2 10-5 Mpc-3 Myr-1

Page 10: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 10 LIGO-G1200737

advanced  (2G)  network    

•  aLIGO  (H,L),  aVirgo(V)  and  KAGRA(j)  are  being  constructed.      •  plans  for  aLIGO-­‐India  (I)  (approved  by  NSB)  

Ø  part  of  aLIGO:  LIGO  provides  instrument,  India  provides  facility  &  personnel.  •   x10  beUer  sensi/vity  than  1G  

Ø  target  detec/on  of  an/cipated  NS-­‐NS  and  possibly  other  sources  afer  2015.  Ø  extended  network  significantly  enhances  GW&mul/-­‐messenger  observa/ons  

LIGO-­‐L   LCGT-­‐J  Virgo  

LIGO-­‐A  

LIGO-­‐H  

Indigo  

I,J,H,L,V – existing and planned

detector sites

Page 11: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 11 LIGO-G1200737

Inverse  Problem  for  GW  signals  

 arrival  /me  τ                                                      ExtTrig                        all-­‐/me   arrival  direc/on  (θ,φ)                          ExtTrig                        all-­‐sky   GW  waveforms                                              template                unmodeled  

ϕθ ,

τ2

τ1 τ3

DA scenarios: known unknown

X = [

f+f× ]

h+h×

"

#$$

%

&''+n[ ]

data  =  network    x    wave    +    noise  

Data  analysis  ques/ons:  1.Detec/on:  Is  GW  signal  present  in  X?  2.Reconstruc/on:  What  can  we  learn        about  h  from  X?  

Page 12: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 12 LIGO-G1200737

Likelihood Method •  Likelihood  ra8o    (global  fit  to  GW  data)  

•  Noise  model:  usually  mul/variate  Gaussian  noise  

•  signal  model  (defined  by  detector  response)  

   

•  find  GW  polariza8ons  (h+,hx)  at  maximum  of  Λ    •  find  source  sky  loca8on  by  varia8on  of  Λ  over  θ and φ

•  Ambiguity  due  to  a  large  number  of  free  parameters    

ξ [i]= h+[i]

F+ + h×[i]

F×, h+(Ω),h×(Ω), Ω− signal model

]exp[)0|( 1 TXXXp −Σ−∝

)0|()|(

XphXp

Σ-noise covariance matrix

p(X | h)∝ exp[− X −ξ( )Σ−1 X −ξ( )T ]

Guersel&Tinto,  1998  Flannagan&Hughes,  1998  Finn,  2001  Klimenko  et  al.  2004,  2008  SuUon  et  al.  2009  

Page 13: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 13 LIGO-G1200737

 Inspiral  •  ξ is  calculated  from  theore8cal  

waveforms  h+hx    described  by  source  parameters  Ω

•  Parameter  space  Ω  is  constrained  by  the  model  

•  Sample  Ω with  templates  (explicit  template  banks)    

•  Find  τ, θ, φ, Ω (thus  ξ)    from  best  matching  template    

•  Increase  Ω  by  expanding  models:  spin,  eccentricity,  etc  

•  more  affected  by  possible  discrepancy  between  models  and  nature  

•  less  affected  by  noise

Matched Filter

Burst  •  Amplitudes  h+[i],  hx[i]  are  free  source  

parameters  •  Parameter  space  is  constrained  by  

signal  dura8on  and  bandwidth  •  Search  through  parameter  space  

analy8cally.  •  Find  τ, θ ,φ, ξ  at  maximum  of  L   •  Decrease  parameter  space  by  adding  

astrophysical  constraints  •  less  affected  by  possible  discrepancy  

between  models  and  nature  •  more  affected  by  noise  

L = 2 lnΛ = 2X[i]⋅

ξ [i,h]( )

i∑ −

ξ [i,h]⋅

ξ [i,h]( )

i∑

Page 14: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 14 LIGO-G1200737

Detec8on  

  Data  is  non-­‐sta8onary,  non-­‐gaussian  and  affected  by    ar8facts    Empirical  background  sample  for  es8ma8on  of  FA  probability  

Ø  constructed  by  8me-­‐shiding  data  à  may  be  biased  wrt  true  background  Ø  need  a  massive  background  set  (T  observa8on  x  106)      

CQG  29  (2012)  155002  

detec/on  sta/s/c  

FA  ra

te  

Sta/onary  Gaussian  noise  

real  noise  

Page 15: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 15 LIGO-G1200737

Detector  Characteriza/on    •  Along  with  the  GW  strain  data  LIGO  records  data  from  thousands  

auxiliary  monitors  designed  to  capture  environmental  and  instrumental  disturbances  Ø  Ini/al  LIGO  data:  GW  strain  ~  16TB,    AUX  ~  3PB  

•  First  line  of  defense:  extensive  analysis  of  AUX  and  GW  data  to  Ø  characterize  detector  noise  and  ar/facts  (glitches)  Ø  validate  data  (data  quality)  Ø  associate  glitches    with  transients  observed  in  GW  data    (veto  analysis)      

•  A  mul/tude  of  the  analysis  and  sta/s/cal  methods  Ø  Spectral  density  es/mators  Ø  TF  transforma/ons  (STFT,  wavelets,  WDM,  Hilbert-­‐Huang,  etc)  Ø  Regression  (Wiener-­‐Kolmogorov,    LPE  &  other  filters)  Ø  Mul/variate  classifica/on,  binary  decision  trees  a  lot  of  room  for  improvement  

Page 16: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 16 LIGO-G1200737

Veto  analysis  

H1 H2

H0:PEM-ISCT4_ACCZ

accelerometer

�  reject  detected  events  IF  they  are  associated  with  glitches. �  process TBs of AUX data �   characterize  glitch  sta/s/cs  

Page 17: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 17 LIGO-G1200737

coherent  network  analysis  

•  Noise scaled network antenna patterns

 

•  Construct  projec8ons  P  on  f+fx  plane  Ø  e.g.  unconstrained  likelihood    

ξ = [

f+,f× ]

h+h×

"

#$$

%

&''= F ⋅h

f+

X

ξ u

N f+ =

F1+(θ,φ,ψ)S1

,..., FK+(θ,φ,ψ)SK

,

f× =

F1×(θ,φ,ψ)S1

,..., FK×(θ,φ,ψ)SK

network  plane  

L = XTPX

Page 18: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 18 LIGO-G1200737

Network  sta8s8cs  

•  Detec8on  sta8s8cs  Ø  Likelihood  (tot  SNR):  

Ø  coherent  energy:  

•  Rejec8on  of  glitches    Ø  number  of  various  sta8s8cs  

based  on  residual  (NULL)  energy:  χ2,  coherent  null,  incoherent  null,  network  correla8on  coefficient,  etc  

 

   

cc = CN+ |C |

C = XTPX, Pii =0

L = XTPX

NEL −=

Wen & Shutz, 2004 Chatterji et al, PRD 74 082005 (2006) Klimenko  et  al,  CQG  25,  114029(2008)  

PRD  81  (2010)  102001  

glitches injections

Page 19: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 19 LIGO-G1200737

Detec8on  Challenge  

• Event  has  a  “chirp”  signature  and  very  significant  in  CBC  search  Ø  Likely  BH-­‐NS  system  at  20-­‐50  Mpc  Ø  False  alarm  rate  <  1/7000  years  • Afer  complete  analysis  the  event  was  revealed  to  be  a  “blind  injec/on”  

http://www.ligo.org/news/blind-injection.php

• A  candidate  was  iden/fied  by  online  burst  search  in  LIGO/Virgo  data  on    September  16,  2010  

Ø reconstructed  within  minutes  afer  data  collected  

Big Dog (sky location near Canis Major)

Page 20: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 20 LIGO-G1200737

Source  Reconstruc/on  •  Reconstruc8on  of  sky  coordinates  

Ø  iden8fica8on  of  host  galaxies,  popula8on  studies  Ø  associa8on  with  other  observa8ons  (EM,  ν)    

à  mul8-­‐messenger  astronomy  •  Reconstruc8on  of  polariza8ons  and  waveforms  

Ø  Iden8fica8on  and  classifica8on  of  sources  Ø  Helps  background  rejec8on  

•  Es8ma8on  of  source  parameters  Ø  test  of  GR  Ø  selec8on  and  valida8on  of  source  models  

•  LIGO-­‐India  and  KAGRA  significantly  simplify  detec8on  and  improve  source  reconstruc8on  

Page 21: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 21 LIGO-G1200737

  for perfectly co-aligned detectors Α=0 – detect only one GW component

  Α - contribution to total network SNR from the second component

Network Alignment

A = | f× || f+ |

HL

IHLV

important for reconstruction of both GW polarizations and sky localization

HLV

PRD 83:102001,2011

Page 22: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 22 LIGO-G1200737

• Median  error  angle  in  degrees  (50%  CL,  SNRnet<30)  for  for  reconstruc8on  of  ad-­‐hoc  burst  signals  

Sky  Localiza8on  4 sites - IHLV

5 sites – IJHLV

3 sites – HLV

more spatially separated sites

à better sky localization  

Page 23: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 23 LIGO-G1200737

Mul/-­‐messenger  Astronomy  

nearby    galaxies  

Images  taken  within  44  min  afer  the  event  and  on  subsequent  nights  by  Zadko,  SkyMapper,  Swif,  TAROT,  ROTSE  

probability  skymap  reconstructed  with  burst  algorithm  (cWB)  

minutes  afer  the  Big  Dog  event  

Challenges:  unambiguous    associa/on  of  GW  and  other  

messenger    transients,  low  latency  analysis  (fast  network,  algorithms)    

Capture  source  astrophysics  with  mul/ple  messengers  (EM,ν,GW)  example:  Big  Dog  event  

Page 24: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 24 LIGO-G1200737

Bayesian  Coherent  Analysis    •  Parameter  es8ma8on:  X-­‐data,  H-­‐model,  θ-­‐parameters  

Ø  to  get  posterior  PDF  marginalize  over  a  subset  of  θ

 •  Model  selec8on  with  odds  ra8o    •  evidence:  •  hard  for  large  θ  (17  parameters  for  inspiral  sources,  could  be  more  for  burst  sources)    -­‐  nested  sampling  

•  uncertain  prior  PDFs  

Oij =p(Hi )p(H j)

p(X | Hi )p(X | H j)

p(X | H) = p(θ | H) ⋅p(X | H,

θ )∫ dθ

p(θ | X,H) = p(

θ | H) ⋅p(X | H,

θ )

p(X | H)Veitch&Vecchio,  2010  Van  der  Sluys  et  al,  2009  Skilling,  2004  

Page 25: Searches(for(Gravitaonal(Waves( with(ground7based ...Klimenko, September 19, SAMSI workshop, NC LIGO-G1200737 3 An8cipated!Signals! • “chirps” - compact binary coalescence neutron

Klimenko, September 19, SAMSI workshop, NC 25 LIGO-G1200737

Summary  �  Ini/al  GW  interferometers  

Ø  started  to  constrain  source  models  (analysis  of  data  con/nues)  Ø  established  conceptually  new  GW  data  analysis  Ø  began  integra/on  of  GW  experiment  and  astronomy    Ø  paved  road  for  advanced  (2G)  detectors  

• advanced  GW  interferometers  Ø  target  first  detec/on  of  astrophysical  GW  signals  Ø  LIGO-­‐India  and  KAGRA  will  significantly  enhance  the  network      

• advanced  data  analysis  Ø  challenges  of  confident  detec/on  and  accurate  reconstruc/on  in  

presence  of  non-­‐sta/onary  and  non-­‐Gaussian  noise.  Ø  about  the  same  data  volume,  faster  computers  à  can  explore  

promising  DA  &  STAT  methods  which  are  prohibi/ve  now  Ø  demand  for  efficient&accurate  STAT  tools  à  beUer  

communica/on  between  GW  data  analysts  and  experts