Se gricultureseagriculture.eu/wp-content/upload_folders/seagriculture.eu/2016/... · van Steenis,...

78
Se a griculture Exploring the seaweed chain • Discover the progression in the North Sea Area • Exploring the seaweed chain • Commercial and scientific perspectives New: Education Square! • Site visit to seaweed test centre and more Two days of interactive presentations and discussions focussing on all aspects in the chain: Biobased Economy, Hatchery and Farming, Marine Spatial Planning, Market Chain Development, Mechanization, Pre-processing, Storage and Logistics, Biorefinery and Products. - Den Helder/Texel, The Netherlands September More info at: www.seagriculture.eu 2 nd international seaweed conference Organizing committee members: Book of abstracts

Transcript of Se gricultureseagriculture.eu/wp-content/upload_folders/seagriculture.eu/2016/... · van Steenis,...

SeagricultureExploring the seaweed chain

• DiscovertheprogressionintheNorthSeaArea

• Exploringtheseaweedchain

• Commercialandscientificperspectives

• New:EducationSquare!

• Sitevisittoseaweedtestcentreandmore

Twodaysofinteractivepresentationsanddiscussionsfocussingonallaspectsinthechain:

Biobased Economy, Hatchery and Farming, Marine Spatial Planning, Market Chain Development, Mechanization, Pre-processing, Storage and Logistics, Biorefinery and Products.

-Den Helder/Texel, The Netherlands

SeptemberMore info at: www.seagriculture.eu2nd international seaweed conference

Organizing committee members:

Book of abstracts

 1  

 

   

 2  

 

Table  of    content    Organisers  and  (media)  partners  ............................................................................................................  3  

Conference  program  ...............................................................................................................................  4  

Conference  program  -­‐  25-­‐09-­‐2013  -­‐  25  September  2013  ...................................................................  4  

Conference  program  -­‐  26-­‐09-­‐2013  -­‐  26  September  2013  ...................................................................  6  

Participants  at  the  information  market:  .................................................................................................  7  

Sponsor  coffee  break  first  morning:  .......................................................................................................  8  

Schools  and  universities:  ........................................................................................................................  8  

Add  Walz  ...............................................................................................................................................  10  

Abstracts,  CV’s,  company  description  of  speakers  and  chairman  day  1  ...............................................  11  

Abstracts,  CV’s,  company  description  of  speakers  and  chairman  day  2  ...............................................  52  

Notes  .....................................................................................................................................................  74  

7th  International  Algae  Congress  -­‐  Hamburg  .........................................................................................  75  

 

 

 

   

 3  

 

Organisers  and  (media)  partners  

 

 

   

 4  

 

Conference  program  

Conference  program  -­‐  25-­‐09-­‐2013  -­‐  25  September  2013  09:00  -­‐  09:30  Registration  and  coffee/tea    

 

09:30  -­‐  09:45  Welcome  and  introduction  by  Martin  Scholten,  IMARES    

 

09:45  -­‐  11:15  Biobased  Economy  Chairman:  Floris  Groenendijk,  IMARES  Roel  Bol,  Biobased  Economy  /  Ministry  of  Economic  Affairs  Prof.  Dr.  Bela  Buck,  Alfred  Wegener  Institute  for  Polar  and  Marine  Research  AWI  Marine  Aquaculture,  Maritime  Technologies  and  ICZM  Head  of  Working  Group  From  near  shore  pilots  to  large  scale  offshore  operations  Sergio  Cansado,  Marine  Stewardship  Council  Measuring  fisheries  sustainability    

 

11:15  -­‐  11:30  North  Seaweed  promo  film  (work  version)  Launching  of  the  3-­‐minutes  promo  film  by  Jaap  Bond,  deputy  of  the  province  of  Noord  Holland.  The  promo  film  focuses  on  the  current  situation  and  needs  regarding  the  North  seaweed  chain  in  development.    

 

11:30  -­‐  12:00  Coffee  /  tea  break  

 

 

 12:00  -­‐  13:00  Experiences  of  seaweed  end-­‐users  Piet  Bogaert,  PhD,  Global  Product  &  Process  Development  Manager  Polysaccharides,  Cargill  Texturizing  Solutions  How  collaborations  between  the  scientific  community,  suppliers  and  processors  can  ensure  a  sustainable  seaweed  industry.    Machiel  van  Steenis,  Energy  Valley  Framework  for  developing  a  new  business  chain    

 

13:00  -­‐  14:00  Networking  Break  During  to  the  Lunch  buffet,  it  is  possible  to  visit  the  Table  Top  Presentations  and  Poster  Sessions.  With  adequate  participation  a  discussion  on  the  further  development  of  demand-­‐driven  educational  seaweed  programmes  will  be  convened  by  NIOZ.    

 

   

 5  

 

14:00  -­‐  15:00  Session  1:    Hatchery  and  Farming  Chairman:  Willem  Brandenburg:  Plant  Research  International  Willem  Brandenburg,  Plant  Research  International  Genetics  Bert  Groenendaal,  R&D  Project  Coordinator,  Sioen  Advanced  textiles  as  novel  substrates  for  seaweed  cultivation  Dr.  John  Bothwell,  School  of  Biological  and  Biomedical  Sciences,  Durham  University    Kelp  plantations  in  EnAlgae:  an  EU-­‐funded  collaborative  network    

14:00  -­‐  15:00  Session  2:    Marine  Spatial  Planning  Chairman:  Sander  van  der  Burg:  LEI  Dr.  Adam  Hughes,  Lecturer  in  Sustainable  Aquaculture,  Marine  Alliance  for  Science  and  Technology  Scotland,  Scottish  Marine  Institute  Seaweed  and  Society’s  Challenges  in  the  21st  Century  Josien  Steenbergen,  IMARES  Bluegrowth  developments  and  Multi-­‐use  platforms  

15:00  -­‐  16:00  Session  3:    Market  Chain  Development  Chairman:  Dr.  Stefan  Kraan,  Ocean  Harvest  Technology  Dr.  Stefan  Kraan,  Scientific  Director  and  co-­‐founder  Ocean  Harvest  Technology  Ltd  Seaweed,  the  low  hanging  fruit  Helena  Abreu,  SeaBioplas  Seaweed  from  sustainable  aquaculture  as  feedstock  for  biodegradable  bioplastics  Marie  Plan,  Aqua  B  Edible  seaweed:  20  years  of  seaweed  food  market  evolution    

15:00  -­‐  16:00  Session  4:    Upscaling  installations  and  reducing  operational  costs  Chairman:  Chris  Veltman,  ATO  Marnix  Poelman,  Wageningen  UR  Large  scale  offshore  windfarms  and  offshore  aquaculture  John  Stavenuiter,  AMC  Centre  Simulation  model  reducing  operational  costs  for  offshore  windfarms  and  offshore  aquaculture    

16:00  -­‐  16:20  Coffee  break    

 

16:20  -­‐  17:05  Discussion  Governance  Chairman:  Luc  van  Hoof,  IMARES  Ministerie  EZ  –  Wilbert  Schermer-­‐Voest  Stichting  Noordzee  –  Christine  Absil  Blueport  /  VisNed  -­‐  Pim  Visser  ICES  /  Imares  -­‐  Pauline  Kamermans  Ekofish  -­‐  Louwe  de  Boer  Rijkswaterstaat  –  Wanda  Zevenboom  Stichting  Noordzeeboerderij  -­‐  Eef  Brouwers      

 

17:05  -­‐  17:15  Wrap  up:  Day  1  by  Floris  Groenendijk  –  IMARES    

 

17:15  -­‐  17:45  Reception  Mayor  of  Den  Helder  (invited)  

 

   19:30  -­‐  22:00  Dinner  Evening  -­‐  location  Dok  51  optional  -­‐  upon  registration  only  

 

 6  

 

 Conference  program  -­‐  26-­‐09-­‐2013  -­‐  26  September  2013  

   09:30  -­‐  10:00  Registration  and  coffee/tea    10:00  -­‐  10:15  Introduction  by  Henk  Brinkhuis,  director  NIOZ    10:15  -­‐  11:45  Various  aspects  for  seaweed  processing  Chairman:  Klaas  Timmermans,  NIOZ  Jaap  van  Hal,  Research  Scientist,  Energy  Center  of  the  Netherlands  (ECN)  Chemicals  and  bio-­‐fuels  from  the  third  generation  biomass  seaweed  Paulien  Harmsen,  Scientist  Biorefinery  and  Biobased  Products,  Wageningen  UR  Seaweed  biorefinery:  production  of  fuels  and  chemicals  from  native  North  Sea  seaweed  species  Annette  Bruhn,  Research  Scientist,  PhD,  Aarhus  University  –  Department  of  Bioscience  The  MacroAlgae  Biorefinery,  Laminaria  for  Energy,  Feed  and  Bioremediation  Paul  Bikker,  ASG  Seaweed  and  seaweed  components  as  novel  protein  sources  in  animal  diets.    

 

12:00  -­‐  13:00  Lunch  &  Networking  Break  During  to  the  lunch  buffet,  it  is  possible  to  visit  the  Table  Top  Presentations  and  Poster  Sessions.  With  adequate  participation  a  discussion  on  the  further  development  of  demand-­‐driven  educational  seaweed  programmes  will  be  convened  by  NIOZ.  Show  of  promo  film  (non-­‐stop).    

 

13:00  -­‐  14:00  Keynote  lecture  /  NIOZ  Colloquium  Ronald  de  Vries,  CBS-­‐KNAW  FUNGAL  BIODIVERSITY  CENTRE  Degradation  of  biomass  of  terrestrial  plants  and  algae  by  fungi    

 

14:00  -­‐  15:20  Valorisation  of  seaweed  Job  Schipper,  Hortimare  Follow-­‐up  Texel:  test  module  for  seaweed  cultivation  off  the  coast  of  Texel  Céline  Rebours,  Helena  Abreu  and  Julie  Maguire,  Bioforsk  Integrated  actions  for  the  development  of  the  Macroalgae  Industry  in  Europe.  Pieternella  Luttikhuizen  &  Judith  van  Bleijswijk,  NIOZ  Population  genetics  of  kelp  and  its  relevance  for  kelp  farming  in  northwest  Europe.  Alexander  Lubsch  /  Klaas  Timmermans,  NIOZ  First  results  for  the  NIOZ  Seaweed  Centre.    

 

15:20  -­‐  15:30  Wrap  up  Day  2  by  Klaas  Timmermans,  NIOZ      

15:30  -­‐  17:30  Technical  Visits  Seaweed  Centre  NIOZ  and  TS  Agri  (Zilt  proefbedrijf)    More  info    

 

   18:00  -­‐  18:20  Departure  ferry  to  Den  Helder      

   

 7  

 

Participants  at  the  information  market:  

   

 

 

   

 8  

 

Sponsor  coffee  break  first  morning:    

 

 

 

 

 Schools  and  universities:    Hogeschool  Zeeland    Van  Hall  Larenstein    ROC  Noord  Nederland    Wageningen  UR      

 9  

 

The  “Sealab”  aims  to  research  and  develop  a  mixed  Offshore  Wind  and  Sea  farm  for  increasing  revenues  of  wind  farms  and  Building  with  Nature.      

This  project  aims  to  investigate  the  improvement  of  the  exploitation  of  offshore  wind  farms  by  means  of  co-­‐use  the  space  of  offshore  wind  farms.  Offshore  wind  farms  (OWF)  have  significant  spatial  claims.  This  area  can  hardly  be  used  for  other  functions.  The  starting  point  for  this  “Sealab”  project  is  the  idea  that  co-­‐use  of  the  revenues,  synergy  in  O&M,  improve  in  a  sustainable  way,  construction  and  maintenance  of  the  wind  farm  by  “Building  with  Nature”  and  increase  societal  acceptance  of  offshore  wind  energy.  It  should  be  self-­‐supporting.    The  “Sealab”  research  focuses  the  potential  for  sustainable  shellfish-­‐  and  seaweed  production  within  and  around  offshore  wind  farms.  The  focus  is  on  gaining  knowledge  and  defining  the  feasibility  for  any  type  of  offshore  crustacean  production  (mussel,  flat  oyster,  lobster,  North  Sea  crab)  and  seaweeds  and  the  interaction  between  different  species.      

     

     

 

 

 

   

Heinz Walz GmbH · Eichenring 6 · 91090 Effeltrich · GermanyPhone: +49-(0)9133/7765-0 · Telefax: +49-(0)9133/[email protected] · www.walz.com

 11  

 

Abstracts,  CV’s,  company  description  of  speakers  and  chairman  day  1    

Welcome  and  introduction  by  Martin  Scholten,  IMARES  

 

 

 

 

 

 

IMARES  is:        

• an  independent,  objective  and  authoritative  institute  that  provides  knowledge  necessary  for  an   integrated   sustainable   protection,   exploitation   and   spatial   use   of   the   sea   and   coastal  zones;  

• an   institute   that   provides   knowledge   necessary   for   an   integrated   sustainable   protection,  exploitation  and  spatial  use  of  the  sea  and  coastal  zones;  

• a  key,  proactive  player  in  national  and  international  marine  networks  (including  ICES  and  EFARO).  

   

 12  

 

Biobased  Economy  Chairman:  Floris  Groenendijk,  IMARES  

 

 

Floris  Groenendijk  (51)  has  studied  physical  oceanography  at  the  University  of  Utrecht.  His  master  thesis  was  about  the  vertical  structure  of  the  residual  currents  in  the  Dutch  coastal  zone.  After  his  academic  study  he  worked  at  the  Ministery  of  Transport  and  Waterways  in  the  field  of  coastal  morphology.  In  1998  he  changed  radically  from  the  Governement  to  a  Non-­‐governmental  organisation;  he  became  Director  of  the  North  Sea  Foundation.  During  his  period  the  North  Sea  Foundation  launched  the  good  fish  guide  and  contributed  to  the  implementation  of  the  EU  Directive  of  the  Port  Reception  Facility.  Since  2007  he  works  at  IMARES  Wageningen  UR  as  head  of  different  departments.  At  this  moment  he  is  head  of  the  Maritime  Departement.      

   

 13  

 

Roel  Bol,  Biobased  Economy  /  Ministry  of  Economic  Affairs  

 

 

   

 

 

Curriculum  Vitae    Roel  P.J.  BOL  Date  of  birth:   8th  June  1950  Marital  Status:   Married,  3  children  

Educational  background:  State  University  Utrecht,  Master  International  Law  

Experience:  

1975 Board  of  Health  Care,  EEC  matters  and  bilateral  treaties  1979 Ministry  of  Health  and  Environment,  Policy  Advisor  Department  of  International  

Economic  Affairs    1987 Ministry  of  Agriculture  and  Fisheries,  Deputy  Director  International  Economic  Affairs  1988 Ministry  of  Agriculture,  Nature  Management  and  Fisheries,  Deputy  Director  Trade  and  

Industry  1993 Ministry  of  Agriculture,  Nature  Management  and  Fisheries,  Director  Minister’s  Office  1997 Ministry  of  Agriculture,  Nature  Management  and  Fisheries,  Director  Fisheries  2001 Ministry  of  Agriculture,  Nature  and  Food  Quality,  Director  Trade      and  Industry  2009 Ministry  of  Economic  Affairs,  Agriculture  and  Innovation  Program  Director  Biobased  

Economy  

Abstract  presentation  Roel  Bol,  Biobased  Economy  /  Ministry  of  Economic  Affairs  

Since  about  2005,  the  creation  of  a  biobased  economy  has  been  a  significant  issue  in  the  Netherlands.  A  biobased  economy  is  an  economy  where  the  used  raw  materials  are  primarily  derived  from  nature  (biomass).  Current  analysis  shows  that  there  is  already  a  considerable  biobased  market  in  existence:  the  value  of  current  biobased  production  is  estimated  at  326  billion  Euros.    Widespread  application  of  biomass  will  in  the  long  term  have  a  positive  economic  effect  on  the  economy.  The  environmental  benefits  are  also  considerable.      

Algae  can  play  an  important  role  in  the  production  of  biofuel,  fodder,  chemical  platform  chemicals,  and  high-­‐value  specialties.  The  world  of  algae  researchers  and  producers  has  the  appearance  of  the  biobased  economy  itself:  major  projects,  a  lot  of  research,  test  sites  and  pilot  plants,  but  the  large  scale  substitution  of  fossil  products  by  their  green  counterparts  from  algae  has  not  yet  made  a  take-­‐off  –  apart  from  some  pharmaceuticals  and  neutraceuticals.  But  algae  will  make  their  breakthrough.      

 14  

 

Prof.  Dr.  Bela  Buck,  Alfred  Wegener  Institute  for  Polar  and  Marine  Research  AWI  Marine  Aquaculture,  Maritime  Technologies  and  ICZM  Head  of  Working  Group  From  near  shore  pilots  to  large  scale  offshore  operations  

 

   Affiliation:    Prof.  Dr.  Bela  H.  Buck                                                    ResearcherID:  B-­‐8772-­‐2012      (1)  Alfred  Wegener  Institute  Helmholtz  Centre  for  Polar  and  Marine  Research  AWI    Head  of  Working  Group  -­‐  Marine  Aquaculture,  Maritime  Technologies  and  ICZM    Bussestrasse  27,  D-­‐27570  Bremerhaven  (Germany),  Phone:  +49  471-­‐4831-­‐1868,  Fax:  +49  471-­‐4831-­‐1149,  Mobile:  +49  179-­‐79159-­‐90,  Email:  [email protected],  URL:  http://www.awi.de  URL:  http://www.awi.de/en/go/aquaculture  URL:  http://www.awi.de/People/show?bbuck      (2)  University  of  Applied  Sciences  Bremerhaven    Professor  for  Applied  Marine  Biology    An  der  Karlstadt  8,  D-­‐27568  Bremerhaven  (Germany),  Phone:  +49  471-­‐4823-­‐239,  Fax:  +49  471-­‐4823-­‐199,  Email:  BBuck@hs-­‐bremerhaven.de,  URL:  http://www.hs-­‐bremerhaven.de,  URL:  http://www.hs-­‐bremerhaven.de/Bela_H._Buck.html      (3)  German  Aquaculture  Association        President    Bundesverband  Aquakultur  i.G.,  Fraunhoferstraße  2-­‐4,  24118  Kiel  (Germany),  Email:  BBuck@bundesverband-­‐aquakultur.de  URL:  http://www.bundesverband-­‐aquakultur.de          

 15  

 

Curriculum  Vitae    Prof.   Dr.   Bela   Hieronymus   Buck   studied   neurophysiology   and  marine   biology   at   the   University   of  Bremen,  at   the   Institute   for  Marine  Research   in  Kiel  and  at   the  Center   for  Tropical  Marine  Ecology  (ZMT)   in   Bremen   (all   in   Germany).   In   the   years   1999/2000   he   was   involved   in   research   projects  concerning   the   aquaculture   of   giant   clams   at   the   Great   Barrier   Reef   Marine   Park   Authority  (GBRMPA),   the   James   Cook   University   and   the   Australian   Institute   for   Marine   Science   (AIMS)   in  Townsville  (all  in  Australia)  in  which  he  got  is  graduation  as  a  marine  biologist.  Onwards,  he  worked  in  various  research  projects  at  the  Center  for  Tropical  Marine  Ecology.    Since  2001  he  is  engaged  in  projects  regarding  offshore  aquaculture  (especially  as  multifunctional  use  of   offshore   wind   farms)   at   the   Alfred  Wegener   Institute   for   Polar   and  Marine   Research   (AWI)   in  Bremerhaven/Germany.   He   conducted   his   PhD   in   2001-­‐2004   in   various   aspects   of   offshore  aquaculture   related   to   technology,   biology,   legislation   and   ICZM   issues   within   the   German   Bight  (grade  of  excellent/highest  distinction).  From  2005  Dr.  Buck  was  PostDoc  at  the  AWI  and  is  the  head  of  the  working  group  “Marine  Aquaculture,  Maritime  Technologies  and  ICZM”.  

He  was   responsible   to   establish   the   Institute   for  Marine   Resources   (IMARE),   in   which   he  was   the  head  of  the  section  “Marine  Aquaculture”  as  well  as  a  member  of  the  Directory  Board.    

In  July  2007  he  was  given  a  professorship  for  “Applied  Marine  Biology”  from  the  University  of  Applied  Sciences  in  Bremerhaven.    

Today,   Bela   H.   Buck   is   involved   in   various   projects   concerning   the   cultivation   of   marine  plants/animals,   the   development   of   technological   design   and   the   realisation   of   pilot   projects   to  commercial   enterprises.  He   is   in   cooperation  with   various   national/international   institutions.  He   is  responsible   for   the  new  RAS  plant   (2.4  Mio  €)   for   aquaculture   research,  which  was   inaugurated   in  March   2011.   Bela   H.   Buck   won   three   prices   during   his   scientific   career   (e.g.   The   Price   for  interdisciplinary  research  from  the  Chamber  of  Commerce).    

For  more  details:  http://www.awi.de/People/show?bbuck  

   

 16  

 

Sergio  Cansado,  Marine  Stewardship  Council  The  MSC:  Measuring  fisheries  sustainability  

                   

Authors:    Sergio  Cansado,  Fisheries  Assessment  Manager,  Marine  Stewardship  Council.  Marine  Stewardship  Council,  Marine  House,  1-­‐3  Snow  Hill,  London  EC1A  2DH,  UK    Chloe  North,  BSc  Aquatic  Resource  Management,  King’s  College  London.  64  Rodenhurst  Road,  London  SW4  8AR,  BA  Hons  Biological  Sciences,  Oxford  University,  [email protected],    +44  07557789595  

 MSC:    The  Marine  Stewardship  Council  (MSC)  is  an  international  standard  setting  organisation  that  provides  market  based  solutions  to  the  problem  of  overfishing.  The  MSC  fisheries  standard  has  been  developed  to  assess  the  sustainability  of  wild  capture  freshwater  and  marine  species,  open  to  all  fisheries  regardless  of  size,  scale,  location  and  intensity.  A  total  of  207  fisheries  are  currently  certified  as  sustainable  under  the  MSC  program,  having  confirmed  that  they  maintain  sustainable  fish  stocks,  minimise  environmental  impacts  and  are  effectively  managed.  None  of  the  312  fisheries  currently  engaged  in  the  MSC  program  (including  105  still  in  assessment)  targets  seaweed  species.  A  set  31  performance  indicators  and  scoring  guideposts  form  the  “assessment  tree”  used  to  assess  fisheries’  sustainability.  A  recent  investigation  made  by  MSC  shows  that  the  MSC  standard  and  assessment  tree  could  be  potentially  used  to  evaluate  the  sustainability  of  seaweed  fisheries.  However,  further  investigation  is  required  in  order  to  develop  a  modified  assessment  tree  for  these  species  appropriate  to  their  special  characteristics  (e.g.  biology,  ecosystem  influences  of  harvesting  and  enhancement  technologies).  

   

 17  

 

Curriculum  Vitae    Sergio  Cansado  Marrero  BSc  in  Marine  Biology.  University  of  Laguna  (Tenerife,  Spain)  /  MSc  in  Aquaculture.  University  of  Stirling  (Scotland,  UK).    Marine  House,  1,  Snow  Hill,  London  EC1A  2DH.  +44  (0)20  7246  8937  [email protected]      Since  June  2012,  I  have  been  working  as  Fisheries  Assessment  Manager  at  the  Marine  Stewardship  Council  (London,  UK),  leading  the  review  of  assessments  for  Africa,  South  America  and  Mediterranean  Sea  fisheries  as  well  as  those  linked  to  Spanish  clients  and  enhanced  fisheries.    I  also  am  responsible  for  reviewing  specific  elements  of  the  assessment  process  related  to  principle  1  (stock  status).  As  delegated,  I  implement  /  evaluate  policy  projects  related  to  enhanced  fisheries,  metapopulations  and,  potentially,  seaweed  fisheries.          From  2010  –  2011,  I  worked  as  Fishery  Biologist  at  the  National  Marine  Information  and  Research  Centre  (NatMIRC)  (Swakopmund,  Namibia).  I  provided  general  on-­‐site  support,  monitoring  and  technical  advice  for  the  project  “Support  for  the  research  programme  of  the  NatMIRC”.  Specific  tasks  were  related  to  staff  training  for  the  analysis  and  management  of  the  existing  fisheries  data  from  the  Namibian  observers  program.  Other  duties  involved  drafting  data  management  protocol,  working  Seminars  and  annual  estimation  of  species  composition  and  size  structure  of  the  Namibian  hake  catches,  among  others.        I  worked  until  2010,  as  Fishery  Research  Technician  at  the  Spanish  Institute  of  Oceanography  (IEO)  (Canary  Islands,  Spain).  Main  duties  were  related  to  the  scientific  monitoring  of  fisheries  in  Marine  Protected  Areas,  including  processing  and  analysis  of  fishery  data;  designing,  management  and  maintaining  of  surveys  and  catches  databases;  monitoring  and  fishery  data  collection  from  the  observers  on  port.  I  participated  in  more  than  20  oceanographic  surveys  in  the  Canary  Islands  MPAs,  Mauritania,  Morocco  Namibia  as  well  as  scientific  observer  on  board  of  tuna  freezers  in  the  Gulf  of  Guinea  (Ivory  Coast)  and  Indian  Ocean  (Seychelles).  Co-­‐author  of  several  scientific  reports,  posters  and  scientific  publications  mainly  related  the  work  done  on  MPAs.    The  Marine  Stewardship  Council    The  MSC  is  a  global  program  with  fisheries  participating  from  all  the  world’s  oceans.  We  have  a  staff  of  100  spread  across  the  HQ  in  London  and  regional  offices  in  the  Netherlands,  USA,  Australia,  Baltic  region,  France,  Germany,  Japan,  South  Africa,  and  Spain.  The  MSC  is  a  registered  charity  and  non-­‐profit  organisation,  relying  to  a  large  extent  on  financial  support  from  donors  with  an  interest  in  protecting  sustainable  fishing.  The  MSC  assessment  program  is  used  to  certify  wild  capture  freshwater  and  marine  species,  open  to  all  fisheries  regardless  of  size,  scale,  location  and  intensity.  The  MSC  mission  is  to  use  the  ecolabel  and  fishery  certification  program  to  contribute  to  the  health  

 18  

 

of  the  world’s  oceans  by  recognising  and  rewarding  sustainable  fishing  practises,  influencing  the  choices  people  make  when  buying  seafood,  and  working  with  our  partners  to  transform  the  seafood  market  to  a  sustainable  basis.  To  maintain  impartiality,  the  MSC  operates  a  'third-­‐party'  certification  program.  This  means  that  MSC  itself  does  not  assess  fisheries  or  decide  if  they  are  sustainable.  Instead  certificates  are  issued  by  certifiers  who  are  independently  accredited  to  be  able  to  perform  assessments  of  fisheries  and  decide  if  they  meet  the  MSC's  standards.  MSC  certification  is  a  robust  scientific  process,  which  draws  on  scientific  expertise  from  marine  scientists  worldwide  as  well  as  contributing  to  improving  scientific  understanding  through  the  fishery  assessment  process.  Every  MSC  certified  fishery  has  demonstrated  that  it  maintains  sustainable  fish  stocks,  minimises  environmental  impacts  and  is  effectively  managed.  These  are  the  three  MSC  environmental  principles  that  every  fishery  in  the  program  must  prove  it  meets.    The  input  that  stakeholders  provide  during  a  fishery’s  assessment  is  key  to  ensuring  a  thorough  assessment  and  a  credible  outcome.  For  this  reason,  certifiers  are  required  to  carefully  consider  all  comments  received,  and  justify  and  document  their  responses.  The  MSC  also  has  an  objections  procedure  which  provides  a  mechanism  for  any  disagreement  with  the  assessment  of  the  fishery  to  be  reviewed  and  resolved.  The  MSC  is  continually  improving  its  program,  and  stakeholders  are  invited  to  contribute  to  its  development  through  regular  meetings  of  the  Stakeholder  Council  and  public  consultations.    Marine  Stewardship  Council  Marine  House,  1,  Snow  Hill,  London  EC1A  2DH  Tel:  +44  (0)20  7246  8900  Fax:  +44  (0)20  7246  8901  www.msc.org    

   

 19  

 

Jaap  Bond,  deputy  of  the  province  of  Noord  Holland  

 

 

 

 

Curriculum  Vitae  

Jaap  Bond  (11  december  1957)  is  gedeputeerde  Landbouw  en  Landelijk  Gebied.  Hij  startte  zijn  politieke  loopbaan  in  1996  als  steunlid  van  de  CDA-­‐fractie  in  zijn  geboorteplaats  Edam-­‐Volendam.  In  1999  stapte  hij  over  naar  Provinciale  Staten,  waar  hij  van  2003-­‐2007  fractievoorzitter  was.  In  2007  wisselde  Bond  zijn  Statenlidmaatschap  in  voor  een  gedeputeerdenpost.  Hiervoor  werkte  hij  28  jaar  bij  de  politie.  

 

Provinciehuis  Dreef  3  Postbus  123  2000  MD  Haarlem  e-­‐mail:  bondj@noord-­‐holland.nl  

   

 20  

 

Experiences  of  seaweed  end-­‐users  Piet  Bogaert,  PhD,  Global  Product  &  Process  Development  Manager  Polysaccharides,  Cargill  Texturizing  Solutions  

 

 

How  collaborations  between  the  scientific  community,  suppliers  and  processors  can  ensure  a  sustainable  seaweed  industry.  

Today  70%  of  worldwide  seaweed  production  is  coming  from  aquaculture.  Seaweed  farming  faces  many  challenges  and  needs  scientific  support  to  keep  growing.  The  remaining  30%  of  the  resource  is  wild  and  thus  needs  solutions  to  ensure  a  long  term  supply.  These  concerns  should  be  shared  within  the  seaweed  world:  scientists,  harvesters,  farmers,  seaweed  suppliers,  processors,  etc.  All  need  to  

align  their  initiatives  to  reach  a  common  target:  develop  sustainable  and  innovative  solutions  for  the  seaweed  industry.  These  initiatives  must  take  into  account  induced  impacts  such  as  environmental,  economical  and  social  ones.    

How  can  we  turn  our  common  will  to  sustain  this  activity  into  optimized  partnerships?  The  aim  of  this  presentation  is  to  share  Cargill  Texturizing  Solutions’  experiences  and  perspectives  as  a  large  industrial  user  and  identify  future  collaborative  projects.  Cargill  has  been  involved  in  several  partnerships  worldwide,  developing  fundamental  or  technical  know-­‐how  with  several  stakeholders  and  is  still  willing  to  be  more  active.    

For  example,    

-­‐ Our  seaweed  experts  collaborate  with  academic  scientists  for  providing  technical  support  to  local  seaweed  communities.    

-­‐ Cargill  permanently  works  with  its  suppliers  towards  best  practices,  seaweed  traceability  and  quality  assessment.      

-­‐ More  fundamental  subjects  such  as  the  effect  of  stress  or  genetics  impoverishment  upon  seaweed  growth  and  carrageenan  content  are  also  suggested.    

 

Various  examples  of  experiences  and  ideas  will  be  shared  in  the  presentation.  Here  is  the  chance  to  gather  ideas  and  next  collaboration  opportunities.  

 

Company  Overview:    

Cargill  is  an  international  producer  and  marketer  of  food,  agricultural,  financial  and  industrial  products  and  services.  Founded  in  1865,  our  privately  held  company  employs  140,000  people  in  65  countries.  More  detailed  information  can  be  found  on  www.cargill.com.  

 21  

 

Agriculture:  We  buy,  process  and  distribute  grain,  oilseeds  and  other  commodities  to  makers  of  food  and  animal  nutrition  products.  We  also  provide  crop  and  livestock  producers  with  products  and  services.  

Food:  We  provide  food  and  beverage  manufacturers,  foodservice  companies  and  retailers  with  high-­‐quality  ingredients,  meat  and  poultry  products,  and  health-­‐promoting  ingredients  and  ingredient  systems.    

Financial:  We  provide  our  agricultural,  food,  financial  and  energy  customers  around  the  world  with  risk  management  and  financial  solutions.    

Industrial:  Cargill  serves  industrial  users  of  energy,  salt,  starch  and  steel  products.  We  also  develop  and  market  sustainable  products  made  from  agricultural  feedstocks.  

Cargill  Texturizing  Solutions  is  a  leading  supplier  of  gelling  and  thickening  agents  as  well  as  emulsifiers,  focusing  on  supplying  the  global  food  and  beverage  industries.  Cargill  Texturizing  Solutions  offers  specific  solutions  for  improving  stability,  texture,  consistency  and  shelf  life  in  multiple  food  applications,  based  on  a  wide  palette  of  ingredients  including  hydrocolloids,  emulsifiers,  lecithins,  starches  and  soy  flours.    

Curriculum  Vitae  Piet  Bogaert,  Dr.  ir.    

Work  experience  

Cargill  (different  locations,  EMEA):        Cargill  Texturizing  Solutions:  global  product  &  process  development  manager  polysaccharides  (starches,  fruit  extracts,  seaweed  extracts,  locust  bean  gum).  

-­‐ Cargill  Cocoa  &  Chocolate:  EMEA  product  &  process  development  manager.    

Tate  &  Lyle  (Aalst,  BE):      Team  coordinator  product  and  process  development  carbohydrates  (starches  &  derivatives).    Agrotechnological  Research  Institute  (Wageningen,  NL):            Project  leader  /  scientific  researcher  

 

Education  

1997:   Doctor  in  Applied  Biological  Sciences;  chemistry.    University  Ghent;  BE  &  ATO-­‐DLO  Wageningen;  NL  Title  thesis:  “Branched  alkyl  polyglycosides  derived  from  dimorphecolic  acid  synthesis  and  surface  active  properties”.  

1994:   Bio-­‐engineer  chemistry  University  of  Gent  “Faculty  of  Applied  Biological  Sciences;  BE  Title  thesis:  “Radical-­‐  and  nucleofilic  induced  reaction  with  2-­‐(halogeenmethyl)aziridins”.    

 22  

 

Machiel  van  Steenis,  Energy  Valley  Framework  for  developing  a  new  business  chain  

 

Many  companies  and  institutions  are  active  in  the  field  of  seaweed  cultivation  and  use.  Even  though  aspects  like  breeding  and  harvest  are  still  under  investigation  the  basic  chain  is  comparable  to  other  biomass  valuation  chains.  A  key  question  in  all  these  chains  is  how  to  shape  a  chain  in  such  a  way  that  a  positive  businesscase  appears.  

The  presentation  will  show  some  of  the  lessons  learned  in  other  biomass  chains  and  apply  these  to  the  sea  weed  developments.  In  general  it  is  clear  that  R&D  and  pilot  projects  are  relatively  easy  to  define.  There  is  a  lot  of  uncertainty  on  the  technology,  but  at  this  stage  public  funding  is  present  to  a  large  extent.  In  the  phase  of  demonstration  projects,  technological  challenges  are  not  fundamental  anymore,  they  are  mostly  connected  to  the  challenges  of  scaling  up.  At  this  point  public  funding  is  more  difficult,  as  the  technology  has  not  been  proven  yet  on  this  larger  scale.  On  top  of  that,  the  investment  required  is  large  which  makes  it  difficult  to  find  investors.  

It  is  crucial  to  find  a  bussines  case  for  a  demonstration  project  with  as  few  uncertainties  as  possible  and  preferably  financially  neutral.  Application  of  biomass  for  energy  production  does  meet  the  first  criterium,  but  is  not  financially  neutral  without  exploitation  subsidies.  The  key  is  to  find  a  model  where  the  biomass  is  used  at  higher  value  than  energy,  without  making  the  process  and  chain  itself  too  complicated.  The  presentation  will  show  two  cases  where  this  has  been  possible,  so  why  would  this  not  be  possible  for  seaweed?  

CURRICULUM  VITAE  

Machiel  van  Steenis  is  senior  project  manager  Biobased  Energy  at  the  Energy  Valley  Foundation.  Energy  Valley's  mission  is  to  encourage,  incite,  facilitate  and  connect  companies,  knowledge  institutes  and  government  bodies  to  develop  projects  together  and  make  real  progress  in  clean,  reliable  and  innovative  energy.    

He  is  coordinating  programmes  on  Biomass  Conversion  Technologies,  Aquatic  Biomass  Production  and  Green  Chemicals/Biobased  Economy.  After  he  received  his  PhD  at  Wageningen  University  and  Research  Centre,  he  was  marketing  and  research  manager  in  the  private  horticultural  sector  with  a  main  focus  on  integrated  crop  protection.  For  several  years  he  was  agricultural  policy  advisor  at  the  province  of  Groningen  and  started  working  at  Energy  Valley  in  2006.    

 23  

 

Session  1:  Hatchery  and  Farming    Chairman:  Willem  Brandenburg:  Plant  Research  International  Genetics  

   Dr.  ir.  W.A.  (Willem)  Brandenburg,  Project  Leader:  Agronomic  aspect  of  seaweeds,  Wageningen  University,  NL  

 Curriculum  Vitae    Dr  Willem  A.  Brandenburg  has  35  years  experience  in  the  disciplines  plant  systematics  and  economic  botany  and  throughout  his  career  he  adressed  topics  such  as  saline  agriculture  and  seafarming  to  ensure  the  worlds  food  security  besides  other  claims  on  agriculture  such  as  green  energy.  He  is  involved  in  a  large  Dutch  integrated  multitrophic  aquaculture  project  ‘Zeeland  sole’,  the  cultivation  of  glassworts  (Salicornia  spp.)  in  the  world  and  currently  for  seafarming  purposes  the  agronomy  of  Ulva  and  Laminaria  as  seaweed  species.  He  is  also  developing    large  scale  seafarms  amongst  others  for  energy,  foodand  feed  purposes,  .  In  this  context,  he  also  addresses  in  cooperation  with  Hortimare  the  production  of  young  seaweeds  to  optimalise  the  optimal  inoculation  of  production  devices.  

 

Company  profile  

 Plant  Research  International  (PRI)  addresses  the  whole  range  of  plant  sciences  from  the  plants’  molecular  biology  towards  the  (agro)ecological  approaches.  Within  PRI  the  business  Unit  Agrosystems  Research  focuses  on  the  development  of  new  sustainable  agrosystems,  among  which  seafarms  around  seaweed  production.  

   

 24  

 

Bert  Groenendaal,  R&D  Project  Coordinator,  Sioen  Advanced  textiles  for  open  sea  biomass  cultivation  

       

 

 

       

 

Dr.  Ir.  Bert  Groenendaal  

R&D  project  coördinator  at  SIOEN  Industries  NV  Fabrieksstraat  23,  8850  Ardooie,  Belgium  

Email:  [email protected]  

 

The   project   AT~SEA   targets   the   development   of   advanced   textiles   in   order   to   demonstrate   the  technical  and  economic   feasibility  of  open  sea  cultivation  of  macroalgae   (seaweeds)   in  Europe,   the  latter   being   an   important   source   for   our   future   supply   of   sustainable   chemicals   and   energy.   This  paper   will   discuss   the   18-­‐months   status   of   the   development   of   advanced   textile   materials   for   3  different  elements  of  such  an  aquatic  biomass  cultivation  system:  

Advanced  textile  substrates  as  seaweed  cultivation  platforms   Advanced   textile   based   cables   and   connections   for   positioning   and   anchoring   of   the   textile  

cultivation  system   Advanced  coated  textiles  for  flexible  and  light-­‐weight  flotation  tubes,  as  well  as  for  storage  and  

transportation  tanks    During   the   presentation   we   will   give   a   general   overview   about   the   project   (technical   objectives,  partners,  etc.),  discuss  the  technological  concepts  for  each  of  the  3  elements,  and  discuss  the  results  from  laboratory  tests  as  well  as  from  tests  at  sea.  The  AT~SEA  project  has  received  funding  from  the  European  Union's  Seventh  Framework  Programme  (FP7/  NMP.2011.4.0-­‐3)  under  grant  agreement  n°  280860.  

 

   

 25  

 

About  the  author:  

Dr.   Ir.   Bert   Groenendaal   obtained   his   PhD   in   polymer   chemistry   at   the   Eindhoven   University   of  Technology   in   the   Netherlands.   After   a   postdoctoral   fellowship   at   the   University   of   California   at  Berkeley  he  moved  to  industry  (Bayer  AG  in  Germany,  and  Agfa-­‐Gevaert  NV  in  Belgium.  Since  2008  he  is  active  at  SIOEN  Industries  NV  as  R&D  project  coordinator.  Within  this  position  he  is  responsible  for   all   external   projects   (bilateral   as   well   as   (inter)nationally   funded   projects).   Furthermore   he   is  coordinator  of  the  FP7  project  AT~SEA.  

 

About  SIOEN  Industries  NV:  

SIOEN  Industries  NV  is  a  diversified  stock  quoted  group  with  an  extensive  portfolio  of  products  and  activities:  spinning,  weaving  and  coating,  manufacturing  of  clothing,  production  of  fine  chemicals  and  processing   of   technical   textiles.   Horizontal   and   vertical   integration,   diversification   and   permanent  growth  have  driven  us  since  1960.  SIOEN  Industries  NV  is:  

- World  leader  in  coated  textiles  - European  leader  in  high  end  technical  apparel  (protective  clothing)  - Specialist  in  fine  chemicals  

Our  mission  is  “Protecting  through  innovation”.  Our  technical  textiles  are  used  for  truck  side  curtains,  tilts   and   tarpaulins,   pool   covers,   tents   and   textile   architectures,   flexible   containers   (flexitanks),  publicity  banners,  geotextiles  and  many  more.  SIOEN  is  also  quite  familiar  with  the  maritime  market,  being   a   producer   of   oil   boom   materials,   high   tenacity   multifilament   polyester   yarns   for   offshore  cables,  coated  textiles  for  inflatable  boats  and  many  other  marine  (semi)products.  

 

 

   

 26  

 

Dr.  John  Bothwell,  School  of  Biological  and  Biomedical  Sciences,  Durham  University    Kelp  plantations  in  EnAlgae:  an  EU-­‐funded  collaborative  network  

   

 

 

Company  Description  

The  EnAlgae  ('Energetic  Algae')  project  is  a  four  year  Strategic  Initiative  of  the  INTERREG  IVB  North  West  Europe  programme.    Within  EnAlgae,  Queen's  University  Belfast  and  Durham  University  (UK),  the  National  University  of  Ireland  (Galway,  Ireland)  and  the  Centre  d'Etude  et  des  Valorisation  des  Algues  (Brittany,  France)  ARE  evaluating  offshore  cultivation  methods  that  will  allow  sustainable  kelp  biomass  production.    Our  cultivation  sites  are  in  and  around  protected  conservation  areas,  so  a  particular  focus  of  our  work  is  the  development  of  cultivation  processes  that  can  be  used  in  areas  of  high  human  activity.    Accordingly,  we  are  collecting  biological,  ecological,  and  socio-­‐economic  data  to  assess  the  suitability  of  various  seaweed  strains  for  large-­‐scale  cultivation,  and  the  results  of  our  first  year  of  growth  will  be  presented.  

Curriculum  Vitae  -­‐  John  H.  Bothwell    1    Contact  and  general  information  

1.1  Contact  information  

Homepage:  http://www.qub.ac.uk/bb/People/DrJHBothwell/    1.2  Profile  

I  am  a  Reader  in  Bioenergy  in  the  School  of  Biological  and  Biomedical  Sciences  at  Durham  University,  where   I  work  on  brown  algal  systematics  and  speciation.  My  DPhil   in  Biochemistry  was  awarded   in  2000  for  my  thesis  ‘Multi-­‐nuclear  NMR  studies  on  mammalian  brain  volume  regulation’  and  between  2000-­‐2007   I   held   postdoctoral   research   fellowships   in   Cambridge,   Plymouth   and   Roscoff,   taking   a  year  off   in  2002-­‐2003   to  play  professional   rugby.  From  2009-­‐2012,   I  held  a   Lectureship  at  Queen’s  University  Belfast  and  was  selected  as  one  of  the  2010  SEB  President’s  Medallists.      1.3  Awards  and  Qualifications  

1991-­‐1995:      BA(Hons)  Biochemistry,  University  of  Oxford  1995-­‐2000:    DPhil  Biochemistry,  University  of  Oxford  2007-­‐2009:    Leverhulme  Early  Career  Research  Fellow,  Marine  Biological  Association,  Plymouth  

 27  

 

2010-­‐2011:      President’s  Medallist,  Society  for  Experimental  Biology    2    External  responsibilities  and  profile  

2.1  Academic  

(2010-­‐present)    Associate  Editor,  European  Journal  of  Phycology  

(2012-­‐)    NERC  Peer  review  panel   (2009)  Invited  speaker  at  Gordon  Conference  on  ‘Fertilization  &  Activation  Of  Development’.   (2007,  2013)    Grant  reviewer  for  NSF  (USA)  and  Belgian  Science  Policy  Office.   Manuscript  reviewer  for  Science  (2012-­‐),  New  Phytologist  (2005-­‐),  Journal  of  Experimental  

Botany  (2008),  Journal  of  Phycology  (2008-­‐),  Protoplasma  (2007),  Botanica  Marina  (2007-­‐),  Journal  of  Neurochemistry  (2002),  and  the  Journal  of  the  Marine  Biological  Association  (2005-­‐).  

 2.2  Mentoring  (early-­‐career  academic  staff)  

(2010)  President’s  Medallist,  Society  for  Experimental  Biology   (2006)  Founder,  UK  Research  Staff  Association   (2008)  Co-­‐author  of  ‘The  Concordat  to  Support  the  Career  Development  of  Researchers’.    Available  at  www.vitae.ac.uk/concordat  

(2007-­‐2009)    Keynote  speaker  and  panel  member  at  Foundation  for  Science  and  Technology  and  Nature  Source  events    

(2007-­‐2012)    External  Advisory  board  member,  Vitae.     (2007-­‐2009)    Member,  RCUK  Academic  Career  Development  advisory  board.   (2010-­‐present)  Regular  member  of  School  hiring  panels   (2010-­‐present)  School  ATHENA  SWAN  committee  member    

2.3  Society  Membership  

Council  Member  and  Education  and  Outreach  Chair,  British  Phycological  Society   I  have  been  the  local  organiser  on  the  Systematics  Association  2011  Biennial  conference  in  Belfast  and  the  Ectocarpus  2012  conference  in  Roscoff,  am  co-­‐organising  the  British  Phycological  Society’s  60th  Anniversary  meeting  in  London  this  year,  and  its  Summer  Annual  Scientific  meeting  in  Belfast  in  2013.  

Organising  committee,  European  Phycological  Congress  in  London,  2015.    

2.4  Public  understanding  of  science  

(2009-­‐2013)  BBC  local  radio  pundit,  usually  for  issues  relating  to  marine  biodiversity.   Cafe  Scientifique  and  British  Science  Association  SciBar  speaker.   STEMNET  Science  and  Engineering  Ambassador,  giving  annual  talks  to  Biology,  Religious  Studies  and  General  Studies  A-­‐level  classed  of  local  schools.  

Date  of  Birth:  August  1st,  1972  Nationality:  British  Office:  (01913)  341  349  Email:  [email protected]  

School  of  Biological  and  Biomedical  Sciences    Durham  University  South  Road  Durham,  DH1  3LE  

 28  

 

Interdisciplinary  lecture:  ‘The  grammar  of  intracellular  communication’,  Centre  for  Linguistics  and  Philology,  University  of  Oxford.  

Royal  Society  Scientist-­‐MP  pairing  scheme  participant,  2010-­‐2011.    3    Selected  peer-­‐reviewed  publications  

Collén,  J,  et  al.  (2013)  Genome  structure  and  metabolic  features  in  the  red  seaweed  Chondrus  crispus  shed  light  on  evolution  in  the  Archaeplastida.    PNAS.  [PubMed]  

Bothwell,  JHF,  Griffin,  JL.  (2011)    An  introduction  to  biological  nuclear  magnetic  resonance  spectroscopy.    Biological  Reviews  86,  493-­‐510.  [PubMed]  

Bothwell,  JH,  Marie,  D,  Peters,  AF,  Cock,  JM,  Coelho,  SMB.  (2010)  Role  of  endoreduplication  and  apomeiosis  during  parthenogenetic  reproduction  in  the  model  brown  alga  Ectocarpus  siliculosus.    New  Phytologist  188,  111-­‐21.  [PubMed]  

Cock,  JM,  et  al.  (2010)    The  Ectocarpus  genome  and  the  independent  evolution  of  multicellularity  in  the  brown  algae.    Nature  465,  617-­‐21.  [PubMed]  

Bothwell,  JH,  Kisielewska,  J,  Genner,  MJ,  McAinsh,  MR,  Brownlee,  C.  (2008)    Ca2+  signals  co-­‐ordinate  zygotic  polarization  and  cell  cycle  progression  in  the  brown  alga,  Fucus  serratus.    Development  135,  2173-­‐81.  [PDF]  [PubMed]  

Coelho,  SMB,  Brownlee,  C,  Bothwell,  JHF.  (2008)    A  tip-­‐high,  Ca2+-­‐interdependent,  reactive  oxygen  species  gradient  is  associated  with  polarized  growth  in  Fucus  serratus  zygotes.    Planta  227,  1037-­‐46.  [PubMed]  

Bothwell,  JH,  Brownlee,  C,  Hetherington,  AM,  Ng,  CKY,  Wheeler,  GL,  McAinsh,  MR.  (2006)    Biolistic  delivery  of  Ca2+  dyes  into  plant  and  algal  cells.    The  Plant  Journal  46,  327-­‐35.  [PubMed]  

Bothwell,  JHF  and  Ng,  CKY.  (2005)    The  evolution  of  Ca2+  signalling  in  photosynthetic  eukaryotes.    New  Phytologist  166,  21-­‐38.  [PubMed]  

Joint  first  author  (*)  on:  Foreman,  J*,  Demidchik,  V*,  Bothwell,  JH*,  Mylona,  P,  Miedema,  H,  Torres,  MA,  Linstead,  P,  Costa,  S,  Brownlee,  C,  Jones,  JD,  Davies,  JM,  Dolan,  L.  (2003)    Reactive  oxygen  species  produced  by  NADPH  oxidase  regulate  plant  cell  growth.    Nature  422,  442-­‐6.  [PubMed]  

Bothwell,  JH,  Styles,  P,  Bhakoo,  KK.  (2002)    Swelling-­‐activated  Taurine  and  Creatine  Effluxes  from  Rat  Cortical  Astrocytes  are  Pharmacologically  Distinct.    Journal  Of  Membrane  Biology  185,  157-­‐64.  [PubMed]  

Miedema,  H,  Bothwell,  JH,  Brownlee,  C,  Davies,  JM.  (2001)  Calcium  uptake  by  plant  cells-­‐channels  and  pumps  acting  in  concert.    Trends  in  Plant  Science  6,  514-­‐9.  [PubMed]  

Dr.  John  Bothwell  School  of  Biological  and  Biomedical  Sciences,  Durham  University  South  Road  Durham,  DH1  3LE      Telephone:    +44  (0)1913  341  349    54°  45'  55"  N,  1°  34'  19"  E  Homepage:  https://www.dur.ac.uk/biosciences/about/schoolstaff/academicstaff/?id=11416  

 29  

 

Session  2:  Marine  Spatial  Planning    Chairman:  Sander  van  der  Burg:  LEI  The  business  case  of  mussel  and  seaweed  production  in  the  North  Sea  

 

Dr  Ir.  Sander  van  de  Burg  

LEI,  Wageningen  UR  

[email protected]  

 

Introduction  

Interest  in  the  offshore  production  of  seaweeds,  mussels  and  mussel  spat   is   growing.   For   mussels,   an   important   driver   lies   in   the  

restriction   on   mussel   spat   collection   in   the   Wadden   Sea,   forcing   mussel   companies   to   shift  production  to  other  areas.  This  hinders  further  development  of  the  mussel  sector  in  the  Netherlands.  

Large-­‐scale  aquaculture  of  seaweeds  in  moderate  temperature  waters  is  growing  as  they  are  seen  as  a   future   sustainable   source   of   food,   feed,   biofuels   and   basis   material   for   production   of   biobased  chemicals.  Seaweeds  are  globally  a  significant  market,  in  2004  the  world  seaweed  market  was  almost  €  6  billion  over  90%  of  which  was   farmed  (Douglas-­‐Westwood  2005),  but  they  are  not   farmed  at  a  significant  scale  in  the  North  Sea.    

In   this  paper  we  assess   the  business   case  of  offshore  mussels  and   seaweed  production.    Based  on  scientific   literature,   reports,   interviews  and  personal   communications  we  gathered   insight   into   the  current  and  potential  status  of  offshore  production,  in  combination  with  offshore  wind  energy.  

 

Findings  

From   publications,   we   gathered   data   on   the   expected   costs   of   offshore   mussel   and   seaweed  production,  focussing  on  the  use  of  long-­‐lines.  A  literature  review  on  the  estimated  costs  of  seaweed  production  shows  greatly  differing  expected  costs  (See  Table  1).    

Technology   Investment  €  

Lifespan  Year  

Operational  €/year  

Yield  Tonne  DM  

€  /  tonne  DM  

Source  

Ring   1,000  /  unit   10   n.a.   0.040   2500  (1)     Buck  and  Buchholz  (2004)  

Long-­‐lines   n.a.   n.a.   n.a.     121  –  409  (1)    

Reith  et  al.  (2005)  

  25,000  /    ha   10   n.a.   35   71  (1)     Florentinus  

 30  

 

et  al.  (2008)  

  25,000  /    ha   n.a.   750  /  ha  +  104  /  tonne  DM  

50   669(2)   Lenstra  et  al  (2011)  

  47,762   10   12,155   1.6   10,582(3)   Petrell  et  al.  (1993)  

Table  1:  estimated  seaweed  production  costs  in  literature  

(1) excluding  operation  and  maintenance  costs,  capital  costs,  opportunity  costs,  labour  costs  (2) method  of  calculation  not  available  (3) including  cost  for  transport,  labour  and  storage  

 

We  added  findings  from  an  on-­‐going  research  project  to  estimate  investments,  labour  and  harvesting  cost.  As  a  results,  total  production  costs  for  seaweed  are  estimated  at  between  between  €  1.000,-­‐-­‐  and  €  1,500,-­‐-­‐  per  tonne  DM.   In  a  similar  exercise,  the  cost   for  offshore  production  of  mussels  and  mussel  spat  were  estimated.  

Subsequently,  up   research,  we  examined   the  potential   synergy  between  offshore  wind  energy  and  seaweed   production.   From   this  we   developed   a   optimisation  model   to   calculate   the   economically  most  attractive  combination  of  production.  The  analysis   illustrated   that   for  now,   the  production  of  mussels  is  economically  most  attractive,  particularly  because  the  contours  of  a  seaweed  value  chain  are  not  yet  clear.  

We   therefore   analysed   various   possible   usages   of   seaweeds   to   estimate   revenues.   The   market  prospects  differ  greatly  for  various  usages  Direct  use  for  human  consumption  offers  highest  prices.  In  Europe  this  is  a  small  market  but  we  do  see  various  developments  aimed  at  promotion  of  seaweeds.    Direct  consumption  by  animals  offers  low  value.  It  is  more  interesting  to  produce  feed  additives  from  seaweeds  but  more  research  is  required  on  nutritional  value  and  feed  risks.  The  use  of  seaweeds  for  the  production  of  biofuels  seems  unlikely  due  to  the  low  prices  that  are  paid  for  biofuel  material.  The  most  promising  ‘application’  is  biorefinery  where  seaweeds  are  refined  into  a  range  of  products  such  alginates,  chemicals  and  feed  additives.  The  question  then  is  whether  or  not  the  remaining  biomass  it  is   possible   to   developed   a   cascade   of   seaweed   applications   from   high-­‐value   to   low-­‐value   (e.g.  combine  high  value  chemicals  with  extraction  of  amino  acids).  

 

Conclusions  and  research  challenges  

When   comparing   offshore   production   of   mussels   and   seaweed,   the   former   is   economically   more  attractive.  There  is  an  existing  market  for  mussels  that  is  in  need  for  more  mussel  spat.  It  is  therefore  expected  that  first  combination  of  offshore  wind  and  aquaculture  will  focus  on  mussels.  

In  the  longer  term,  seaweeds  might  prove  to  be  an  attractive  product.  If  we  relate  potential  revenues  to  expected  production  costs,  economically  viable  production  of  seaweed  seems  possible.  However,  further  prove  is  needed  that  seaweeds  can  be  produced  at  these  costs  at  a  large  scale.    Regarding  the  seaweed  value  chain,  more  data  on  the  possibilities  to  establish  a  cascade  of  applications  is  required.  

 31  

 

For   example,   one   can   imagine   the   extraction   of   valuable   hydrocolloids,   followed   by   extraction   of  functional  food  additives  and  use  of  remaining  material  as  source  of  biofuels.  

 

Speaker  Information  Sander  van  den  Burg  

Sander  van  den  Burg  is  researcher  at  LEI,  Wageningen  UR.  Research  topics  include  the  economic  performance  of  aquaculture  sector  and  value  chain  development  for  aquaculture  and  seaweed  production.  Relevant  project  include  MCN-­‐EFRO  Blauwdruk,  the  Wageningen  UR  project  TripleP@sea  and  the  FP7  project  MERMAID.  Additionally,  various  research  project  focus  on  methods  for  quantification  of  sustainability,  and  how  these  can  be  used  in  decision-­‐making  process  (e.g.  in  the  FP7  project  MYFISH  and  BENTHIS).  

His  background  is  in  environmental  sciences,  with  a  specialisation  in  environmental  policy,  at  Wageningen  University.  After  finalising  his  PhD  thesis  and  a  two-­‐year  post-­‐doc  project  on  sustainable  consumption  and  production,  he  spend  three  years  in  a  consultancy  firm  on  sustainability.  In  2010,  he  returned  to  Wageningen  UR,  at  the  research  institute  LEI,  seeking  the  integration  of  economic  and  ecological  aspects  in  corporations  and  value  chains.  

   

 32  

 

Dr.  Adam  Hughes,  Lecturer  in  Sustainable  Aquaculture,  Marine  Alliance  for  Science  and  Technology  Scotland,  Scottish  Marine  Institute  Seaweed  and  Society’s  Challenges  in  the  21st  Century  

 

Seaweed  and  Society’s  Challenges  in  the  21st  Century  

The  issues  of  food  security,  climate  change  and  the  looming  energy  gap  are  amongst  the  largest  challenges  facing  society  and  are  irretrievably  interconnected.  There  is  no  silver  bullet,  however  sustainable  aquaculture  and  more  specifically  the  cultivation  of  seaweeds  do  offer  real  opportunities  to  tackle  these  issues.  In  a  European  context  food  security  is  not  an  issue  of  gross  calorie  intake;  rather  it  is  ensuring  the  supply  of  the  relevant  macro  and  micro  nutrients  to  ensure  good  public  health.  The  UK  population  is  deficient  in  both  iodine  and  in  polyunsaturated  fatty  acids.  This  is  having  profound  public  health  impacts,  increasing  the  risks  of  cardiovascular  disease,  and  lowering  children’s  IQs.  Seaweed  is  rich  in  both  these  micronutrients  and  it  offers  a  possible  mechanism  of  delivery  of  these  nutrients  to  the  UK  population.  Emissions  of  greenhouse  gases  (GHGs)  continue  to  rise  faster  in  the  UK  than  elsewhere  in  Europe.  If  we  wish  to  limit  global  temperature  rise  to  just  2ºC  then  we  cannot  solely  rely  on  our  (in)ability  to  reduce  emissions.  There  is  a  requirement  for  the  development  of  negative  emissions  technology  to  recapture  some  of  the  already  released  GHGs  such  as  geological  sequestration.  But  these  engineering  solutions  are  expensive.  An  alternate  approach  is  bioenergy  with  biological  carbon  capture  and  storage.    Preliminary  work  shows  that  seaweed  is  an  ideal  candidate  for  this  form  of  sequestration  and  may  offer  a  solution.  In  conjunction  with  carbon  capture  and  storage  seaweeds  have  long  been  touted  as  a  possible  source  of  biofuels,  circumventing  many  of  the  constraints  of  terrestrial  biofuels.  In  a  Scottish  context  seaweed  biofuels  may  offer  a  real  solution  to  rural  fuel  poverty  providing  an  economically  and  environmental  sustainable  energy  solution  for  rural  coastal  communities.  This  presentation  will  spotlight  current  research  within  MASTS  that  is  addressing  these  three  societal  issues  through  the  development  of  sustainable  aquaculture.  

 

   

 33  

 

 

Adam  D  Hughes  CV  

I  am  a  researcher  and  lecturer  in  sustainable  aquaculture  focussing  on  the  development  of  economically  and  environmentally  sustainable  production  systems  for  marine  plants  and  animals.  Much  of  my  work  focusses  on  the  diversification  of  the  aquaculture  industry  into  novel  species  and  products.  Within  my  current  post  at  the  Scottish  Association  for  Marine  Science  I  am  the  co-­‐ordinator  of  the  5.7  M€  FP7  project  IDREEM  (Increasing  Industrial  Efficiency  in  European  Mariculture)  in  which  15  partners  across  Europe  aim  to  develop  integrated  multitrophic  aquaculture  and  to  asses  its  social,  economic  and  environmental  performance.  In  addition  I  am  involved  in  a  number  of  other  European  projects  including  AT~SEAS  (Advanced  Textiles  for  open  Sea  biomass  cultivation)  whose  aim  is  to  develop  a  textile  based  production  system  for  seaweed  biomass.  At  a  national  level  I  am  working  with  a  number  of  SMEs  to  develop  both  land  and  sea  based  production  systems  for  seaweed  for  human  consumption.  In  addition  I  sit  on  a  number  of  ministerial  working  groups  for  the  development  of  sustainable  aquaculture,  I  am  on  the  Marine  Alliance  for  Science  and  Technology    Scotland  steering  committee  for  sustainable  aquaculture,  an  editor  for  the  journal  Aquaculture  Environment  Interactions  and  a  theme  leader  at  the  Scottish  Association  for  Marine  Science.  

 

 

 

 

 

 

 

 

 

   

 34  

 

Josien  Steenbergen,  IMARES  Bluegrowth  developments  and  Multi-­‐use  platforms  

 

IMARES  is:        

• an   independent,   objective   and   authoritative   institute   that  provides   knowledge   necessary   for   an   integrated   sustainable  protection,  exploitation  and  spatial  use  of  the  sea  and  coastal  zones;  

• an   institute   that   provides   knowledge   necessary   for   an  integrated  sustainable  protection,  exploitation  and  spatial  use  of  the  sea  and  coastal  zones;  

• a  key,  proactive  player  in  national  and  international  marine  networks  (including  ICES  and  EFARO).  

PERSONAL  INFORMATION  Name     Josien  Steenbergen  

Address     Goetzeestraat  26,  2021  SE  Haarlem  

Telephone     +31  6  424  828  11  

E-­‐mail     [email protected]  

        Nationality     Dutch  

Date  of  birth     01  October  1979      

WORK  EXPERIENCE    

 Dates  (from  –  to)     September  2011  -­‐  current    Name  and  address  of  employer     EFARO  

Type  of  business  or  sector     Network  of  European  Fisheries  and  Aquatic  Research  Organizations  Occupation  or  position  held     Science  Officer  of  the  secretariat  

 Dates  (from  –  to)  

   September  2009  -­‐  current    

 Name  and  address  of  employer     IMARES  Type  of  business  or  sector     Marine  Research  Institute  

Occupation  or  position  held     Project  manager  /  Fisheries  Researcher    

 Dates  (from  –  to)     January  2007  –  May  2009  Name  and  address  of  

employer     DED  Philippines  (German  Development  Services)  

Type  of  business  or  sector     Agency  for  developmental  work  Occupation  or  position  

held     Consultant  Integrated  Coastal  Management  &  Mangrove  reforestation  

 Dates  (from  –  to)     September  2003  –  December  2006      

Name  and  address  of     RIVO,  later  IMARES        

 35  

 

employer  Type  of  business  or  sector     Marine  research  institute      

 Occupation  or  position  held     Researcher  ecology  &  fisheries          

EDUCATION  AND  TRAINING  Dates  (from  –  to)     1997  –  2003  

 Name  and  type  of  organization  providing  education  and  training  

  Wageningen  University  

Principal  subjects/occupational    

skills  covered  

  MSc  degree  in  Biology    specialization  ecology  &  fisheries  internship  in  Laos  at  Mekong  River  Commission      

ADDITIONAL  INFORMATION      

KEY  QUALIFICATIONS     Josien  Steenbergen  has  extensive  experience  in  fisheries  and  coastal  management  projects  in  the  Netherlands  as  well  as  international.  During  her  masters  she  spent  6  months  in  Laos  where  she  worked  for  the  Mekong  River  Commission.  She  worked  for    two  years  in  the  Philippines,  where  she  coordinated  a  community  based  project  for  the  recovery  of  mangroves  together  with  a  local  NGO.  This  project  involved  data-­‐collection,  as  well  as  the  actual  planting  of  the  trees  together  with  the  local  people.  In  her  current  position  at  IMARES  Josien  Steenbergen  is  involved  in  and  project  manager  of  several  research  projects,  dealing  with;  fisheries  impact,  discards  and  gear  innovations  and  Marine  Spatial  Planning.  Josien  Steenbergen  is  an  excellent  communicator  and  besides  her  involvement  in  research  she  focuses  on  good  communication  between  science  and  the  fishing  industry.  Josien  Steenbergen  her  organizational  skills  are  revealed  in  the  events  that  she  has  been  organizing  throughout  the  years  of  her  working  experience.    

 SELECTED  PROF.  EXPERIENCE     Running  the  secretariat  of  an  European  Fisheries  and  Aquaculture  Network  

(EFARO)    Project  leader  of  (international)  research  projects  at  IMARES    Establishment  of  cooperation  projects  with  the  Dutch  fishing  industry  Organization  of  several  International  Events  (see  above)  

    Evaluation  study  of  coastal  management  projects  implemented  by  the  German  Development  Services  (DED)  in  the  Philippines  Implementation  of  mangrove  reforestation  project  in  the  Philippines  Community  Based  Coastal  Management  Co-­‐management  of  fisheries  in  reservoirs  in  Laos  for  the  Mekong  River  Commission    

 

   

 36  

 

Session3:  Market  Chain  Development    Chairman:  Dr.  Stefan  Kraan,  Ocean  Harvest  Technology    Seaweed,  the  low  hanging  fruit  

   

   Dr.  Stefan  Kraan,  Scientific  Director  and  co-­‐founder  Ocean  Harvest  Technology  Ltd  Seaweed,  the  low  hanging  fruit    Company  description  

Ocean  Harvest  Technology  (OHT)  is  an  Irish  limited  company  founded  in  2005  by  Dr  Stefan  Kraan,  an  internationally  recognised  scientist  and  expert  on  seaweed  applications  and  Patrick  Martin  a  25  year  veteran  of  the  global  salmon  aquaculture  industry.  OHT    has  recently  completed  its  new  R&D  and  administration  headquarters  in  Galway,  Ireland  and  its  new  manufacturing,  distribution  and  sales  branch  in  Vietnam.  OHT  has  created  a  variety  of  patented  seaweed  based  formulas  based  on  the  bioactive  ingredients  present  in  the  different  seaweeds  that  replace  the  synthetic  and  other  less  desirable  ingredients  found  in  a  variety  of  agri-­‐  and  aquacultural  feed  ingredients.    

These  proven  and  proprietary  formulas  represent  a  breakthrough  in  the  animal  rearing  and  farming  sectors,  being  the  first  100%  sustainable  marine  sourced  ingredient  formulas  of  their  kind.      After  extensive  testing  during  a  variety  of  animal  and  fish  trials,  OHT  has  created  OceanFeed™-­‐salmonids,  -­‐shrimp,  -­‐swine,  -­‐bovine,  -­‐sheep  –equine  and  C-­‐pet,  a  pet  food  supplement  which  OHT  now  sells  to  several  global  clients  in  the  fish,  shrimp  and  animal  rearing  industries.  Innovation  and  development  has  led  to  several  other  value  added  products  for  animal  health  and  disease  issues  in  farmed  animals.  OHT  supports  its  unique  formulas  with  an  extremely  experienced  and  successful  scientific  and  technical  management  team  working  alongside  the  founders.    

   

 37  

 

Biography  of  Dr  Stefan  Kraan  

Dr  Stefan  Kraan    Scientific  Director  and  co-­‐founder  Ocean  Harvest  Technology  Ltd  N17  Business  Park,  Unit  5  front  Milltown,  Tuam  Co.  Galway,  Ireland  [email protected]  

Born  in  The  Netherlands  he  graduated  with  a  M.Sc.  degree  in  Marine  Biology  at  National  University  of  Groningen,  The  Netherlands.  He  moved  to  Ireland  to  pursue  a  PhD  on  phylogenetics  and  aquaculture  of  edible  seaweeds  at  the  National  University  of  Ireland,  Galway  in  1998.  He  became  manager  of  the  Irish  Seaweed  Industry  Organisation  in  1998  and  finished  his  PhD  in  2001.  He  established  the  Irish  Seaweed  Centre  in  2001,  a  dedicated  R&D  centre  for  seaweed-­‐based  research  and  development,  which  was  launched  in  2001.  After  managing  the  seaweed  centre  for  9  years,  Dr  Kraan  resigned  from  University  life  in  2009  to  pursue  and  develop  some  commercial  ideas  using  seaweeds  for  a  variety  of  purposes  amongst  them  functional  food  ingredients  for  fish  farming  and  novel  algae  cultivation  systems  for  biofuel  production.  Dr  Kraan  is  currently  Co-­‐Founder  and  Scientific  Director  of  Ocean  Harvest  Technology  Ltd,  a  company  that  has  produced  Oceanfeed™,  a  seaweed  based  functional  feed  ingredient  for  the  fish  farming  industry  and  other  aquaculture  industries.  Furthermore  he  is  involved  in  the  development  of  large-­‐scale  seaweed  biomass  cultivation  programs  for  the  bio-­‐ethanol  industry  and  exploring  protein  extraction  for  from  seaweeds  for  aquafeed  industries.  Dr  Kraan  has  recently  been  elected  vice-­‐president  of  the  International  Seaweed  Association.  His  main  fields  of  expertise  are  aquaculture  of  seaweeds,  sustainable  development  of  algal  resources,  industrial  applications  of  seaweeds  and  usage  of  seaweeds  in  aquaculture,  biotechnology  and  biomedicine.  

 

 

   

 38  

 

Helena  Abreu,  SeaBioplas  presented  by  Ana  Lopez  Contreras  Seaweed  from  sustainable  aquaculture  as  feedstock  for  biodegradable  bioplastics  

 

Company    SEABIOPLAS  fits  in  the  EU  2020  strategy:  a  resource  efficient  Europe  and  the  notion  that  innovative  ideas  can  be  turned  into  products  and  services  to  create  growth  and  jobs.  EU  is  the  largest  biodegradable  polymers  consuming  region.  Major  market  drivers  for  biodegradable  polymers  in  this  region  include  legislation,  depleting  landfill  capacities,  pressure  from  retailers,  growing  consumer  interest  in  sustainable  plastic  solutions,  a  quest  for  fossil  oil  and  gas  independence  and  the  reduction  of  greenhouse  gas  emissions.  The  industry  defines  biopolymers,  or  bioplastics,  as  

polymers  that  are  either  bio-­‐based  or  biodegradable  -­‐  PLA  is  both.  The  production  of  PLA  and  other  biopolymers  is  now  based  in  natural  resources  like  corn,  wheat,  sugar  beets  and  sugar  cane.  There  is  an  increasing  concern  that  the  use  of  those  raw  materials  will  compete  with  food,  feed  or  energy  production,  with  consequent  escalation  of  raw  material  costs  and  negative  environmental  effects.  The  dependence  from  those  feedstocks  is  a  limitation  to  a  wider  application  of  biopolymers  in  the  plastic  industry,  thus  the  interest  in  alternative  sustainable  natural  resources.  SEABIOPLAS  proposes  seaweeds:  offering  advantages  over  traditional  feedstocks,  including  higher  productivities,  no  competition  for  land  use,  minimal  water  consumption  while  having  similar  sugar  contents  and  contributing  to  the  reduction  of  CO2  emissions.  SEABIOPLAS  offers  a  complete  integrated  solution  to  the  plastic  SMEs  and  Large  enterprises  stakeholders  through  the  scientific  knowledge  provided  by  the  RTDs,  from  the  production  of  the  feedstock  in  sustainable  Integrated  Multi  Trophic  Aquaculture  systems,  to  the  development  of  the  biopolymers  using  innovative  technologies  of  reduced  environmental  impact  until  the  validation  test  of  the  seaweed-­‐based  polymers  in  greener  plastic  products  (shrinkable  and  stretchable  films,  adhesives,  plastic  additives  and  coatings).  As  a  complement,  the  viability  of  valorizing  the  seaweed  residues  as  benefic  ingredients  for  animal  feeds  will  be  essayed  in  dairy  farms  and  IMTA  sites.  The  cultivation  of  seaweed  in  SEABIOPLAS  will  be  done  in  a  controlled  manner  which  allows  for  high  traceability,  management  of  the  biomass  composition  and  properties,  high  quality  and  sustainability  (preservation  of  natural  populations)  -­‐  IMTA  is  a  “technology  to  minimize  the  environmental  impacts  of  biogenic  wastes  emitted  by  fed  aquaculture”  (European  Platform  for  Technology  and  Innovation  in  Aquaculture).  The  SEABIOPLAS  seaweed  producers  apply  that  technology.  The  inorganic  nutrient  wastes  of  the  fish  farms  will  be  recycled  as  resources  for  a  more  productive,  cost  efficient,  quality  controlled  and  sustainable  seaweed  sourcing  for  the  downstream  bio-­‐product  development  in  SEABIOPLAS.  Traditional  polysaccharides  extractions,  e.g.,  performed  under  thermal  heating,  are  time  and  energy  consuming  and  imply  large  amounts  of  solvent  which  generates  large  quantities  of  waste  disposals.  In  SEABIOPLAS,  alternative  technologies  such  as  Microwave-­‐Assisted  Extraction  (MAE)  will  be  tested.  Lower  energy  and  solvent  consumption  as  well  as  higher  recoveries  and  enhanced  polysaccharide  properties  are  expected.  The  methodology  needed  for  the  solubilisation  of  sugars  in  seaweeds  for  fermentation  would  require  less  stringent  (in  consequence,  less  costly)  conditions  than  those  needed  for  lignocelluloses.  The  characterization  and  use  of  seaweeds  as  feedstock  for  lactic  acid  production  represents  one  of  the  major  innovations  of  the  SEABIOPLAS  project.  Presently,  PLA  of  high  molecular  weight  is  produced  from  the  dilactate  ester  by  ring-­‐opening  polymerization  using  most  commonly  a  stannous  octoate  catalyst.  However  the  production  of  lactic  acid  based  materials  for  polymer  additives,  coatings  and  adhesive  is  feasible  directly  from  lactic  acid,  reducing  processing  steps,  costs  and  energy.  Moreover,  new  chemical  routes  may  be  applied  to  

 39  

 

produce  high  molecular  mass  PLA  directly  from  lactic  acid.The  core  group  of  SMEs  will  increase  their  knowhow  in  the  development  of  innovative  products  with  new  raw  materials  and  thus  acquire  a  competitive  advantage  in  the  biodegradable  plastics  sector.  The  companies  will  benefit  from  new  products,  suppliers  and  customers  in  different  segments  of  the  plastics  industry:  (bio-­‐additives  for  plastics/plasticizers,  bio-­‐plastic  sleeves,  bio-­‐coatings).  The  SMEs  have  the  industrial  capabilities  to  integrate  the  new  seaweed-­‐based  polymers  in  their  production  lines  and  manufacture  the  plastic  products  outlined  for  a  large  range  of  applications.  The  seaweed  industry  will  benefit  from  the  contact  with  the  bioplastic  sector;  The  SMEs  expect  to  get  new  products,  customers  and  thus  open  new  markets  possibilities;  this  approach  should  also  foster  the  implementation  of  seaweed  cultivation  in  IMTA  systems  and  thus  contribute  for  the  growth  of  sustainable  aquaculture  in  Europe.  The  primary  sector  needs  sustainable  and  ecofriendly  products.  SEABIOPLAS  offers  a  unique  opportunity  to  develop  a  new  business  area  using  the  seaweed  residues  as  a  natural  source  for  replacement  of  synthetic  molecules  and  organic  livestock  feed,  creating  new  products,  customers  and  the  market  possibilities.    

Helena  Abreu  Directora  de  I&D  /  R&D  manager  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

ALGAplus,  Lda  Sede:  Rua  António  Castilho  s/n    3850-­‐405  Portugal  T:  +351  938799423  E:  [email protected]  Web:  www.algaplus.pt  founder  of  ALGAplus    -­‐  Producing  seaweed  in  land-­‐based  and  earthen-­‐pond  systems.  

   

 40  

 

Session4:  Upscaling  installations  and  reducing  operational  costs    Chairman:  Chris  Veltman,  ATO  

 

ATO  -­‐  Sustainable  Business  Engineers  

IJzergietersweg  1  -­‐  1786  RD  Den  Helder  –  t  0223  670  340  m+31653993025  

Bezoek  onze  website!    www.ato.nl    

   

 41  

 

Marnix  Poelman,  Wageningen  UR  Large  scale  offshore  windfarms  and  offshore  aquaculture  

 

 

 

 

SEAGRICULTURE  II    abstracts  

Marnix  Poelman,  Frans  Veenstra,  Wageningen  UR  (IMARES)  Large  scale  offshore  wind  farms  and  offshore  aquaculture  

IMARES,  Department  of    Aquaculture,  Yerseke;  ing.  M  (Marnix)  Poelman  MSc*  Large  scale  offshore  wind  farms  and  offshore  aquaculture  

The  status  and  development  of  Dutch  offshore  aquaculture  and  opportunities  for  combining  it  with  offshore  wind  parks    

Fish  culture  Offshore  fish  culture  started  approximately  40  years  ago  in  Asia,  and  soon  after  that  a  number  of  marine  species  have  been  taken  into  production  in  fish  cages.  Many  of  these  species  are  raised  in  specially  designed  cages,  of  which  the  configuration  depend  on  the  fish  species  and  the  geographical  location.  The  conditions  in  the  North  Sea  differ  from  the  conditions  in  locations  where  most  of  the  European  aquaculture  production  is  realized  nowadays  (Norway,  Mediterranean).  Therefore  it  will  not  be  possible  to  directly  apply  common  culture  techniques  to  the  North  Sea  situation.  A  study  by  Reijs  et  al.  (2008)  concluded  that  commercial  fish  culture  appears  to  be  challenging  in  the  Dutch  North  Sea  as  there  are  technical  and  biological  constrains  for  most  areas.  Temperature  for  commercially  interested  species  is  either  too  high  in  summer  (e.g.  for  species  like  cod)  or  too  low  in  winter  (e.g.  for  species  like  Bluefin  Tuna),  and  the  relative  shallowness  of  the  North  Sea  does  not  allow  culture  cages  to  be  submerged  (minimum  depth  40m)  at  most  locations.  Hence  just  a  few  sites  are  potentially  suitable  for  (floating  cage  based  intensive)  fish  culture,  with  a  high  estimated  risk  for  its  economic  feasibility.  At  this  moment  the  economic  and  technological  advancements  are  not  considered  far  enough  to  overcome  the  biological  boundaries  for  growth  and  production.  

Bivalve  culture  Four  shellfish  species  have  been  identified  as  ‘promising  for  culture  in  the  Dutch  North  Sea’:  the  blue  mussel  (Mytilus  edulis),  flat  oyster  (Ostrea  edulis),  Pacific  oyster  (Crassostrea  gigas),  scallop  (Pecten  maximus)  (Reijs  et  al.  2008).  Within  the  current  study  we  will  focus  on  mussel  culture  because  this  is  an  important  and  well  established  industry  in  the  Netherlands.  The  mussel  sector  has    an  average  yearly  production  of  50.000-­‐60.000  tons,  currently  production  capacity  is  based  on  a  1.000.000  million  tons  production,  which  is  currently  partially  supplied  by  import  of  mussels  from  other  EU  member  states.  Therefore,  there  is  commercial  potential  to  expand  mussel  culture  from  the  Wadden  Sea  and  Delta  towards  off  shore  areas,  as  carrying  capacity  and  discussions  on  environmental  

 42  

 

pressure  hinder  further  production  growth  in  the  former  mentioned  areas.  Theoretically  it  is  possible  to  culture  mussels  at  any  location  in  the  Dutch  North  Sea.  There  are  initiatives  for  pilot  scale  off-­‐shore  mussel  culture  in  Belgium,  Germany,  UK,  Ireland,  Denmark,  France,  Italy  (for  details  see  Kamermans  et  al.  2011),  but  technical  feasibility  at  commercial  scale  still  has  to  be  proven.  

Seaweed  culture    Reith  et  al.  (2005)  concluded  that  Ulva  sp.,  Laminaria  sp.  and  Palmaria  sp.  have  highest  potential  for  successful  culture  in  the  North  Sea.  This  was  confirmed  by  Van  de  Burg  et  al.  (2013)  who  performed  a  feasibility  study  to  further   investigate  the  potential  for  off-­‐shore  seaweed  culture   in  the  North  Sea.  This  study  concluded  that  there  is  a  significant  potential  for  seaweed  culture,  however  there  are  still  many   unknowns   for   example   about   technical   solutions   to   large-­‐scale   commercial   production,  unstable  composition  of  seaweed,  and  processing.  These  uncertainties  and   large  spread  for  certain  estimates  makes  it  difficult  to  estimate  the  economic  feasibility  at  this  moment.    Technical  The  technical  aspects  of  sea  weed  culture  on  the  North  sea  are  still  under  development  and  trials  are  done   in  the  Netherlands   (Oosterschelde  and  North  sea).  Criteria   for   the  technical  development  are  amongst  others:  

• Fully  resistant  construction  to  withstand  weather  conditions  (for  operation)  • Fully  balanced  floatation    • Sufficient  seed  supply  •        Sufficient  growth    •        No  excessive  fouling  of  other  organisms  •        No  excessive  predation  •        Avoidance  pollution:  either  contaminants    •        Avoidance  of  loss  of  mussels  that  fall  off  the  ropes  •        Reliable  and  robust  harvest  method  •        Infrastructure  (logistics)  •        Capital  of  stakeholders/participants  

     Ecological  IMTA   (Integrated   Multi-­‐trophic   Aquaculture)   systems   or   co-­‐culture   strive   to   reduce   the  environmental   impact   of   aquaculture,   by   combining   different   aquaculture   species,   which   may   be  used  for  management  of  nutrient  flows.  The  waste  streams  originating  from  the  higher  trophic  levels  are   used   by   lower   trophic   levels,   where   lower   trophic   levels   species   regenerate   nutrients.   The  challanges  associated  with  IMTA  and/or  co-­‐culture  are  related  to  1)  marketing  and  processing  of  two  or   more   completely   different     type   of   products,   2)   variable   nutrient   removal   by   the   extractive  species,   3)   incompatible   production   rates   of   extractive   species   and   finfish,   4)   logistical   problems  associated   with   shared   space   and   equipment.   Management   systems   (bio-­‐economic   modelling)  should  be  developed  to  facilitate  the  integration  of  all  activities  to  optimize  the  output/efficiency  of  the  full  IMTA  systems  (pers  comm.  Jansen,  2013).    Prospective  Aquaculture   inside   Dutch   large   scale   offshore  wind   parks   has   been   identified   as   one   of   the  many  possibilities   of   smart   and   multi-­‐use   of   space,   which   leads   to   opportunities   for   innovative  entrepreneurship.   Yet,   aquaculture   is   a   broad   term   and   includes   the   culture   of   fish,   crustaceans,  bivalves,   and   aquatic   plants.   Generally   we   distinguish   between   culture   types   based   on   the   feed  requirements  of   the  species;   fish  culture  typically   relies  on  external   feed  supply   (fed  species)  while  bivalves  and  seaweeds  are  defined  as  extractive  species  as  they  rely  for  food  on  naturally  available  resources.      

 43  

 

Concluding,   the   first   and   main   opportunities   for   Dutch   offshore   aquaculture   are   related   to   the  production  of  mussels,  although  diversification  of  species  should  eventually  be  pursued   in  order  to  optimize   economic   output.   Development   of   technical   solutions   for   offshore   culture   of   mussels,  seaweed  (other  bivalves,  and  even  fish  culture)  are  a  key  issue  for  implementation  of  aquaculture  in  offshore  areas.  Moreover,  further  roll-­‐out  of  offshore  aquaculture  should  also  focus  on  sustainability  aspects  of  the  production.  The  prospects  are  followed  by  the  potential  of  offshore  seaweed  cultures,  in  which  the  /    The  MCN  “Blauwdruk”  project  aims  to  research  the  possibility  to  combine  Offshore  Wind  with  Aquaculture.    Offshore  Wind  aspect  is  a  1.000  MW  Wind  Farm  which  consists  of  5x  200  MW  wind  turbine  clusters.  For  this  project  the  Aquaculture  aspect  is  mussel  farming  (50.000  ton/yr)  through  long  lines  which  are  located  between  the  5  wind  clusters.    

 Curriculum  VitaeMarnix  Poelman,  born  in  Middelburg,  the  Netherlands  in  1976.    

Marnix  Poelman  is  researcher  and  project  manager  on  sustainable  aquaculture  at  IMARES,  Wageningen  UR  in  Yerseke.  In  his  job  he  is  responsible  for  the  co-­‐development  of  the  field  of  sustainable  marine  production.  

He  has  worked  on  national  projects  on  aquaculture  systems  (shellfish  and  finfish)  since  12  years  with  a  focus  sustainable  production.  The  first  years  he  focused  on  food  safety  of  bivalve  mollusks  at  RIVO  and  RIKILT.  The  last  years  he  is  developing  ambitions  on  different  aquaculture  aspects;  such  as  the  assessment  of  aquaculture  in  the  open  sea,  sustainability  of  Recirculation  Aquaculture  Systems  and  organic  Aquaculture  principles.  He  works  as  recognized  expert  to  governmental  and  private  organizations  as  consulting  expert  in  the  field  of  sustainable  aquaculture.  He  is  currently  managing  national  projects  as  responsible  scientist  and  has  participated  in  projects  within  FP6  (Biotox),  and  is  currently  participating  in  FP7  projects,  such  as  COEXIST  and  AQUAMED.    

His  key  competence  lies  in  the  development  and  application  of  sustainability  tools  in  aquaculture  and  the  co-­‐development  of  new  research  domains;  Life  Cycle  Assessment,  Mussel  Seed  Capture  Systems,  and  Offshore  aquaculture.  

 

 

   

 44  

 

John  Stavenuiter,  AMC  Centre  Simulation  model  reducing  operational  costs  for  offshore  windfarms  and  offshore  aquaculture  

 Asset  Management  Control  Research  Foundation  

Treasurer  of  AMC  Centre  

 

 The  knowledge  and  project  network  for      enhancing  Asset  Management  Control  

Abstract  

Seaweed  Conference  Abstract  version:  28-­‐08-­‐2013  

Simulation  model  reducing  operational  cost  for  offshore  wind  farms  and  offshore  aquaculture  

Technical  possibilities  &  concepts,  Dr.  John  Stavenuiter,  Asset  Management  Control  Centre  

Although  the  first  Offshore  Wind  farms  (OWFs)  were  successfully  realized  in  the  1990s,  and  many  developments  and  breakthroughs  have  taken  place  since,  wide  scale  construction  still  faces  several  inhibitory  factors  that  have  to  be  overcome.  One  of  the  main  hurdles  is  the  high  costs  for  O&M  that  typically  amount  to  25-­‐30%  of  the  total  lifecycle  costs  of  OWFs.  Several  factors  explain  for  the  high  O&M  costs,  such  as:  the  harsh  conditions  in  which  offshore  wind  turbines  operate  and  have  to  be  maintained;  the  unpredictability  of  failures;  the  relatively  high  mean  time  to  repair  (long  periods  at  sea  with  less  workable  hours).  Naturally,  offshore  wind  farming  would  be  more  profitable,  and  thus  economically  more  viable,  if  O&M  costs  could  somehow  be  reduced.  The  challenges  indicated  above  require  new  concepts  to  increase  the  system  cost-­‐effectiveness  of  OWFs,  thereby  reducing  O&M  costs  and  increasing  the  sector’s  potential.    The  MCN  “Blauwdruk”  project  aims  to  research  the  possibility  to  combine  Offshore  Wind  with  Aquaculture.    Offshore  Wind  aspect  is  a  1.000  MW  Wind  Farm  which  consists  of  5x  200  MW  wind  turbine  clusters.  For  this  project  the  Aquaculture  aspect  is  mussel  farming  (50.000  ton/yr)  through  long  lines  which  are  located  between  the  5  wind  clusters.    For  a  real  case  simulation  the  following  virtual  Offshore  Wind  Mussel  Farm  is  defined.  

 

 45  

 

 The  integrated  Aquaculture  should  provide  attractive  cost  benefits  of  the  O&M  (Operation  &  Maintenance)  synergy  (Wind  and  Aquaculture),  estimated  an  O&M  cost  reduction  of  10%.    Obviously,  including  more  actors  in  the  O&M  processes  will  lead  to  a  more  complex  organization  and  more  uncertainty  and  financial  risks  for  the  asset  owner.  It  is  therefore  clear  that  a  unified  Life  Cycle  Assessment  (LCA)  model,  which  oversees  all  the  actors  and  processes  involved  in  the  O&M  of  OWFs,  will  prove  to  be  essential  to  determine  the  system  cost-­‐effectiveness  of  a  Wind  Fish  Farm  over  the  design  lifecycle,  as  shown  in  the  diagram  below,  as  one  of  the  outcomes.      

 A  next  project  could  be  assessments  on  wind/seaweed  combinations  instead  of  mussels!      Company  

Asset  Management  Control  Research  Foundation  (2002)    (Foundation  for  development  and  utilization  of  AMC  methods,  techniques,  knowledge  and  skills)  

 Introduction  Capital  intensive  and  complex  equipment  such  as  ships,  airplanes,  power  plants,  production  machinery,  etc.,  are  increasingly  influencing  the  business  revenues  of  operating  companies  and  thus  indirectly  the  welfare  and  the  environment.  This  is  mainly  caused  by  the  increasing  degree  of  mechanization  and  automation.  There  is  also  a  trend  that  the  economic  service  life  of  building  material  decreases  by  rapid  technological  developments,  particularly  in  the  areas  of  automation,  safety  and  environment.    Goal  The  Asset  Management  Control  Research  Foundation  (AMC-­‐RF)  aims  to  make  a  significant  contribution  to  supply-­‐ing  to  the  further  development  of  Asset  Management  Control  methods,  techniques,  applications  and  training,  to  improve  the  cost-­‐effectiveness  of  assets.  The  idealistic  goal  is  to  contribute  to  the  welfare  and  protection  of  the  environment.  In  achieving  this  objective,  AMC-­‐RF  aims  to  be  objective  and  independent.  Great  importance  is  therefore  attached  to  the  publication  of  all  research  regardless  of  the  personal  views  and  interests  of  the  individual  participants.    Method  

 46  

 

The  AMC  Centre  provides  the  intermediary  function  between  the  asset  owners,  and  her  knowledge  partners.  In  this  role,  AMC  RF  delivers  expert  opinion  and  advice  to  both  sides,  the  inquiring  and  offering  partners.  In  addition,  through  the  AMC  Centre  also  specific  products  and  services  are  delivered  such  as:  

• AMC  promotion,  information  and  /  or  acquisition;  • practice-­‐driven  research  and  development;  • providing  AMC  methods,  techniques,  applications,  etc.;  • act  as  an  objective  sounding  board  for  (future)  users/customers;  • organizing  seminars,  symposiums,  user  consultations,  et  cetera.    

For  more  information  visit:  www.amcplaza.com.  

In  cooperating  with  AMC  Tools  &Training  BV  the  following  AMC  related  products  are  available:  

• AMC  IT  applications:  1. VALID,  a  decorated  portal  environment  for  the  provision  of  all  asset-­‐related  information.  2. AMICO,  an  expert  application  support  for  the  preparation  of  Life  Cycle  Asset  

Management  models  each.  3. PROFI  Portal,  a  portal  application  for  structured  offering  all  product,  process  and  

procedural  information.  4. PRIMA,  an  extensive  .NET  application  to  continuous  improvement  within  AMC  support  5. DGAME  an  AMC  related  serious  game  (for  demo  see  http://dgame1.amicoservices.nl/.  

• AMC  related  programs  and  courses:  1. AMC  Masterclasses  2. Asset  Management  Courses  (BSc  level)  3. Engineering  College  Programs  4. AMC  Base  Courses  

 

For  more  information  visit:  www.amicoservices.nl  .    

Speaker  information:  

Dr  John  Stavenuiter,  born  in  Haarlem,  the  Netherlands  on  February  10,  1956.  John  Stavenuiter  is  Founder  of  the  Asset  Management  Control  Research  Foundation  (www.amc-­‐rf.com)  and  Program  Director  of  the  Asset  Management  Control  Centre  (www.amccentre.nl).    

For  more  than  ten  years  he  is  working  with  a  lot  of  other  AMC  stakeholders  developing  and  implementing  all  kind  of  Asset  Management  related  tools  and  training,  see  www.amcplaza.com.    

A  lot  of  his  practical  knowledge  is  obtained  from  the  RNLN  Maintenance  Establishment  in  Den  Helder,  were  he  worked  for  25  years.  As  Head  System  Management,  he  recognized  the  need  for  well-­‐educated  asset  managers  and  logisticians.  Because  of  his  responsibility  for  the  cost-­‐effective  logistics  support  of  the  warship’s  combat  systems  he  could  combine  science  with  practice.  He  promoted  an  integrated  life  cycle  approach  and  he  specialized  in  Life  Cycle  Management  and  Systems  Support  Engineering.  This  has  resulted  in  more  than  forty  papers  and  lectures  for  national  and  international  conferences.    

 47  

 

In  2002  he  obtained  a  PhD  on  Asset  Management  Control  at  Delft  University  of  Technology.  At  this  moment  in  the  Defense  Organization  and  several  civil  organizations,  are  now  implementing  Asset  Management  Control.    

Besides  this  he  has  developed  an  AMC  MSc  course,  in  cooperation  with  the  Hogeschool  Zeeland  University  of  Applied  Science  and  has  act  as  sub-­‐contractor  in  developing  an  MSc  module  LCA  and  Eco-­‐design,  within  the  Baltic  University  Program,  coordinated  by  the  University  of  Uppsala.  

At  this  moment  he  is  studying  the  opportunities  of  wind  fish  farm  combinations  and  started  a  K2K  project,  founded  by  the  Dutch  government,  to  set-­‐up  a  Wind  Farm  Logisitcs  Faculty  at  the  Shanghai  Maritime  University,  based  on  his  concepts.    

 48  

 

Discussion  Governance  Chairman:  Luc  van  Hoof,  IMARES  Ministerie  EZ  –  Wilbert  Schermer-­‐Voest  Stichting  Noordzee  –  Christine  Absil  Blueport  /  VisNed  -­‐  Pim  Visser  ICES  /  Imares  -­‐  Pauline  Kamermans  Ekofish  -­‐  Louwe  de  Boer  Rijkswaterstaat  –  Wanda  Zenveboom  (invited)  Stichting  Noordzeeboerderij  -­‐  Eef  Brouwers    

Curriculum  VitaeW.L.M.  (Wilbert)  Schermer  Voest  

Senior  beleidsmedewerker  kustvisserij  en  aquacultuur    Ministerie  Economische  Zaken    Directoraat  Generaal  Agro  Directie  Dierlijke  Agroketens  en  Dierenwelzijn    Bezuidenhoutseweg  73  2594  AC  Den  Haag  Postbus  20401,  2500  EK  Den  Haag  Tel.:  06  46391928  E-­‐mail:  [email protected]    

Senior  policy  advisor  coastal  fisheries  and  aquaculture  

Ministerie  van  Economische  Zaken  October  2001  –  Present  (12  years)Den  Haag  

Beleidsontwikkeling;  -­‐  implementatie  en  -­‐  evaluatie  op  het  gebied  van  schelpdiervisserij  en  aquacultuur  vooral  op  het  gebied  van  innovatie.  In  2013  ga  ik  mij  vooral  bezighouden  met:    -­‐  De  evaluatie  van  de  afspraken  die  in  het  mosselconvenant  zijn  opgenomen    -­‐  Het  mogelijk  maken  van  nieuwe  innovatieve  projecten  in  de  kustwateren  en  op  land    -­‐  Het  vervolgbeleid  m.b.t.  experimenten  op  het  gebied  van  oesterkweek  mosselzaadinvang  en  een  meer  flexibele  visserij    -­‐  De  afronding  van  het  onderzoek  naar  de  ecologische  effecten  van  de  mosselvisserij  in  de  Waddenzee  ("PRODUS-­‐onderzoek")  -­‐  Het  opstellen  richtlijnen  voor  het  varen  en  vissen  (inclusief  maricultuur)  bij  de  nieuw  aan  te  leggen  windmolenparken  in  de  Noordzee.  

Auditor  Ministerie  van  LNV  August  1990  –  December  2000  (10  years  5  months)  -­‐  begeleiden  evaluatie-­‐onderzoek  -­‐  uitvoeren  organisatieaudits  

Organisatie-­‐adviseur  Ministerie  van  Defensie  

August  1982  –  March  1990  (7  years  8  months)  Organisatie-­‐adviseur  bij  de  centrale  directie  Organisatie  en  Informatie  

 49  

 

Curriculum  VitaeChristine  Absil  

Christine  Absil  graduated  from  the  University  of  Utrecht  (MSc  ecology)  and  the  Agricultural  University  Wageningen  (Doctorate  marine  toxicology)  and  is  programme  manager  fisheries  &  aquaculture  with  the  Dutch  North  Sea  Foundation.  She  started  this    post  1998,  building  on  a  career  in  science.  Initially,  she  dealt  with  toxicology,  water  quality  issues  and  fisheries  management,  but  is  currently  focusing  mainly  on  sustainable  fisheries.  Through  her  position  with  this  civil  society  organisation,  she  gained  extensive  experience  in  the  various  disciplines  related  to  sustainable  fisheries  

management.  She  works  both  on  market  transformation  through  consumer  awareness,  and  on  policy  issues,  notably  in  multi-­‐stakeholder  settings.  She  is  vice  chair  of  the  North  Sea  Regional  Advisory  Council  (NS  RAC),  and  member  of  the  Management  Committee  and  Executive  Committee  of  the  Pelagic  RAC.  Although  representing  civil  society  in  stakeholder  negotiations,  her  starting  point  is  evidence,  not  emotion.    

 In  2004,  she  initiated  the  Good  Fish  Guide  in  the  Netherlands,  which  resulted  in  a  hugely  increased  awareness  on  seafood  sustainability.  The  assessment  methodology  has  consequently  been  used  by  WWF  international,  resulting  in  a  substantial  increase  in  the  demand  for  sustainably  sourced  seafood  in  Europe.  In  2010  she  received  a  prestigious  national  award  (Edgar  Doncker  prize)  for  her  work  on  awareness  and  transition  towards  sustainability  of  seafood  production.      Company  info  SDN:  

The  North  Sea  Foundation  (NSF)  is  an  independent  environmental  NGO,  based  in  the  Netherlands.  The  mission  of  North  Sea  Foundation  (NSF)  is  to  represent  the  interest  of  life  in  the  North  Sea,  which  does  not  have  a  voice.  With  many  of  its  activities,  notably  on  seafood  and  sustainable  shipping,  NSF  works  on  a  global  scale.  NSFs  goal  is  a  clean  and  healthy  sea,  capable  of  counterbalancing  human  influences.  A  properly  functioning  and  resilient  ecosystem  lays  the  foundation  for  this.  The  capacity  of  the  ecosystem  determines  the  boundaries  of  how  humans  can  use  it.  NSF  key  focus  areas  are:  clean  shipping,  sustainable  fisheries  and  aquaculture,  marine  protected  areas  and  a  waste  free  sea.  NSF  staff  are  selected  for  their  expertise  and  an  excellent  knowledge  of  dossiers  and  passion  for  the  marine  environment.  They  are  prepared  to  handle  complex  issues,  seeking  creative  solutions  with  involved  stakeholder  groups.  

NSF  was  formally  established  in  1980.  It  has  the  formal  status  of  an  institution  for  general  civil  purpose,  because  90%  of  the  funds  are  used  for  civil  society  purposes.  The  organisation  has  14  FTE  staff,  and  is  providing  internship  positions  to    five  students  per  year  on  average.    

|  Stichting  De  Noordzee  |  Drieharingstraat  25  |  3511  BH  Utrecht  |    

|    Christien  Absil    |  T  +31(0)30  2340016  |  http://noordzee.nl  |  

 

 50  

 

Curriculum  VitaeWillem  Visser  (1957)    

Nijenrode  Business  School    BBA  (1978)  Rotterdam  School  of  Management  MBA  (1981)  IT  Consultancy  1981-­‐1982  Projects  and  Sales  Shipbuilding  for  the  Dutch  and  International  Fishing  Industry  1982-­‐2002  Manager  Fish  Auctions  Northern  Holland  2002-­‐now  President  European  Association  of  Fishing  Ports  and  Auctions  2004-­‐2010  Chief  Executive  VisNed,  association  of  Fish  Producer  Organisations  2010-­‐now  

Member  North  Sea  Regional  Advisory  Council  Ex  Com  2004-­‐now  Member  EU  Advisory  Committee  Fishing  and  Aquaculture  WG  3  2006-­‐2013  

 

Curriculum  VitaePauline  Kamermans  

Pauline  Kamermans  received  her  BSc  degree  in  Biology  at  the  University  of  Amsterdam  (1984).  After  this  she  moved  to  the  University  of  Groningen  for  her  MSc  in  Marine  Biology  (1987).  One  of  the  subjects  for  her  thesis  was  macroalgae  at  the  coral  reef  in  Curaçao,  Netherlands  Antilles.  She  holds  a  PhD  degree  from  the  University  of  Groningen  (1992).  For  this,  she  carried  out  research  on  food  limitation  in  bivalve  shellfish  at  the  Netherlands  Institute  for  

Sea  Research  on  Texel.  She  worked  as  a  post-­‐doctoral  researcher  on  juvenile  fish  at  the  University  of  North  Carolina,  USA  and  on  macroalgae  and  seagrasses  at  the  Netherlands  Institute  of  Ecology  in  Yerseke.  She  was  assistant  coördinator  of  the  EC-­‐Environment  and  Climate  project:  "Eutrophication  and  Macrophytes  (EUMAC)".  Since  2000  she  is  researcher  at  the  Netherlands  Institute  for  Fisheries  Research  in  Yerseke.  This  institute  became  part  of  the  Institute  of  Marine  Resources  and  Ecosystem  Studies  (IMARES)  in  2006.  Her  main  research  topic  is  shellfish  aquaculture,  but  she  was  also  involved  in  a  study  on  possibilities  for  off-­‐shore  production  of  seaweed  in  combination  with  wind  farms  (BIO  OFFSHORE).  

Pauline  Kamermans  is  the  shellfish  and  macroalgae  chair  of  the  expert  group  on  Aquaculture  (WGAQUA)  of  the  International  Council  for  the  Exploration  of  the  Sea  (ICES).  Seaweed  culture  is  a  new  topic  within  ICES.  Since  1977,  several  ICES  expert  groups  have  contributed  to  developing  science  on  the  environmental  dependence  and  effects  of  aquaculture.  In  2013  a  single  group  (WGAQUA)  was  established  with  a  mandate  to  focus  on  aquaculture  environment  interactions  and  to  address  advisory  and  science  requests  by  member  states  related  to  the  sustainability  of  aquaculture  farming  practices.  The  group  works  on  specific  topics  within  the  following  themes:  •  Aquaculture  Technologies  and  Ecological  Services  •  Sustainable  Aquaculture  Management  Approaches  •  Environment  and  Fisheries  Interactions  with  Aquaculture  

 51  

 

Curriculum  VitaeLouwe  de  Boer-­‐  Ekofish    

Managing  Director  

Ekofishgroup  June  2004  –  Present  (9  years  4  months)  

Skipper  

Morgenster  UK44  June  1983  –  June  2004  (21  years  1  month)  

Blue  Port  Urk  (Link)  February  2012  –  July  2012  

Paraplu  voor  alle  innovatieve  ontwikkelingen  en  ideeën  ten  behoeve  van  de  visserij.  Loket  en  label  voor  projecten.  Kwaliteitslabel:  open  innovatie;  ketensamenwerking;  duurzaamheid;  toegevoegde  waarde  visserijketen;  kennisuitwisseling.  

 52  

 

Abstracts,  CV’s,  company  description  of  speakers  and  chairman  day  2  Introduction  by  Henk  Brinkhuis,  director  NIOZ    

 

   

Prof.  dr.  H.  (Henk)  Brinkhuis  

Prof.  dr.  Henk  Brinkhuis  took  office  as  general  director  NIOZ  Royal  Netherlands  Institute  for  Sea  Research  on  October  1,  2011.  Henk  earned  a  master's  degree  in  marine  geology  and  biostratigraphy/paleoceanography  from  Utrecht  University,  with  a  subject  in  organic  geochemistry  at  Delft  Technical  University.  He  received  his  doctorate  marine  geology,  micropaleontology  and  paleoceanography  from  Utrecht  University,  where  he  continues  his  chair  in  Marine  Palynology  and  Paleoceanography.  

Henk  has  a  strong  taste  for  Phanerozoic  extreme  climate  change  and  paleoecology.  He  (co-­‐)authored  over  125  peer-­‐reviewed  scientific  publications  and  (co-­‐)supervised  over  25  PhD  students.  As  a  Dutch  national  representative,  Henk  is  strongly  involved  in  the  Integrated  Ocean  Drilling  Program  (IODP).  He  helped  form  many  integrated  national  and  international  scientific  education  programs  in  paleo-­‐climatology  and  -­‐ecology  and  served  on  numerous  scientific  advisory  panels  and  committees.  

Prof  Dr  Henk  Brinkhuis  |  General  Director  |  Royal  NIOZ|  PO  Box  59  |  1790  AB  Den  Burg,  Texel,  Netherlands  |  Tel  +31  (0)222  369364  (office  manager)  |  +31  (0)222  369366  (direct)  |  Mob  +31  (0)6  52652689  |  Fax  +31  (0)222  319674  |  mail  to:  [email protected]  

Also  at  Utrecht  University:  Marine  Palynology  |  Laboratory  of  Palaeobotany  and  Palynology  |  Department  of  Earth  Sciences,  Faculty  of  Geosciences  |  Utrecht  University  |  Budapestlaan  4  |  3584  CD  Utrecht,  Netherlands  |  Tel  +31  (0)30  2532629  (office  manager)  |+31  (0)30  2537691  (direct)|  Mob  +31  (0)6  52652689  |  Fax  +31  (0)30  2535096  |  mail  to:  [email protected]      

 

   

 53  

 

Chairman  Day  2:  Klaas  Timmermans,  NIOZ  

 

 

 

 

 

 

 

 

Curriculum  VitaeKlaas  Timmermans,  marine  biologist,  senior  scientist  &  Head  of  Department  of  Biological  Oceanography,  NIOZ-­‐Texel.  

As  off  1991,  Klaas  Timmermans  works  as  a  senior  scientist/  marine  biologist  at  the  Royal  Netherlands  Institute   for   Sea   Research,   first  within   the   Department   of  Marine   Chemistry  &  Geology,   and   from  2008   on   in   the   Department   of   Biological   Oceanography.   His   main   research   interests   are   on   the  cutting   edge   of  marinemicrobiology   and   chemistry:   they   focus   on   the   effects   of   changes   in  metal  speciation   (=   availability   for   biota),   changes   in   CO2   conditions   on   marine   phytoplankton   and  ecophysiology   of  micro-­‐   and  macro-­‐algae   (seaweeds)   in   the   laboratory   and   at   sea.   Specifically,   he  studied  the  effects  of  trace  metal  deficiencies  on  open  Southern  Ocean  diatoms,  the  role  of  diatoms  in  biogeochemical  cycles,  the  effects  of  diatom  growth  on  global  climate  change  (and  vice  versa),  the  bioavailability   of   trace  metals,  most   notably   iron,   and   the   possibilities   to   use  marine   autotrophes  (micro-­‐algae,   seaweeds)   a   producers   of   high   valueproducts   (pigments,   phytosterols,   etc).   His  work  combines   biology,   analytical   chemistry,   remote   sensing   and   metal   speciation   modeling.   The  overarching  goal  is  to  arrive  at  insight  in  the  effects  of  the  biotic  and  abiotic  environment,  including  changes   therein   (e.g.   global  warming,   ocean   acidification),   on  production   and   losses   in   biomass   of  marine  autotrophes.    

   

 54  

 

Various  aspects  for  seaweed  processing  Jaap  van  Hal,  Research  Scientist,  Energy  Center  of  the  Netherlands  (ECN)  Chemicals  and  bio-­‐fuels  from  the  third  generation  biomass  seaweed  

   

 

 

Abstract:  Chemicals  and  bio-­‐fuels  from  the  third  generation  biomass  seaweed  

Jaap  W.  van  Hal*  and  W.J.J.  (Wouter)  Huijgen  The  Energy  Research  Centre  of  the  Netherlands  (ECN)  Westerduinweg  3,  1755  LE  Petten  The  Netherlands  *[email protected]  

The  seaweed  biorefinery  project  aims  to  convert  native  seaweeds  to  chemicals,  biofuels  and  energy.  As  seaweed  in  our  vision  is  grown  off-­‐shore,  it  does  not  compete  with  the  food  supply  or  has  other  land  use  issues.  Since  about  ¾  of  the  earth  is  covered  by  water,  the  potential  is  large.  We  have  estimated  that  the  Dutch  part  of  the  North-­‐Sea  has  the  potential  to  produce  25  Mton  of  biomass,  which  is  equivalent  to  350  PJth  [1].    

Seaweed  offers  numerous  possibilities  for  production  of  renewable  chemicals  and  energy  carriers  for  a  future  “bio-­‐based  economy”.  It  is  highly  suited  as  a  raw  material  for  the  co-­‐production  of  chemicals,  biofuels  and  energy  via  the  biorefinery  approach.  In  this  project  suitable  and  efficient  biorefinery  strategies  and  concepts  are  developed  for  seaweed  biomass.  

The  national  seaweed  biorefinery  research  project  aims  to  adapt  the  biorefinery  concept  to  seaweed.  The  biochemical  composition  of  seaweed  differs  significantly  from  lignocellulosic  biomass.  Fractionation  and  chemical  transformation  processes  for  lignocellulosic  biomass  are  therefore  not  directly  applicable  for  seaweeds.  

In  our  proposed  biorefinery,  the  seaweed  is  first  dewatered  to  remove  a  large  fraction  of  the  more  than  80  %  water  that  seaweed  contains.  The  seaweed  is  then  fractionated  into  its  main  components,  carbohydrates,  proteins  and  minerals.  

In  the  second  stage  of  the  biorefinery,  the  main  components,  sugars,  proteins  and  minerals,  are  converted  into  bulk  chemicals  and  energy  carriers.  The  project  aims  to  develop  catalytic  and  enzymatic  conversions.  Direct  catalytic  conversion  of  whole  biomass  is  also  considered  a  viable  route.  

We  will  present  a  comparison  of  the  different  seaweeds  in  terms  of  their  biochemical  composition  and  the  potential  biorefinery  routes.  Some  seaweeds  are  rich  in  C6  carbohydrate  molecules,  whereas  other  seaweed  species  are  rich  in  C5  carbohydrate  molecules.  This  difference  in  biochemical  composition  offers  the  opportunity  for  species  specific  fractionation  conversion  routes.  We  will  describe  our  progress  towards  fractionating  seaweeds,  as  well  as  the  conversion  of  these  fractions  to  chemicals.  We  will  also  describe  our  progress  towards  directly  hydrolysing  the  seaweeds  towards  broths  suitable  for  fermentation.    References:    [1]   Reith,  J.H.,  Deurwaarder,  E.P.,  Curvers,  A.P.W.M,  Kamersmans,  P.  Brandenburg,  W.  "Bio-­‐offshore:  Grootschalige  teelt  van  zeewieren  in  combinatie  met  off-­‐shore  windparken  in  de  Noordzee",  2005,  ECN-­‐C-­‐05-­‐008    

 55  

 

Company:  

ECN  is  a  non-­‐profit  energy  research  institute  working  on  a  broad  spectrum  of  energy  and  environmental  techniques  (e.g.  solar,  wind,  biomass,  climate  change).  The  institute  has  about  600  employees.    

The  ECN  unit  Bioenergy  and  Efficiency  (BEE)  develops  advanced  uses  of  biomass,  advanced  processing  and  consults  on  policy  development  and  technical  applications.  The  R&D  programme  is  divided  into  1)  Sustainable  process  technology  (SPT)  2)  Bio  Energy  3)  Thermal  systems  and  4)  Bio  refinery  and  Processing.  About  one  hundred  highly  qualified  professionals  of  this  unit  work  on  physico-­‐chemical  conversion  (combustion,  gasification,  pyrolysis,  pretreatment/fractionation,  catalysis)  of  biomass  and  residues  in  national  and  international  projects  with  government  and  industry.  A  range  of  experimental  and  analytical  facilities  (combustion,  gasification,  pyrolysis,  gas  cleaning,  gas  engine,  catalytic  synthesis)  are  available  for  lab  and  pilot-­‐scale  RTD.  Substantial  experience  also  exists  in  process  modelling  and  integral  plant  design  including  economics  evaluation,  application  of  mineral  residues,  emission  control  and  LCA.    

The  ECN  biorefinery  program  focuses  on  advanced  physico-­‐chemical  pre-­‐treatment/fractionation,  pyrolysis  and  catalytic  biomass  conversion  of  lignocellulosic  -­‐  (wood,  straw  etc.)  and  seaweed  biomass.  Biorefinery  concepts  will  play  an  important  role  in  a  bio-­‐based  economy.  Our  primary  focus  has  been  the  development  of  pretreatment  or  fractionation  technology  as  a  basic  step  in  biorefinery.  This  involves  separating  lignocellulosic  or  aquatic  biomass  into  high-­‐quality  fractions  using,  e.g.,  organosolv  or  aquathermolysis  processes  which  are  adapted  and  improved  by  ECN.  We  are  also  developing  the  thermochemical  steps  to  process  these  fractions  into  transport  fuels  and  chemicals.  Although  these  technologies  are  in  their  early  stages  of  development,  they  have  an  enormous  potential  which  has  already  been  recognized  in  the  field.    

ECN  has  been  involved  in  seaweed  research  starting  in  2005  with  the  BIO-­‐OFFSHORE  project.  ECN  has  taken  part  in  national  seaweed  projects  involving  harvesting,  logistics,  processing  and  design.  ECN  is  coordinating  a  national  government  supported  project  Seaweed  Biorefinery  which  develops  technology  for  converting  seaweed  to  chemicals  and  fuels.  ECN  partners  in  a  national  SBIR  project  for  demonstration  of  large-­‐scale  near  shore  and  offshore  seaweed  cultivation  in  the  North  Sea  (2011  and  onward).  ECN  is  involved  in  the  FP7  seaweed  oriented  programs:  MERMAID  and  @SEA.  

Curriculum  VitaeJaap  W.  van  Hal  

Jaap  van  Hal  is  a  research  scientist  at  the  Energy  Research  Center  of  the  Netherlands  (ECN).  Jaap  is  the  research  coordinator  of  the  national  research  program  seaweed  biorefinery.  His  research  focuses  on  adapting  the  biorefinery  concept  towards  seaweeds.  Other  research  areas  are  the  conversion  of  lignin  (in  BIOCORE,  a  FP-­‐7  EU  project)  and  the  conversion  of  bio-­‐alcohols  (a  national  research  project).  Jaap  got  his  undergraduate  degree  from  Leiden  University  in  coordination  chemistry  and  his  Ph.D.  from  Rice  in  organometallic  chemistry.    He  then  worked  for  SABIC  in  Houston  for  about  10  year  and  moved  recently  to  ECN.    He  has  extensive  experience  in  heterogeneous  and  homogeneous  catalysis,  primarily  for  the  production  of  bulk  chemicals  both  for  liquid  and  gas  phase  processes.  

   

 56  

 

Paulien  Harmsen,  Scientist  Biorefinery  and  Biobased  Products,  Wageningen  UR  Seaweed  biorefinery:  production  of  fuels  and  chemicals  from  native  North  Sea  seaweed  species  

   

 

Seaweed  biorefinery:  production  of  fuels  and  chemicals  from  native  North  Sea  seaweed  species    

Paulien  Harmsen*,  Ana  López-­‐Contreras,  Rolf  Blaauw  and  Jacco  van  Haveren  

Food  and  Biobased  Research-­‐WageningenUR,  Bornse  Weilanden  9,  6709  CT  Wageningen,  The  Netherlands  

*  [email protected]    

Seaweeds   are   used   as   food   but   also   as   source   for   food   additives,   pharmaceuticals   and  chemicals   (e.g.   hydrocolloids   as   thickening   agents).   Annually,   7-­‐8   million   tonnes   seaweeds   are  harvested,  with  an  estimated  total  value  of  the  products  of  US$  5-­‐6  billion[1].  Because  of  the  special  chemical  composition  of  seaweeds  (high  in  (polymeric)  sugars,  proteins  and  without  the  recalcitrant  lignin  found  in  lignocellulose)  and  the  possibilities  for  cultivation  at  large  scale  with  high  yields,  they  are   potential   feedstocks   for   the   production   of   renewable   chemicals   and   fuels   for   the   Biobased  Economy  [2].  

In   this   project,   biorefinery   strategies   and   concepts   are   developed   for   seaweed  biomass.   In  this   respect   brown   seaweeds   are   of   special   interest   as   they   contain  mannitol,   alginate,   polymeric  sugars,  proteins  and  minerals.  The  seaweed  needs  to  be  fractionated  into  its  main  components  after  which   they   can   be   converted   into   chemicals   and   fuels   by   catalytic,   enzymatic   and   fermentative  conversion  routes.  Two  brown  seaweed  species  have  been  studied  as  a  feedstock  for  biorefinery:  

a)  Saccharina  latissima.    

Freshly  harvested  Saccharina  latissima  was  pressed  using  different  techniques  in  order  to  reduce  the  water   content.   From   the   press   liquid   mannitol   as   extracted   and   purified.   In   addition,   sugar-­‐rich  fractions   from  different   seaweeds  were   tested  as   substrate   for   the  production  of  acetone,  butanol  and  ethanol  by  fermentation.  

b)  Laminaria  digitata    

Freshly   harvested   Laminaria   Digitata   was   used   to   study   alginate   extraction.   Alginate   is   currently  extracted  from  seaweeds  by  a  batch  process  using  lots  of  water  and  chemicals.  Aim  of  this  study  was  the  extraction  of  alginate  by  reactive  extrusion  in  order  to  reduce  water  and  chemical  consumption.  Alginate   was   isolated   from   the   fresh   seaweed   and   the   procedure   used   for   this   extraction   will   be  described  and  results  on  yields  will  be  presented.    

Acknowledgement  

 57  

 

This   work   was   performed   in   the   framework   of   EOS-­‐LT   project   “Seaweed   Biorefinery”  (seaweed.biorefinery.nl)  financed  by  AgentschapNL  (project  nr.  EOS  LT  08027)    

References:  [1]  McHugh  D.   J.   (2003)   “A   guide   to   the   seaweed   industry”   .   FAO  Fisheries   Technical   Paper   (FAO).  0429-­‐9345,  no.  441,  ISBN  92-­‐5-­‐104958-­‐0.  

[2]  Kraan,  S.  (2011)  Mitigation  and  Adaptation  Strategies  for  Global  Change,  p.1-­‐20,  online  

Curriculum  Vitae  Paulien  Harmsen    

Project  manager  and  scientist  at  Wageningen  UR  Food  and  Biobased  Research  in  the  field  of  the  Biobased  Economy  and  more  specific  on  Biorefinery  and  Biobased  Products  (http://www.wageningenur.nl/en/Persons/ir.-­‐PFH-­‐Paulien-­‐Harmsen.htm)  

Experience  in  pretreatment  of  lignocellulosic  biomass  and  seaweeds  for  the  production  of  materials  or  chemical  building  blocks,  on  lab  scale  and  semi-­‐pilot  scale.  Working  on  sustainable  value  chains  for  the  Biobased  Economy  and  editor  of  “Groene  Grondstoffen”,  a  series  of  publications  on  the  use  of  agro   commodities   and   secondary   residue   streams   in   safe   and   healthy   products   for   consumer   and  industrial  markets    

(http://www.groenegrondstoffen.nl/Serie_GG.html).  

MSc  in  Chemical  Engineering  and  TwAIO  (2  years  study)  on  controlled  release  at  the  University  of  Twente.  

 

Wageningen  UR  Food  &  Biobased  Research  (www.fbr.wur.nl)  

Wageningen  UR  is  a  collaboration  between  Wageningen  University  and  specialized  Research  Institutes.  Food  and  Biobased  Reasearch  is  one  of  those  institutes  with  focus  on  sustainable,  innovative  and  market  oriented  solutions  for  healthy  food,  fresh  food  chains,  biorefinery,  biobased  chemicals  and  materials.  

About  us  

The  fast  increasing  world-­‐population,  diminishing  resources  and  changing  consumption  patterns  call  for   sustainable   and   innovative   solutions   in   healthy   foods   and   renewable,   biobased   products.  Wageningen   UR   Food   &   Biobased   Research   works   in   close   cooperation   with   national   and  international   companies,   governments   and   other   knowledge   institutes   on   solutions   to   overcome  these  challenges.  

Our   knowledge   of   the   whole   supply   chain,   from   raw   materials   to   production   and   processing  methods,  logistic  issues  and  end  products,  allows  us  to  help  our  clients  with  issues  regarding  healthy  and  tasty  foods,  sustainable  food  chains,  biorefinery  and  biobased  products.  

Food  &  Biobased  Research  is  part  of  Wageningen  University  &  Research  centre.  Our  cooperation  with  Wageningen  University  enables  us   to  access  a  broad  spectrum  of  knowledge  and  expertise,  on   the  fundamental  as  well  as  applied  scientific  level.  

 58  

 

Biobased  Products  

In  a  ‘biobased  economy’  we  use  the  renewable  resource  biomass  for  biobased  products,  chemicals,  materials  and  energy.  This   is   important   in  order  to  prevent  the  further  depletion  of  non-­‐renewable  raw  materials   and   increasing   CO2-­‐emissions.   The   Business   Unit   Biobased   Products   works   in   three  research  programs:  biorefinery,  biobased  materials  and  biobased  chemicals,  on  solutions  for  a  more  sustainable  economy.  

Paulien  Harmsen,  MSc  Scientist  Biorefinery  and  Biobased  Products  Wageningen  UR  Food  &  Biobased  Research      

T:          +31  (0)317  480224  E:          [email protected]  I:            www.biobasedproducts.nl                  www.groenegrondstoffen.nl    

 59  

 

Annette  Bruhn,  Research  Scientist,  PhD,  Aarhus  University  –  Department  of  Bioscience  The  MacroAlgae  Biorefinery,  Laminaria  for  Energy,  Feed  and  Bioremediation  

   

 

 

 

 

The  Macroalgae  Biorefinery  –  Laminaria  for  energy,  feed  and  bioremediation  

Annette  Bruhn1,  Ditte  B.  Tørring2,  Michael  Bo  Rasmussen1,  Mette  M.  Nielsen1,  Teis  Boderskov1,  Peter  Schmedes1,  Jens  Kjerulf  Petersen2,  Kristian  Oddershede  Nielsen2,  Xiaoru  Hou3,  Jonas  Høeg  Hansen3,  Dirk  Manns4,  Anne  Meyer4  &  Anne-­‐Belinda  Bjerre3  

1Aarhus  University,  Department  of  Bioscience,  Vejlsøvej  25,  8600  Silkeborg,  Denmark  

2Danish  Shellfish  Centre,  DTU-­‐Aqua,  Øroddevej  80,  7900  Nykøbing  Mors,  Denmark  

3DanishTechnological  Institute  –  Energy  and  Climate,  Gregersensvej,  2630  Taastrup,  Denmark  

4Technical  University  of  Denmark,  Department  of  Chemical  and  Biochemical  Engineering,  Søltofts  Plads,  2800  Kgs.  Lyngby,  Denmark  

The  major  challenge  in  making  seaweed  cultivation  economically  feasible  in  Europe  is  that  the  production  cost  is  too  high  relative  to  the  selling  price.  In  order  to  achieve  a  positive  business  case,  production  need  to  be  mechanized  and  the  value  of  the  harvested  biomass  needs  to  increase.  

The  Macroalgae  Biorefinery  –  a  Danish  strategic  research  project  -­‐  exhibits  a  cross-­‐disciplinary  approach  working  on  both  lines.    

Two  native  species  of  brown  algae,  Laminaria  digitata  and  Saccharina  latissima,  are  cultivated  in  an  18  ha  area  in  the  Danish  embayment,  Limfjorden.  Mechanization  of  the  handling  processes  is  attempted  by  implementing  existing  mussel  long-­‐line  cultivation  technology.  Following  harvest,  new  wet  pre-­‐treatment  processes,  such  as  ensiling,  are  tested  in  order  to  make  the  seaweed  biomass  storage  stable,  without  the  resource  demanding  drying  process.  The  biorefinery  approach  to  the  biomass  is  initially  focused  on  two  products  only:  Bioethanol  and  fish  feed.  Following  an  enzymatic  hydrolysis,  a  fermentation  process  converts  the  carbohydrates  into  bioethanol,  aiming  at  leaving  the  protein  fraction  undamaged,  and  up-­‐concentrated.  This  fraction  will  be  tested  as  a  fish  feed  ingredient,  substituting  for  other  marine  protein  sources.  Finally,  the  overall  economic  and  environmental  sustainability  of  the  concept  is  analyzed,  taking  the  bioremediative  effect  of  seaweeds  on  eutrophicated  coastal  waters  in  account.  

Since  the  beginning  of  the  project  in  2012,  S.  latissima  has  been  cultivated  and  harvested  over  one  growth  season  with  an  average  yield  of  1  kg  seaweed  (fresh  weight)  m-­‐1.  Implementation  of  line  

 60  

 

mussel  technology  for  deployment  of  seed  lines  and  harvest  was  successful.  The  harvested  biomass  (2  metric  tonnes)  has  been  stored  either  frozen  or  as  silage.  Preliminary  results  of  explorative  hydrolysis  and  fermentation  of  L.  digitata  to  ethanol  showed  a  conversion  efficiency  of  over  95%  of  the  glucose  sugar  fraction  in  the  raw  material.    

In  the  following  three  years,  production  yield  and  seasonal  variation  will  be  tested  in  a  number  of  potential  Danish  cultivation  sites,  as  well  as  the  genotypic  and  phenotypic  variation  between  local  populations  will  be  analyzed  in  the  perspective  of  selective  breeding.  

Thus,  we  hope  that  selective  breeding  and  mechanization  inspired  by  similar  trades  will  increase  yields  and  reduce  costs,  while  optimized  pre-­‐treatments,  extraction  techniques  and  fermentation  processes,  will  increase  the  value  of  the  biomass.  All  adding  to  make  the  ends  meet  for  feasible  seaweed  cultivation  in  Europe.  

The  Macroalgae  Biorefinery  is  a  four-­‐year  project  (2012-­‐2016)  financially  supported  by  the  Danish  National  Strategic  Research  council.  

 Name:     ANNETTE  BRUHN  Title:     Research  Scientist,  Ph.D.  Address,  work:     Aarhus  University,  Institute  for  Bioscience     Vejlsøvej  25,  8600  Silkeborg,  Denmark  Tel:     +45  87159715  e-­‐mail:     [email protected]  Education:     2008:  Ph.d.  Aarhus  University  Department  of  Biology  (in  co-­‐operation  with  Kiel  University,  Marine  Research  Institute,  Germany)  

                                                                                                           2003:  M.Sc.  Aarhus  University  

Employment:     2008  –  2009:  Post.  doc.,  Marine  Ecology  Aarhus  University    

  2008:  Consultancy  and  project  manager,  NERI  (6  months)  

2006:  Research  assistant,  Galathea  3  expedition,  Aarhus  University  

Main  area  of  expertise:       Cultivation  of  algae  biomass  as  a  resource  for  food,  feed,  renewable  energy  and  high  value  products  and  as  a  means  of  environmental  bioremediation  Optimisation  of  biochemical  composition  of  cultivated  algae  according  to  application  

Selected  publication  

1. Sode,  S.,  Bruhn,  A.,  Balsby,  T.,  Larsen,  M.M,  Gotfredsen  A.  and  Rasmussen,  M.B.  Bioremediation  of  reject  water  from  anaerobically  digested  waste  water  sludge  with  Ulva  lactuca  (Chlorophyta).  Accepted  to  Bioresource  Technology.  

2. Kristian  Rost,  A.,  Bruhn,  A.  and  Ambus,  P.  2013.  Nitrous  oxide  emission  from  Ulva  lactuca  is  stimulated  by  nitrite,  nitrate  and  light.  Results  from  batch-­‐culture  incubations.  Journal  of  Experimental  Marine  Biology  and  Ecology  448:37-­‐45.  

 61  

 

3. Nielsen,  M.M.,  Bruhn,  A.,  Rasmussen,  M.B.,  Olsen,  B.  and  Larsen,  M.M.  Møller,  H.B.  2012.  Cultivation  of  Ulva  lactuca  with  manure  for  simultaneous  bioremediation  and  biomass  production.  Journal  of  Applied  Phycology  24  (3):449-­‐458.    

4. Bruhn,  A.,  Dahl,  J.,  Nielsen,  H.B.,  Nikolaisen,  L.  Rasmussen,  M.B.,  Olesen,  B.,  Arias,  C.,  Markager,  S.  S.  &  Jensen,  P.D.  2011.  Bioenergy  potential  of  Ulva  lactuca:  growth  yield,  methane  production  and  combustion.  Bioresource  Technology  102  (3):  2595-­‐2604.  

5. Bruhn,  A,  Richardson,  K.  &  LaRoche,  J.  2010.  Emiliania  huxleyi  (Prymnesiophyceae)  Nitrogen  metabolism  genes  and  their  expression  in  response  to  external  nitrogen  sources.  Journal  of  Phycology  46  (2):  266-­‐277.  

 

Aarhus  University,  Department  of  Bioscience  and  AlgaeCenter  Denmark.  AU  Bioscience  is  all  about  life.  We  teach  and  carry  out  consultancy  and  research  within  all  aspects  of  life  from  bacteria  to  whales,  genes  to  ecosystems  and  from  basic  to  applied  research.  Bioscience  was  established  in  2011  by  a  fusion  of  research  groups  from  The  National  Environmental  Research  Institute  and  the  traditional  Biological  Institute.  We  give  priority  to  basic  and  strategic  research  and  research-­‐based  consultancy  services.  With  approximately  500  staff  and  more  than  500  students  at  Bachelor  and  Master  levels  as  well  as  130  thesis  writing  students,  it  makes  for  an  exciting  and  inspiring  working  and  study  life.  

AU  Bioscience  is  one  of  four  partners  in  AlgaeCenter  Denmark,  also  counting  the  Danish  Technological  Institute,  the  House  of  the  Ocean  and  the  KattegatCentre.  

AlgaeCenter  Denmark  was  founded  in  2010,  and  is  a  platform  for  research,  development  and  dissemination  of  cultivation  and  utilisation  of  macroalgae  for  food,  feed,  biomitigation,  energy  and  high  value  products.  We  work  in  dialogue  with  industrial  partners,  national  authorities  as  well  as  research  institutions  in  Denmark  and  internationally.  

 

   

 62  

 

Paul  Bikker,  ASG  Seaweed  and  seaweed  components  as  novel  protein  sources  in  animal  diets.  

 

 

Bikker,  P.,  M.M.  van  Krimpen,  A.  Palstra,  W.  Brandenburg,  A.  Lopez-­‐Contreras  and  S.  van  den  Burg  

Wageningen  UR  Livestock  Research,  P.O.  Box  65,  8200  AB  Lelystad,  Netherlands.  [email protected]  

 

The  development  of  the  world  population  stimulates  the  demand  for  animal  proteins.  This  increases  the  competition  of  biomass  for  human  and  animal  consumption  or  for  biofuel,  and  urges  an  efficient  use  of  available  natural  resources.  Moreover,  within  the  EU  a  more  sustainable  and  less  import  based  food  production  chain  is  required.  In  the  past,  coastal  communities  gathered  seaweed  onshore  for  use  as  feedstuff,  mainly  for  ruminants.  In  intensive  animal  production  in  the  EU,  seaweed  is  not  used  to  any  significant  extent.  Nonetheless,  seaweed(products)  may  be  of  interest,  especially  because  seaweed  cultivation  does  not  compete  in  land-­‐use  with  traditional  arable  crops.  Therefore,  we  conducted  a  feasibility  study  into  the  production  and  use  of  macro  algae  in  the  North  Sea  area  for  inclusion  in  animal  diets.  Seaweed  can  be  used  in  animal  diets  in  complete  form,  as  a  residue  of  bioprocessing,  as  a  source  of  bioactive  components  and  micronutrients  or  because  of  technological  properties.  Mainly  in  young  piglets,  effects  of  seaweed  components  on  immune  competence  and  gut  health  have  been  demonstrated.  Nutrient  digestibility  seems  relatively  low  and  may  vary  between  animal  species.  More  insight  is  required  in  the  comparative  feeding  value  of  seaweed  species,  suitable  for  cultivation  in  the  North  Sea,  in  diets  for  ruminants,  pigs,  poultry,  and  fish.  Attention  should  be  given  to  the  high  ash  content  and  the  high  seasonal  and  inter  species  variation  in  composition.  Further  research  has  to  determine  whether  enzymatic  or  technological  treatment  of  seaweed  can  improve  nutrient  digestibility  and  enhance  the  value  of  seaweed  in  animal  diets.  Our  study  suggests  that  combined  use  of  seaweed  fractions  for  food,  non-­‐food  and  feed  applications  through  biorefinery  allows  the  most  promising  opportunity  for  efficient  use  of  resources  and  an  economically  viable  business  case.  Therefore,  future  research  should  focus  on  the  nutritional,  functional  and  feed  safety  aspects  of  seaweed  and  (residue)  fractions  in  target  species.    Curriculum  Vitae    Paul  Bikker  is  senior  scientist  in  monogastric  nutrition  in  Wageningen  UR  Livestock  Research.  He  obtained  his  PhD  in  animal  nutrition  at  this  university  in  1994  in  a  study  into  energy  and  amino  acid  requirements  of  growing-­‐finishing  pigs.  Since  then,  he  has  been  working  as  a  researcher  and  consultant  in  animal  nutrition  in  various  positions.  His  main  fields  of  expertise  include  the  mineral  and  trace  element  nutrition  of  monogastric  species,  amino  acid  and  energy  utilisation  in  pigs,  diet  composition  and  gut  health  and  nutritive  evaluation  of  (new)  feed  ingredients.  Much  of  his  research  is  conducted  in  cooperation  with  governmental  bodies  (Dutch  and  EU)  and  companies  involved  in  the  production  of  animal  feed  and  feed  ingredients  and  implemented  by  the  feed  industry.      

 63  

 

Keynote  lecture  /  NIOZ  Colloquium  Ronald  de  Vries,  CBS-­‐KNAW  FUNGAL  BIODIVERSITY  CENTRE  Degradation  of  biomass  of  terrestrial  plants  and  algae  by  fungi  

                     

Degradation  of  biomass  of  terrestrial  plants  and  algae  by  fungi    Ronald  P.  de  Vries  CBS-­‐KNAW  Fungal  Biodiversity  Centre,  Uppsalalaan  8,  3584  CT  Utrecht,  The  Netherlands  Phone:  +31  302122600,  e-­‐mail:  [email protected]    Fungi  are  the  crucial  for  the  global  carbon  cycle  by  converting  plant  biomass  into  nutrients  for  themselves  and  other  organisms.  Degradation  of  plant  biomass  by  fungi  involves  a  broad  range  of  extracellular  enzymes  that  degrade  polysaccharides  as  well  as  the  aromatic  polymer  lignin.  Large  differences  in  the  enzymatic  repertoire  has  been  revealed  by  the  increasing  number  of  fungal  genomes  that  have  become  available  and  in  many  cases  a  correlation  between  genome  content  and  natural  substrate  could  be  found.  Efficient  utilization  of  these  complex  carbon  sources  requires  more  than  just  a  broad  set  of  enzymes.  It  also  requires  the  right  enzymes  to  be  produced  at  the  right  time  and  for  the  production  of  the  right  metabolic  enzymes  to  convert  the  resulting  monomers.  To  facilitate  this,  most  fungi  have  developed  fine-­‐tuned  regulatory  systems  that  respond  to  the  presence  of  plant  biomass  components  by  activating  genes  encoding  specific  extracellular  and  metabolic  enzymes.  So  far,  the  main  focus  of  fungal  studies  into  biomass  degradation  has  been  on  terrestrial  plants,  while  a  much  lower  number  of  studies  address  the  fungal  ability  to  degrade  algae.  In  this  presentation  the  organization  of  biomass  degradation  in  fungi  will  be  presented  as  well  as  initial  results  from  studies  into  fungal  degradation  of  algal  biomass.    

Description  CBS  

The  Fungal  Biodiversity  Centre  (Centraalbureau  voor  Schimmelcultures  -­‐  CBS)    -­‐  an  institute  of  the  Royal  Netherlands  Academy  of  Arts  and  Sciences  (KNAW)  and  situated  in  Utrecht  -­‐  maintains  a  world-­‐renowned  collection  of  living  filamentous  fungi,  yeasts  and  bacteria.  

The  Institute's  research  programs  principally  focus  on  the  physiology,  taxonomy  and  evolution  of  fungi  as  well  as  on  functional  aspects  of  fungal  biology  and  ecology,  increasingly  making  use  of  

 64  

 

molecular  and  genomics  approaches.  The  institute  employs  circa  80  personnel,  among  whom  40  scientists.  

Its  collection  now  maintains  over  70.000  strains  of  micro-­‐organisms,  representing  a  large  percentage  of  the  species  in  the  fungal  kingdom  that  have  been  cultured  to  date.  In  diversity  of  species  it  is  unchallenged  as  a  reference  centre  for  mycological  research.  The  task  to  preserve  the  organisms  while  maintaining  their  original  characters  is  a  perpetuating  challenge  to  technicians  and  scientists  alike.  CBS  is  a  centre  of  expertise,  advising  on  mycological  problems  of  a  scientific,  health-­‐related  or  industrial  nature.  It  offers  various  services  including  identifications,  patent  deposits  and  courses.  Research  projects  for  third  parties  can  be  carried  out  on  a  strictly  confidential  base.  The  institute  also  publishes  books  and  the  journals  Studies  in  Mycology,  CBS  Biodiversity  Series  and  Persoonia.  

Curriculum  Vitae  Name:                               Dr.  Ronald  P.  de  Vries    Affiliations:     Fungal  Physiology,  CBS-­‐KNAW  Fungal  Biodiversity  Centre  Address:     Uppsalalaan  8,  3584  CT  Utrecht,  The  Netherlands       +31  302122600,  [email protected]  Date  of  Birth:       15-­‐10-­‐1967    Education  PhD    Molecular  Genetics  of  Industrial  Microorganisms,  Wageningen  University,  The  Netherlands  Graduated  13-­‐9-­‐1999.    Title  Thesis:  Accessory  enzymes  from  Aspergillus  involved  in  xylan  and  pectin  degradation.  Masters  Molecular  Sciences,  Wageningen  Universisty,  The  Netherlands.  1986-­‐1992.    Work  experience  2009  –  present   Group  Leader  Fungal  Physiology,  CBS-­‐KNAW  Fungal  Biodiversity  Centre.  Utrecht,  

The  Netherlands  2006-­‐2009   Senior  Scientist,  Microbiology,  Utrecht  University,  The  Netherlands  2002-­‐2006   Postdoc,  Microbiology,  Utrecht  University,  The  Netherlands  1999-­‐2001   Postdoc,  Molecular  Genetics  of  Industrial  Microorganisms,  Wageningen  

University,  The  Netherlands    Other  academic  activities  

- Obtained  14  competitive  research  grants    - Editor  or  editorial  board  member  for  4  peer-­‐reviewed  journals  - PhD  examiner  or  co-­‐promoter  for  13  PhD  students  

   

 65  

 

Valorisation  of  seaweed  Job  Schipper,  Hortimare  Follow-­‐up  Texel:  test  module  for  seaweed  cultivation  off  the  coast  of  Texel  

 

 

Abstract  Seagriculture  

Job  Schipper  (Hortimare  BV  and  North  Sea  Farm  Foundation)  

September  2013  

 

Offshore  seaweed  cultivation:  North  Sea  Farm  

Offshore  Cultivation  of  seaweed  is  the  ultimate  challenge  from  a  technical  point  of  view.  Waves  and  currents  affect  both  the  cultivation  unit  and  seaweeds.  Design  and  seaworthiness  are  key  for  success  which  resulted  in  Hortimare’s  invention  of  the  H-­‐frame.  Aspects  of  this  patented  system  will  be  presented  and  experiences  will  be  shared  around  the  interaction  between  the  system  and  seaweed  cultivation  as  well  as  the  mechanization  of  planting  and  harvesting.    

A  large  scale  seaweed  farm  will  have  a  noticeable  effect  on  the  environment  at  sea.  Beside  its  nutrient  consumption  positively  lowering  eutrophication,  the  seaweed  is  a  habitat  that  provides  shelter  to  marine  life  and  is  a  bio  diverse  ecosystem.  The  economic  value  of  exploitation  related  to  integrated  approaches  of  aquaculture  are  presented.    

Seaweed  farming  is  a    sector  in  development.  In  order  to  establish  a  successful  sustainable  innovation,  a  chain  of  companies  is  needed  that  adequately  exchange  information  and  coordinate    technologies,  systems  and  processes  with  each  other.  Traditionally  this  happens  at  a  test  farm  or  in  a  business  incubator.  The  North  Sea  Test  Farm  is  initiated  for  this  particular  purpose  and  the  foundation  hopes  to  welcome  companies  and  technology/knowledge  providers  at  the  farm  to  collaborate  on  sustainable  solutions  for  the  future.  

   

 66  

 

Céline  Rebours,  Helena  Abreu  and  Julie  Maguire,  Bioforsk  Integrated  actions  for  the  development  of  the  Macroalgae  Industry  in  Europe.  

 

Title    

“Integrated  actions  for  the  development  of  the  Macroalgae  Sector  in  Europe”  

Authors  

Rebours  Céline1,  Meland  Marte1,  Abreu  M.  Helena2,  Bay-­‐Larsen  Ingrid3,  Hovelsrud  Grete3,  Gachon  Claire  MM4  and  Maguire  Julie5  

1  Bioforsk,  Norwegian  Institute  for  Agricultural  and  Environmental  Research,  Frederik  A.  Dahls  vei  20,  1432  ÅS,  Norway,  [email protected]  

2  ALGAPLUS  Lda,  Angeja,  Portugal  

3Nordland  Research  Institute,  Universitetsalléen  1,  8049  Bodø,  Norway    

4Scottish  Association  for  Marine  Science,  Scottish  Marine  Institute,  Oban  PA37  1QA,  UK  

5  Indigo  Rock  Marine  Research  Station,  Gearhies,  Bantry,  Co.  Cork  Ireland  

 

Abstract  

High  yield  biomass  production  methods  are  in  increasing  demand  worldwide  to  supply  energy,  food,  feed   as   well   as   high-­‐value   pharmaceuticals   and   nutraceuticals.   The   United   Nations   Framework  Convention  on  Climate  Change  (UNFCCC)   is  also  tackling  the  threats  resulting  from  climate  change,  with  the  aim   'to  stabilize  atmospheric  greenhouse  gas  concentrations  at  a   level   that  would  prevent  dangerous   anthropogenic   interference   with   the   climate   system.   Such   a   level   should   be   achieved  within  a   time   frame   sufficient   to  allow  ecosystems   to  adapt  naturally   to   climate   change,   to  ensure  that  food  production  is  not  threatened  and  to  enable  sustainable  economic  development.'    As  new  potential  production  areas  on  land  are  scarce,  developing  innovative  production  systems  at  sea  would  contribute  to  answer  these  challenges.  Global  aquaculture  grows  at  a  staggering  rate  of  7  percent  annually  per  year  and,  produces  for  50  percent  of  finfish,  25  percent  of  aquatic  plants  and  25  percent   of   invertebrates   such   as   crustacean   (e.g.   shrimp,   prawns,   crabs)   and  mollusks   (e.g.   clams,  oysters   and  mussels).   In   Europe,   aquaculture   accounts   for   about  20%   fish  production,   and  directly  employs  around  70  000  people.  In  2010,  its  value  was  €  3.1  billion  for  1.26  million  tons  of  biomass.  Despite   being   renowned   for   its   quality,   sustainability   and   high   consumer   protection   standards,   EU  aquaculture  is  stagnating,  at  approximately  2%  of  the  worldwide  aquaculture  production.  Norwegian  salmon  farming  is  the  largest  European  aquaculture,  contributing  for  over  44%  of  the  European  total.  Despite   excellent   expansion   prospects   over   the   coming   decades,   the   industry   suffers   from  controversies   over   its   social,   economic   and  environmental   sustainability.   Investigations   in   Scotland  and  Norway  show  that   social  acceptance   is   largely   connected   to  environmental   concerns,   in  which  both  environmental,  social  and  economic  sustainability  are  to  be  considered.  The  European  aquaculture   industry   relies  on  protein  and  oil   feeds  derived   from  wild   fish   stocks  at  their   limit   of   exploitation.   Almost   90%   of   the   global   fish   oil   production   is   consumed   to   feed   high  valued  predatory  fish,  which  through  excretion,  contribute  to  elevated  local  nutrient  concentrations.  These  production  practices  have  significant  negative  impacts  on  the  environment  and  on  fish  quality,  

 67  

 

leading  to  increasing  public  concern.  Criticisms  are  directed  mostly  to  production  practices,  and  the  direct  discharge  of  significant  nutrient  and  effluent  loads  into  coastal  waters  from  both  open-­‐water  and   land-­‐based   systems.   Plans   for   tripling   the   size   of   Norwegian   aquaculture   by   2025   cannot   be  achieved   using   current  monoculture   practices   in   an   environmentally   and   economically   sustainable  way.  The  EC  “strategy  for  the  sustainable  development  of  European  Aquaculture”  addresses  the  integrated  prevention  and  control  of  pollution  (CEC,  2002).  Experimental  and  pilot  scale  trials  in  Canada,  Chile,  South   Africa,   United   States   and   China   already   report   the   efficiency   of   Integrated   Multitrophic  Aquaculture   (IMTA)   to  mitigate   the   environmental   issues   associated  with   intensive  marine   animal  aquaculture.   Adoption   of   IMTA   practices   is   in   line   with   one   of   the   EU2030   goals   (Thematic   Area  Environment   for   European   Aquaculture)   and   has   recently   been   officially   suggested   as   a   way   to  increase   sustainable   aquaculture   production   (COM   (2012)   494).   The   introduction  of   IMTA  has   also  economic  implications  in  terms  of  ecosystem  services  and  the  potential  of  creation  of  niche  markets.  For   example,   Nobre   et   al.   2010   1valued   reductions   in   nutrient   removal   costs,   environmental  restoration  and  greenhouse  gas  (GHG)  emissions  in  Abalone-­‐Kelp  IMTA  at  US$  1-­‐3  million  per  annum  compared   to   monoculture   and   products   from   an   IMTA   system   could   be   commercialized   under  “environmentally   friendly”   label   or   organic   certification.   The   environmental   improvements  conceivable  with  IMTA  have  economic  and  social  implications  for  the  wider  community.    More  specifically,  the  EC  issued  a  regulation  for  Biologic  Aquaculture  of  both  animal  and  macroalgae  where  it  clearly  outlined  the  nutrient-­‐removing  role  of  algae  in  polyculture  systems  (Com.  Reg.  Nº710/2009).  In  connection  with  off-­‐shore  salmon  farming,  macroalgae  are  the  optimal  candidates  to  extract  inorganic  nutrients  from  the  water  to  produce  new  biomass  through  photosynthesis.  Worldwide,  the  macroalgae  industry  already  produces  a  wide  variety  of  products  and  increases  by  5.7%  annually  in  volume,  with  over  93%  of  the  global  production  being  farmed.  Countries  in  East  and  Southeast  Asia  dominate  macroalgae  culture  production  (99.8%  by  quantity  and  99.5%  by  value  in  2008);  while  the  European  industry  is  almost  completely  reliant  on  the  exploitation  of  natural  stocks  and  has  steadily  decreased  since  the  1990´s.  The  rapid  development  of  macroalgal  farming  in  Europe  could  contribute  to  address  the  challenges  encountered  by  animal  aquaculture  today.  Macroalgal  aquaculture  will  however  also  have  to  address  the  effects  of  climate  change  and  overcome  its  impacts  by  rising  innovations  at  different  levels  i.e.  technology,  biology,  policy.  This  paper  will  present  the  emergence  of  multiple  issues  and  integrated  actions  resulting  to  the  foreseen  rapid  expansion  of  the  macroalgal  industry  in  Europe.        

Curriculum  vitae  of  the  first  author  

Dr   Céline   Rebours   is   an   experimental   marine   biologist,   specialized   in   phycology.   Her   areas   of  expertise   are   on   algal   culture   and   uses   of   algae   as   fodder   in  marine   hatcheries,   nurseries   and   on-­‐growing   facilities   for  both   invertebrates  and   fish.  Dr.  Rebours   is   researcher  at   the  Bodø  unit  of   the  Arctic   Agriculture   and   Land   Use   Division   in   Bioforsk.   Dr.   Rebours   has   been   involved   in   several  international,   national   and   regional   projects   as   project   leader,   work   package   leader   or   scientific  adviser.  Dr  Rebours  is  designated  expert  in  the  international  committee  ISO  TC234  (Aquaculture)  and  an  elected  member  in  the  steering  committee  of  International  Society  for  Applied  Phycology.    

Bioforsk  description  

Bioforsk   -­‐  Norwegian   Institute   for  Agricultural  and  Environmental  Research  has   their  main  areas  of  competence   linked   to   food   quality   and   safety,   agriculture   and   rural   development,   environmental                                                                                                                           1  Nobre  et  al,  2010:  Addressing  the  complexity  of  the  Earth  system.  Bull.  Amer.  Met.  Soc.  DOI:10.1175/2010BAMS3012.1.  

 68  

 

protection  and  natural  resources  management.  Bioforsk  pays  increasing  attention  to  the  ecology  and  productivity   of   coastal   environments/   ecosystems,   both  national   and   international.   Bioforsk  within  the   section   for   bioproduction   and   ecosystem   in   Northern   Coastal   regions   aims   to   develop   an  innovative  R&D  strategy  adapted  to  the  local  problems.  Bioforsk  Nord  Bodø  (BNB)  department  is   in  charge  of  developing  a  new  research  strategy  into  the  blue-­‐green  zone.  BNB  also  intends  to  assist  in  developing   the   first   stages   towards   a   future   sustainable   development   of   the   algae   aquaculture  industry  in  Norway.  BNB  has  its  expertise  in  plant  &  growth  physiology,  phycology,  microbiology  and  organic  farming.  For  2010-­‐2016,  BNB  is  involved  in  several  projects  concerning  coastal  plant  biology,  ecology   and   environmentally   friendly   production.   Through   its   close   relationship   to   organic  agriculture,   BNB   brings   expertise   in   environmentally   friendly   production   and   organic   farming  techniques  that  are  applicable  to  IMTA  development.    

 69  

 

Pieternella  Luttikhuizen  &  Judith  van  Bleijswijk,  NIOZ  Population  genetics  of  kelp  and  its  relevance  for  kelp  farming  in  northwest  Europe.  

 

'Population  genetics  of  kelp  and  its  relevance  for  kelp  farming  in  northwest  Europe'  

Pieternella  C.  Luttikhuizen  and  Judith  van  Bleijswijk  

Netherlands  Institute  for  Sea  Research,  Texel,  the  Netherlands  

In  collaboration  with  Hortimare,  Heerhugowaard,  the  Netherlands  

Abstract  

Molecular  genetic  techniques  can  be  used  for  obtaining  insight  in  a  wide  range  of  population  dynamic  aspects.  Diversity  in  genetic  markers  between  and  within  populations  can,  for  example,  tell  us  about  the  effective  size  of  populations,  about  a  population's  demographic  history,  about  connectivity  in  a  metapopulation  and  it  can  be  the  basis  for  marker  assisted  breeding.  Here  we  will  present  preliminary  results  from  our  population  genetic  studies  of  Laminaria  digitata  and  Saccharina  latissima  in  NW  Europe.  The  former  has  previously  been  studied  in  other  parts  of  the  world,  while  for  the  latter  almost  nothing  is  know  about  population  structure.  While  many  species  in  the  sea  are  characterized  by  large  dispersal  ranges  due  to  pelagic,  free-­‐floating  life  stages,  this  is  not  necessarily  the  case  for  kelp.  It  has  been  shown  for  L.  digitata  that  kelp  stands  can  differ  significantly  in  their  genetic  composition  at  relatively  short  geographic  ranges,  at  least  in  the  English  Channel  area.  This  is  possibly  related  to  kelp's  life  history  but  may  also  be  related  to  the  specific  competitive  nature  of  dense  kelp  stands  in  that  area.  The  data  we  will  collect  will  inform  us  about  connectivity  in  the  two  species  mentioned  as  well  as  about  the  amount  of  genetic  variation  within  populations.  This  knowledge  can  be  applied  for  conservation  genetics  projects  (e.g.,  to  predict  whether  translocation  will  introduce  foreign  genetic  contamination)  and  for  farming  (by  forming  the  basis  for  marker  assisted  breeding).  We  will  briefly  review  what  is  known  about  historical  biogeography,  then  outline  our  plans  and  show  our  initial  progress.    

Description  of  the  institute  

 NIOZ  Royal  Netherlands  Institute  for  Sea  Research  is  the  national  oceanographic  institute  of  the  Netherlands.  The  institute  is  part  of  the  Netherlands  Organisation  for  Scientific  Research  (NWO).  It  employs  approximately  370  staff  and  has  an  annual  budget  of  about  €  30  million.  NIOZ  has  research  centres  on  the  Wadden  Sea  island  of  Texel  and  in  Yerseke  on  the  southern  shore  of  the  Eastern  Scheldt  estuary.  

CURRICULUM  VITAE's  

Pieternella  Luttikhuizen  graduated  from  Wageningen  University  in  1996  as  a  biologist  specializing  in  population  genetics  and  marine  ecology.  After  working  as  a  mathematical  modeller  in  the  field  of  metapopulation  structure,  she  continued  to  work  on  marine  genetics  for  her  PhD  at  the  Netherlands  Institute  for  Sea  Research  (NIOZ)  and  the  University  of  Groningen,  graduating  in  2003.  Her  study  object  was  then  the  colourful  bivalve  Macoma  balthica,  and  this  has  remained  a  major  study  

 70  

 

organism  since  that  time.  However,  she  now  also  studies  other  organims  including  crustaceans,  polychaetes,  macroparasites  and  seaweeds.  She  has  carried  out  research  at  the  University  of  Amsterdam  and  the  University  of  Gothenburg  in  Sweden,  and  is  now  back  at  NIOZ  on  Texel.  Her  scientific  interest  is  in  using  molecular  genetics  to  estimate  population  connectivity  in  the  sea.  She  also  uses  these  data  to  reconstruct  colonisation  history  and  historical  demography  of  populations.  Her  particular  focus  is  on  how  time,  large  population  size  and  connectivity  interact  to  form  actual  patterns  of  population  genetic  structure.  With  respect  to  seagriculture  she  is  involved  in  estimating  genetic  variability  and  population  connectivity  of  kelp  populations  in  NW  Europe.  This  knowledge  may  be  used  as  a  basis  for  marker  assisted  breeding  of  kelp.  

 

Judith  van  Bleijswijk  studied  molecular  biology  in  Leiden  with  specializations  in  microbial  ecology  (Rhizobium-­‐leguminose  symbioses)  and  geobiochemistry.  After  her  PhD  at  NIOZ  on  ecophysiology  of  the  marine  calcifying  alga  Emiliania  huxleyi  and  various  small  projects,  e.g.  on  microbial  mats  and  phytoplankton  lyses,  she    became  staff  scientist  in  the  Molecular  Biology  Laboratory  of  NIOZ  with  contributions  to  various  research  projects  that  benefit  from  molecular  biological  approaches.  She  developed  species  specific  diagnostic  tests  for  bivalve  larvae,  seals,    bacteria  and  algal  viruses,  supervises  students  in  the  lab,  and  performs  data  analyses  and  bioinformatics.  Current  research  topics  are  meta  genome  analyses  of  North  Sea  sediment  samples;  Pyrotag  sequencing  of  the  microbial  community  above  cold  water  corals;  Microbial  community  composition  of  ballast  water  before  and  after  treatment;  Expression  of  genes  related  to  calcification  in  the  coral  Acropora  millepora;  and  microsatellite  analyses  of  the  seaweeds  Laminaria  digitata  and  Saccharina  latissima  (together  with  Drs  Schipper,    Hortimare).  

 

 

 

 

 

 

 

   

 71  

 

Alexander  Lubsch  /  Klaas  Timmermans,  NIOZ  First  results  for  the  NIOZ  Seaweed  Centre.  

 

 

 

 

 

 

 

 

 

Abstract    

Investigating  production  and  loss  terms  of  native  North  Sea  seaweeds  

Growth   and   composition   of   seaweeds   in   relation   to   environmental   factors   as   light,   nutrients,  temperature   and   hydrodynamics   has   been   studied   intensively   (Lobban   &   Harrison,   1994,   Lüning,  1990),   but   hardly   in   a   comprehensive  manner   including   the   study   on   interactions   of   the   different  factors.   What   is   more,   loss   factors   such   as   viral   lysis,   grazing   and   erosion   are   hardly   taken   into  account   (certainly   not   in   relation   to   varying   environmental   conditions)   although   essential   for   a  proper  understanding  and  sustainable  production.  The  here  proposed  integrated  approach  will  thus  be  the  first  study  in  which  effects  of  environmental  variables  on  seaweed  production  and  loss  will  be  studied  in  a  concerted  manner.    

The   focus   is   on   native   seaweed   species   from   the   North   Sea   area:   Laminaria   digitata,  Saccharina   latissima   (brown   seaweeds)   Palmaria   palmata   (red   seaweed)   and  Ulva   lactuca   (green  seaweed).   These   seaweeds   inhabit   different   habitats,   and   can   be   assumed   to   have   different  adaptations  to  (changing)  environmental  conditions.  The  4  species  of  seaweeds  will  be  investigated  for   growth,   composition   and   losses   in   relation   to   nutrient   availability   (nitrogen,   phosphorus)   and  relevant  physicochemical  (e.g.  light,  temperature)  and  hydrodynamic  conditions  (e.g.  turbulence).  It  can  be  envisioned  that  the  environmental  conditions  will  not  only  determine  growth,  but  through  the  effects  on  composition,  for  example  induction  of  anti-­‐herbivory  substances,  or  anti-­‐viral  compounds  (Holdt  &  Kraan,  2011)  it  may  also  affect  loss  factors.  Nutrient  limitation  and  shifts  in  limitation  from  one   element   to   another   can   significantly   affect   internal   composition,   physiology   and   growth   of  seaweeds  (Gevaert  et  al.  2001,  Lobban  &  Harrison  1994,  Pederson  et  al.  1996).    

Understanding   interacting  effects  between  nutrient   limitations  and  hydrodynamic  forcing   is  thus   a   key   factor   to   study.   For   the   loss   factors,   we   will   determine   the   effects   of   environmental  variables   of   nutrient   availability   and   hydrodynamics   on   seaweed   morphology/size,   cellular  composition  change  and  biomass  loss  as  caused  by  erosion,  viruses  and  mesograzers,  as  amphipods,  copepods   and   polychaetes   (leaving   out   losses   caused   by   fish   and   sea   urchins   /   snails).   Effects   of  environmental   variables   on   these   loss   factors   in   native  North   Sea   seaweeds   are   largely   uncharted  territory.   Insight   in   major   stimuli   of   production   and   losses   in   seaweed   biomass   will   allow   better  

 72  

 

understanding  of  wax  and  wane  of  seaweeds,  both  under  natural  as  well  as  (large  scale)  production  conditions.    

At  the  Royal  Netherlands   Institute  for  Sea  Research  (NIOZ)  on  Texel,  a  seaweed  test   facility  has   recently   been   operational.   This   facility   is   part   of   the   Netherlands   Seaweed   Science   and  Technology   Center   (SSTC).   The   aim   of   the   SSTC   will   be   to   bridge   the   gap   between   fundamental  research   on   seaweeds   and   large   scale   production.   A   full   factorial   design   will   be   used   for   eco-­‐physiological   studies   on   seaweeds,   allowing   variations   in   temperature,   light,   nutrient   regimes,  salinity,  etc..  

 

Company  Profile  NIOZ  

NIOZ  Royal  Netherlands   Institute   for  Sea  Research   is   the  National  Oceanographic   Institution  of   the  Netherlands   (www.nioz.nl).   The   institute   was   founded   in   1876   and   is   part   of   the   Netherlands  Organization   for   Scientific   Research.   The   institute   is   located   on   the   island   of   Texel   at   the   border  between  the  North  Sea  and  the  Wadden  Sea,  and  about  100  km  north  of  Amsterdam.  From  1  January  2012   the   Centre   for   Estuarine   and   Marine   Ecology   (CEME)   in   Yerseke   in   the   South-­‐West   of   the  Netherlands  became  part  of  NIOZ.  This  has  resulted  in  one  big  organization  for  fundamental  marine  research  in  the  Netherlands  employing  in  total  more  than  300  people  and  with  an  annual  budget  of  more  than  €25  million.  The  mission  of  NIOZ  is  “to  gain  and  communicate  scientific  knowledge  on  seas  and   oceans   for   the   understanding   and   sustainability   of   our   planet,   and   to   facilitate   and   support  marine   research   and   education   in   the   Netherlands   and   Europe”.   The   four   basic   disciplines   of  oceanography   at   NIOZ-­‐Texel   are   physics,   chemistry,   biology   and   geology   and   are   organized   in   5  Departments:  Marine  Geology,  Physical  Oceanography,  Marine  Organic  Biogeochemistry,  Biological  Oceanography  and  Marine  Ecology.  NIOZ-­‐Texel   is   internationally   highly   respected   for   its   coastal   seas   and   oceanographic   research.   The  institute  employs  around  250  people,  among  which  32  permanent  academic  staff.  The  Department  of  Biological  Oceanography  is  one  of  two  departments  on  marine  biology  and  interacts  closely  with  the   other   departments   on   physics,   geology,   chemistry   and   biogeochemistry.   The   department   of  Biological  Oceanography  has  approximately  50  scientists,  PhD-­‐students,  undergraduate  students  and  technical  personnel,  and  has  close  cooperation  with  the  Universities  of  Groningen,  Amsterdam  and  Utrecht.   It   is   very   well   equipped   for   biological   sea-­‐going   research,   mesocosm   studies,   microbial  cultivation   in   dedicated   climate   rooms,   flow   cytometry,   pigment   analysis,  molecular   biology,   trace  metal  chemistry,  (in)organic  carbon  biology  and  virology.      Curriculum  VitaeAlexander  Lubsch  PhD-­‐student  in  the  Department  of  Biological  Oceanography,  NIOZ-­‐Texel.    Alexander  Lubsch  studied  Biological  Science  (BSc-­‐degree)  at  the  University  of  Muenster  (Germany)  and  Biological  Oceanography  (MSc-­‐degree)  in  Rostock  (Germany).  During  his  Master’s  studies  at  Alfred-­‐Wegener-­‐Institute  for  Marine  and  Polar  Research  (AWI)  on  Helgoland  in  2010  he  investigated  on  the  palatability  of  brown  macro-­‐algae  (Phaeophyceae)  by  meso-­‐grazers  (e.g.  Isopods,  amphipods,  gastropods).  In  2011/2012  Alexander  Lubsch  worked  onboard  research  vessels  on  the  North-­‐  and  Baltic  Sea  for  the  von  Thuenen  Institute  

 73  

 

for  SeaFisheries  located  in  Hamburg  and  Rostock.  Since  November  2012  he  works  as  a  PhD-­‐student  at  the  Royal  Netherlands  Institute  for  Sea  Research  within  the  Department  of  Biological  Oceanography  under  the  supervision  of  Klaas  Timmermans.  Alexander’s  main  research  interests  are  growth  and  loss  terms  of  native  North  Sea  seaweed  and  its  eco-­‐physiology  in  the  laboratory  and  at  sea.  His  work  combines  biology,  analytical  chemistry,  and  remote  sensing.  The  overarching  goal  is  to  arrive  at  insight  in  the  effects  of  the  abiotic  environment,  including  changes  therein  (e.g.  seasonal  change),  and  by  understanding  the  physiology  of  marine  macro-­‐algae  to  support  the  establishment  of  sustainable  seaweed-­‐farming  in  the  North  Sea.      

 74  

 

Notes  __________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________  

__________________________________________________________________________________    

 75  

 

7th  International  Algae  Congress  -­‐  Hamburg