SDSS

92

description

SDSS. The Sloan Digital Sky Survey. Mapping The Universe. The SDSS is Two Surveys. The Fuzzy Blob Survey. The Squiggly Line Survey. The Site. The telescope 2.5 m mirror. 1.3 MegaPixels $150. 4.3 Megapixels $850. 100 GigaPixels $10,000,000. Digital Cameras. CCDs. - PowerPoint PPT Presentation

Transcript of SDSS

Page 1: SDSS
Page 2: SDSS
Page 3: SDSS

The SDSS is Two Surveys

The Fuzzy Blob Survey

The Squiggly Line Survey

Page 4: SDSS

The Site

Page 5: SDSS

The telescope•2.5 m mirror

Page 6: SDSS

1.3 MegaPixels

$150

4.3 Megapixels

$850

100 GigaPixels

$10,000,000

Digital Cameras

Page 7: SDSS

CCDs

Page 8: SDSS

CCDs: Drift Scan Mode

Page 9: SDSS
Page 10: SDSS
Page 11: SDSS

NGC 450

Page 12: SDSS

NGC 1055

Page 13: SDSS

NGC 4437

Page 14: SDSS

NGC 5792

Page 15: SDSS

NGC 1032

Page 16: SDSS

NGC 4753

Page 17: SDSS

NGC 60

Page 18: SDSS

NGC 5492

Page 19: SDSS

NGC 936

Page 20: SDSS

NGC 5750

Page 21: SDSS

NGC 3521

Page 22: SDSS

NGC 2967

Page 23: SDSS

NGC 5719

Page 24: SDSS

UGC 01962

Page 25: SDSS

NGC 1087

Page 26: SDSS

NGC 5334

Page 27: SDSS

UGC 05205

Page 28: SDSS

UGC 07332

Page 29: SDSS

UGCA 285

Page 30: SDSS

Arp 240

Page 31: SDSS

UCG 08584

Page 32: SDSS

NGC 799NGC 800

Page 33: SDSS

NGC 428

Page 34: SDSS

UGC 10770

Page 35: SDSS

Measuring Quantities From the Images:Measuring Quantities From the Images:The Photo pipelineThe Photo pipeline

Page 36: SDSS

Most People use Magnitudesm = –2.5 Log (flux) + C

How do you measure brightness?

We use Luptitudes

m = –2.5 ln (10) [asinh( ) + ln(b)] f/f0

2b

Page 37: SDSS

OK, but how do you measure flux?

Isophotal magnitudes:What we don’t do

Page 38: SDSS

OK, but how do we measure flux?

Petrosian Radius:Surface brightnessRatio =0.2

Petrosion flux:Flux within 2 Petrosian Radii

Page 39: SDSS

Some Other Measures

PSF magnitudes

Fiber magnitudes

Page 40: SDSS

Galaxy Models

de Vaucouleurs magnitudes:assume profile associated with ellipiticals

Exponential magnitudes:Assume profile associated with spirals

I=I0 exp {-7.67[(r/re)1/4]}

I=I0 exp {-1.68(r/re)}

Model magnitudes pick best

Page 41: SDSS

Which Magnitudes to Use?

Photometry of Distant QSOs

PSF magnitudes

Colors of Stars PSF magnitudes

Photometry of Nearby Galaxies

Petrosian magnitudes

Photometry of Distant Galaxies

Petrosian magnitudes

Page 42: SDSS

Other Image Parameters

• Size

• Type

psfMag – expMag > 0.145

• Many hundreds of others

Page 43: SDSS

SPECTRA

Page 44: SDSS
Page 45: SDSS

OBAFGKMLT

h

e

ine

irl/Guy

iss

eong

ime

Page 46: SDSS
Page 47: SDSS
Page 48: SDSS
Page 49: SDSS
Page 50: SDSS
Page 51: SDSS
Page 52: SDSS
Page 53: SDSS
Page 54: SDSS
Page 55: SDSS
Page 56: SDSS
Page 57: SDSS
Page 58: SDSS
Page 59: SDSS

Galaxy Spectra

Galaxies =Star+gas

Page 60: SDSS
Page 61: SDSS

QSO spectra

Z=0.1

Page 62: SDSS

QSO spectra

Z=1

Page 63: SDSS

QSO spectra

Z=2

Page 64: SDSS

QSO spectra

Z=3

Page 65: SDSS

QSO spectra

Z=4

Page 66: SDSS

QSO spectra

Z=5

Page 67: SDSS
Page 68: SDSS
Page 69: SDSS

Types of MapsTypes of Maps

• Main Galaxy Sample• LRG sample• Photo-z sample• QSO sample• QSO absorption systems• Galactic Halo• Ly-α systems• Asteroids• Space Junk

Page 70: SDSS

EDR PhotoZ

Tamás BudaváriThe Johns Hopkins

University

István Csabai – Eötvös University, Budapest

Alex Szalay – The Johns Hopkins University

Andy Connolly – University of Pittsburgh

Page 71: SDSS

Template fittingTemplate fittingComparing known

spectra to photometry

++ no need for calibrators, physics in templates

++ more physical outcome, spectral type, luminosity

–– template spectra are not perfect, e.g. CWW

Empirical methodEmpirical methodRedshifts from calibrators

with similar colors

++ quick processing time

–– new calibrator set and fit required for new data

–– cannot extrapolate, yields dubious results

Pros and Cons

Page 72: SDSS

Empirical Methods

• Nearest neighbor– Assign redshift of closest calibrator

• Polynomial fitting function– Quadratic fit, systematic errors

• Kd-tree– Quadratic fit in cells

z = 0.033 z = 0.027 z = 0.023

Page 73: SDSS

Template Fitting

• Physical inversion– More than just redshift– Yield consistent spectral type,

luminosity & redshift– Estimated covariances

• SED Reconstruction– Spectral templates that match

the photometry better– ASQ algorithm dynamically

creates and trains SEDs

Ltype

z

u’g’r’i’z’

Page 74: SDSS

Trained LRG Template

• Great calibrator set up to z = 0.5 – 0.6 !

• Reconstructed SED redder than CWW Ell

Page 75: SDSS

Trained LRG Template

Page 76: SDSS

Photometric Redshifts• 4 discrete templates

– Red sample z = 0.028• z > 0.2 z = 0.026

– Blue sample z = 0.05

• Continuous type– Red sample z = 0.029

• z > 0.2 z = 0.035

– Blue sample z = 0.04

• Outliers– Excluded 2% of galaxies

• Sacrifice?– Ell type galaxies have better

estimates with only 1 SED– Maybe a decision tree?

Page 77: SDSS

z = 0.028

z = 0.029 z = 0.04

z = 0.05

Page 78: SDSS

PhotoZ Plates

• The Goal– Deeper spectroscopic sample

of blue SDSS galaxies• Blind test• New calibrator set

• Selection– Based on photoz results– Color cuts to get

• High-z objects• Not red galaxies

Page 79: SDSS

Plate 672

• The first results– Galaxies are indeed

blue

– … and higher redshift!

• Scatter is big but…– … that’s why needed the

photoz plates

LRGs

z = 0.085

Page 80: SDSS

Plate 672

• Redshift distributions compare OK# of g = 519– Photometric redshifts (Run 752 & 756)

– Spectroscopic redshifts (Histogram scaled)

Page 81: SDSS

Measures of the Clustering

• The two point correlation function ξ(r)

• The power Spectrum

• N-point Statistics

• Counts in Cells

• Topological measures

• Maximum Likelihood parameter estimation

Page 82: SDSS

Constraining CosmologicalParameters from Apparent Redshift-space Clusterings

Taka MatsubaraAlex Szalay

Page 83: SDSS

Redshift Survey Data → or →

Constraining Cosmological Parameters

(Traditional) Quadratic Methods

)(kP )(r,... , , , , , , 8BM nbh

• Effective for spatially homogeneous, isotropic samples.• However, evaluation of in real (comoving) space is not straightforward. (z-evolution, redshift-space distortion)

)(kP

Page 84: SDSS

)()2,1( r

2z

1z

12 r

),,()2,1( 1221 zzRedshift-space:

:space-real ,1z

Example:

Page 85: SDSS

Anisotropy of the clustering

Velocity distortions

real space redshift space

Finger-of-God (non-linear scales)

Squashing by infall (linear scales)

pec0 vrHcz

b/6.0

Page 86: SDSS

Geometric distortions (non-small z) real space redshift space

)(zH

)(zd A

)1()1()1()( M2

M3

0 zzHzH

z

A zH

zdH

Hzd

0M0

M0 )(1sinh

1

1)(

Page 87: SDSS

Likelihood analysis of cosmological parameters without direct determination of or)(kP )(r

LLL ii || (Bayesian)

,...,,,,,, , 8M nbhbii

x

Linear regime → : Gaussian, fully determined by a correlation matrix

modeljiijC

Huge matrix ← a novel, fast algorithm to calculate Cij for arbirtrary z : under development

|iL

Page 88: SDSS

Results

single determination

Normal ±3% ±19% ±16% ±4% ±2% ±0.5% ±0.5%

Red ±2% ±4% ±9% ±2% ±1% ±0.3% ±0.4%

QSO ±14% ±15% ±76% ±20% ±14% ±5% ±6%

M MB b8nh

simultaneous determination (marginalized)

Normal ±14% ±57% ±51% ±2%

Red ±9% ±10% ±33% ±0.9%

QSO ±170% ±75% ±360% ±69%

M MB b

Page 89: SDSS

Direct determinations of cosmological parameters

A novel, fast algorithm to calculate correlation matrix in redshift space

Normal galaxies : dense, low-z, small sample volume

QSOs : sparse, high-z, large sample volume

Red galaxies : intermediate → best constraints on cosmological parameters

Summary

Page 90: SDSS

0.00.0 1.0

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

ΩM

ΩΛ

Page 91: SDSS

Visualization

• CAVE VR system at Argonne National Laboratory

• SDSS VS v. 1.0 Windows based visualization system

• Tool directly tied to the skyserver for general visualization of multi-dimensional data

Page 92: SDSS

Accessing the Data

• Two databases

• Skyserver (MS SQL)– Skyserver.fnal.gov

• SDSSQT– Download from www.sdss.org

• Lab astro.uchicago.edu/~subbarao/chautauqua.html