Script Tugas Besar

2
7/23/2019 Script Tugas Besar http://slidepdf.com/reader/full/script-tugas-besar 1/2 { Fill in the following sections (removing comment marks ! if necessary), and delete those that are unused.} TITLE 'HIDRODEOKSIGENASI as.stearat' { the problem identification } ! A + 3B ==> C + 2D ! A + B ==> E + F + D ! A ==> E + G VARIABLES { system variables } CA CC CE { choose your own names } Temp ! SELECT { method controls } DEFINITIONS { parameter definitions } CA0 = 2.86e-3 !mol/h CB0 = 300*CA0 CC0 = 0 CD0 = 0 CE0 = 0 CF0 = 0 CG0 = 0 Z = 70 !cm diameter = 1.58 !cm Jari2=diameter/2 !cm Luas =3.14*J ar i2^ 2 !c m2 Vol = 1/4*3.14*diameter^2*Z !cm3 Temp0=613.15 !K P=8.963e1 !bar rho = 0.8138 !g/ml Cp = 2.359 !J/g.Kl.K deltaH1 = -4.036 ! k J/m ol deltaH2 = -135.527e3 !kJ/mol deltaH3 = 112.272e3 !kJ/mol Q= 36 !ml/h U=Q/Luas k1 =0.1031+0.0074 k2 = 0.3011+0.0203 rA= k1*CA rB = k2*CA rC = rB XA = ((CA0-CA)/CA0)*100 S1 =( CC/(CA0-CA))*100 S2 = (CE/(CA0-CA))*100 FA = CA*Q FC = CC*Q FE = CE*Q FD = 2*FC + 1*FE FF = FE FB = 3*FC + 1*FE FG = FE INITIAL VALUES CA = 0 CC = 0 CE = 0 EQUATIONS { PDE's, one for each variable } CA : U*dx(CA) = -rA-rB-rC CC : U*dx(CC) = rA CE : U*dx(CE) = rB+rC Temp : rho*Cp*U*dx(Temp)=-deltaH1*rA-deltaH2*rB-deltaH3*rC ! CONSTRAINTS { Integral constraints }

Transcript of Script Tugas Besar

Page 1: Script Tugas Besar

7/23/2019 Script Tugas Besar

http://slidepdf.com/reader/full/script-tugas-besar 1/2

{ Fill in the following sections (removing comment m arks ! if necess ary),

and delete those that are unused.}

TITLE 'HIDRODEOKSIGENASI as.stear at' { the problem identification }

! A + 3B ==> C + 2D

! A + B ==> E + F + D

! A ==> E + G

VARIABLES { system variables }

CA

CC

CE { c hoos e your ow n nam es }

Temp

! SELECT { method controls }

DEFINITIONS { parameter definitions }

CA0 = 2.86e-3 !mol/h

CB0 = 300*CA0

CC0 = 0

CD0 = 0

CE0 = 0

CF0 = 0

CG0 = 0

Z = 70 !cmdiameter = 1.58 !cm

Jari2=diameter/2 !cm

Luas =3.14*J ar i2^ 2 !c m2

Vol = 1/4*3.14*diameter^ 2*Z !cm3

Tem p0=613.15 ! K

P=8.963e1 !bar  

rho = 0.8138 !g/ml

Cp = 2.359 !J/g.Kl.K

d elt aH 1 = -4 .03 6 ! k J/m ol

deltaH2 = -135.527e3 !kJ/mol

deltaH3 = 112.272e3 !kJ/mol

Q= 36 !ml/h

U=Q/Luas

k1 =0.1031+0.0074

k2 = 0.3011+0.0203

rA= k1*CA

rB = k2*CA

rC = rB

XA = ((CA0-CA)/CA0)*100

S1 =( CC/(CA0-CA))*100

S2 = (CE/(CA0-CA))*100

FA = CA*Q

FC = CC*Q

FE = CE*QFD = 2*FC + 1*FE

FF = FE

FB = 3*FC + 1*FE

FG = FE

INITIAL VALUES

CA = 0

CC = 0

CE = 0

EQUATIONS { PDE's, one for each variable }

CA : U*dx(CA) = -rA-rB-rC

CC : U*dx(CC) = rA

CE : U*dx(CE) = rB+rC

Temp : rho*Cp*U*dx(Temp)=-deltaH1*rA-deltaH2*rB-deltaH3*rC

! CONSTRAINTS { Integral constraints }

Page 2: Script Tugas Besar

7/23/2019 Script Tugas Besar

http://slidepdf.com/reader/full/script-tugas-besar 2/2

BOUNDARIES { The domain definition }

REGION 1 { For each material region }

START(0,0) { Walk the domain boundary }

LOAD(CA)=0

LOAD(CC)=0

LOAD(CE)=0

LOAD (Temp) =0

LINE TO (Z,0)

LOAD(CA)=0

LOAD(CC)=0

LOAD(CE)=0

LOAD (Temp) =0

LINE TO (Z,diameter)

LOAD(CA)=0

LOAD(CC)=0

LOAD(CE)=0

LOAD (Temp) =0

LINE TO (0,diameter)

VALUE(CA)=CA0

VALUE(CC)=CC0

VALUE(CE)=CE0

VALUE (Temp) = Temp0

LINE TO CLOSEPLOTS { save result displays }

FOR CYCLE=1

ELEVATION(CA,CC,CE) FROM (0,diameter/2) TO (z,diameter/2)

REPORT(XA)

REPORT(CA)

REPORT(CC)

REPORT(CE)

ELEVATION(FA,FB,FC,FE,FF,FG) FROM (0,diam eter/2) TO (z,diam eter/2)

REPORT(FA)

REPORT(FB)

REPORT(FC)

REPORT(FD)

REPORT(FE)

REPORT(FF)REPORT(FG)

ELEVATION(FA,FB,FC,FE,FF,FG) FROM (0,diam eter/2) TO (z,diam eter/2)

REPORT(S1)

REPORT(S2)

ELEVATION(Temp) FROM (0,diamete r/2) TO (z,diam eter /2)

END