Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

42
Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Transcript of Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Page 1: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Schwarzschild Perturbations in the Lorenz Gauge

Leor Barack (Soton)Carlos Lousto (UTB)

Page 2: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Talk Plan

Why Lorenz Gauge?

Schwarzschild perturbations reformulated in the Lorenz gauge: Now both odd- and even- parity modes.

Code for time evolution of Lorenz-gauge perturbations from a point particle: Circular orbits in Schwarzschild.

Future work: Self-force calculations, generic orbits, Kerr black hole.

Page 3: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Gauge freedom in Perturbation Theory

hgg )bckgrnd( 10 functions, but only 2 “physical” dof

In particular, represent the same physical perturbation,

for any (“small”, differentiable) displacement field

);(2and hh

Useful gauges in black hole perturbation theory

Regge-Wheeler gauge: 0)4,3,2,1()()( ),(),( iiii

lmi

lmilmi hYhh tr

Radiation gauge: 0or0

nhlh

Lorenz (“harmonic”) gauge: 0;

h

Page 4: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Problem: Standard BH perturbation techniques give h in other gauges.

Solutions attempted:

Transform h (RW/Radiation) h (Lorenz), and evaluate contribution of difference to SF

Transform hS (Lorenz) hS (RW/Radiation), and try make sense of SF in RW/Rad gauges

Our approach: Step back; reformulate BH perturbation theory in Lorenz gauge.

Grav. self-force and gauge freedom

Lorenz gauge

Lorenz gauge

)03Whiting&Detweiler(lim

)97MSTQW(lim

S

dirself

hh

hhF

prtclx

prtclx

Page 5: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Why Lorenz gauge? (I)

Lorenz gauge:

Particle singularities look like particle singularities:

Pointlike and isotropic

Regge-Wheeler gauge:

Particle singularities are not isotropic. Field depends on direction of approach to singularity

Radiation gauge:

Typically, particle singularities are not even isolated!

Page 6: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

RW/Zerilli/Moncrief/Teukolsky variables are discontinuous at the particle. The (mode decomposed) Lorenz-gauge MP is continuous. No -function derivatives in the source term of the field equations.

No need to resort to complicated MP reconstruction procedures, as when working with Moncrief/Teukolsky variables.

In particular, no need to take derivatives of numerical integration variables – advantage in numerical implementation.

Field equations manifestly hyperbolic.

Price to pay: Field equations remain coupled.

Why Lorenz gauge? (II)

Page 7: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Schwarzschild perturbations in the Lorenz gauge: formulation

Page 8: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

1. Linearized Einstein equations in the Lorenz gauge

Page 9: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

2. Tensor-harmonic decomposition

Page 10: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

3. Make sure variables are suitable for numerical time-evolution

Page 11: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

4. Get separated equations for the h(i)’s

Page 12: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

ODD PARITY

EVEN PARITY

Page 13: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

5. Write gauge conditions in mode-decomposed form,

… and use them to reduce the system of field equations:

0

Page 14: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

EVEN PARITY

ODD PARITY

Circular equatorial orbit, Axially-symmetric (m=0) modes

Page 15: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

r/M

rp

fEH lr

Analytic solution for the axially-symmetric, odd-parity modes in the case of a circular orbit

Page 16: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

MP “reconstruction”

Page 17: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Code for time evolution of the MP Eqs

Circular geodesics in Schwarzschild

Page 18: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Grid for 1+1d numerical evolution

Grid size: At least 3-4 Torb

(>300M for r0=6M)

Resolution:

~1 grid pt/M2 for fluxes extraction

~106 grid pts/M2 (near particle) for SF extraction

Event

Hor

izon Null Infinity

Page 19: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Finite difference scheme (2nd order convergent)

0

hh

hh

[Demonstrated here for a scalar field – works similarly for our coupled MP Eqs]

Page 20: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 21: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 22: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 23: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 24: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 25: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

---------------------------------------- [F_r(r0+)-F_r(r0-)]/(2L): ("A_r") -2.16430508258478D-002 -2.16430501533300D-002 -2.16430495556174D-002 ---------------------------------------- [F_r(r0+)+F_r(r0-)]/2: ("B_r") -1.07310613335618D-002 -1.07310600978665D-002 -1.07310599479544D-002 ---------------------------------------- ---------------------------------------- |F_r(r0+)-F_r(r0-)|/2-|A|*L: ("C_r") 6.76214094093648D-005 6.76204006326203D-005 6.76195040637838D-005 ---------------------------------------- F_r(REG): -9.90421617212026D-005 -9.90409250297095D-005 -9.90407736144393D-005 ---------------------------------------- F_t(r0): 1.09151357977453D-004 1.09149895091873D-004 1.09148592668721D-004 ----------------------------------------

Results: Scalar force (sample output, screen capture)

[leor@hercules scalar]$ ./a.out l=1 Evolution time (# of orbits)=5 Initial Resolution (steps per M in r*,t)=5 ITERATION # 1 ITERATION # 2 ITERATION # 3 ---------------------------------------- Phi(r0): Cycle # 2 : 0.136805155563096 Cycle # 3 : 0.136805162960639 Cycle # 4 : 0.136805163931519 ---------------------------------------- F_r(r0+): Cycle # 2 : -4.31956375723335D-002 Cycle # 3 : -4.31956353278614D-002 Cycle # 4 : -4.31956342813805D-002 ---------------------------------------- F_r(r0-): Cycle # 2 : 2.17335149052099D-002 Cycle # 3 : 2.17335151321284D-002 Cycle # 4 : 2.17335143854717D-002 ----------------------------------------

Page 26: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: Metric Perturbation (odd parity)

Page 27: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: Metric Perturbation (Even parity,l=m=2, rp=7M)

Page 28: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: MP (even parity,l=m=2, rp=7M)

Page 29: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Tests of Code

Page 30: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #1: 2nd-order Numerical Convergence

l=2,m=1r0=7M

Page 31: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=2,m=1r0=7M

Page 32: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=m=2

Page 33: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=m=2

Page 34: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #2: conservation of the gauge condition

Page 35: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

500

500500

Page 36: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

500

Page 37: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #3: Flux of energy radiated to infinity

Page 38: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

lmE

Page 39: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

What’s next?

Page 40: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Gravitational Self Force

• Getting the self force is now straightforward:

No need to take 3 derivatives, just one – as in scalar case

Modes l=0,1 given (almost) analytically, in the harmonic gauge

Most crucial: no gauge problem; mode-sum implemented as is:

• Two options:

Either decompose Ffull in Scalar harmonics & use the “standard” RP;

Or decompose Ffull in Vector harmonics and re-derive the RP accordingly.

Page 41: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Eccentric orbits in Schwarzschild

• Generalization is easy, as code is time-domain

Page 42: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Orbits in Kerr

N. Hernandez (MSc Thesis, Brownsville 2005) shows promise of this approach