Scheme for II Year III SEMESTER B.E. ELECTRONICS AND … … ·  · 2017-09-25Realization of...

37
Scheme for II Year III SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING (Courses Under the Autonomous Scheme) Sl. No. Subject Code Subject Category Contact Hrs./Week No. of Credits L T P 1 MA0406 Engineering Mathematics – III GC 4 0 0 4 2 EC0436 Analog Electronics Circuits FCE 4 0 0 4 3 EC0502 Digital Electronics Circuits* FCE 4 0 2 5 4 EC0402 Network Analysis GCE 3 2 0 4 5 EC0301 Electronic Instrumentation GCE 3 0 0 3 6 EC0403 Computer Organization and Architecture GCM 4 0 0 4 7 HS0101 Constitution of India And Professional Ethics GC 2 0 0 1 8 EC0105 Analog Electronics Circuits Laboratory FCE 0 0 3 1.5 Total 24 2 5 26.5 Total Contact Hrs./Week – 31hrs

Transcript of Scheme for II Year III SEMESTER B.E. ELECTRONICS AND … … ·  · 2017-09-25Realization of...

Scheme for II Year

III SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

(Courses Under the Autonomous Scheme)

Sl.

No.

Subject

Code Subject Category

Contact Hrs./Week No. of

Credits L T P

1 MA0406 Engineering Mathematics – III GC 4 0 0 4

2 EC0436 Analog Electronics Circuits FCE 4 0 0 4

3 EC0502 Digital Electronics Circuits* FCE 4 0 2 5

4 EC0402 Network Analysis GCE 3 2 0 4

5 EC0301 Electronic Instrumentation GCE 3 0 0 3

6 EC0403 Computer Organization and Architecture GCM 4 0 0 4

7 HS0101 Constitution of India And

Professional Ethics GC 2 0 0 1

8 EC0105 Analog Electronics Circuits Laboratory FCE 0 0 3 1.5

Total 24 2 5 26.5

Total Contact Hrs./Week – 31hrs

IV SEMESTER B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

(Courses Under the Autonomous Scheme)

Sl.

No.

Subject

Code Subject Category

Contact Hrs./Week No. of

Credits L T P

1 MA0409 Engineering Mathematics – IV GC 4 0 0 4

2 EC0437 Linear Integrated Circuits and

Applications FCE 4 0 0 4

3 EC0504 Microcontrollers* FCM 4 0 2 5

4 EC0404 Signals and Systems FCS 3 2 0 4

5 EC0302 Electro Magnetic Field Theory FCE 3 0 0 3

6 EC0314 Power Electronics FCE 3 0 0 3

7 HS0102 Environmental Studies GC 2 0 0 1

8 EC0107 Linear Integrated Circuits and

Applications and Laboratory FCE 0 0 3 1.5

9 EC0108 Stack Project GC 0 0 2 1

Total 23 2 7 26.5

Total Contact Hrs./Week – 32hrs

ENGINEERING MATHEMATICS – III (4:0:0)

Sub Code: MA0406 CIE: 50% Marks

Hrs./week: 04 SEE: 50% Marks

SEE Hrs.: 03 Max. Marks: 100

Course Outcomes:

On successful completion of the course the students will be able to:

1. Define a Fourier series and translate the periodic function of period 2l in terms of Fourier

series, half range series.

2. Construct and solve homogeneous and non-homogeneous partial differential equations.

3. Apply half range Fourier series expansion to solve the boundary value problems on wave,

heat and Laplace’s equations. Compute Fourier and Inverse Fourier transforms of

functions.

4. Apply numerical techniques to solve the systems of linear algebraic equations, compute

the largest Eigen value and the corresponding Eigen vector of a matrix and estimate a real

root of the given equation.

5. Apply appropriate formulae for interpolation, estimate the values of the derivatives and

definite integrals using numerical techniques.

6. Compute Z- transform and inverse Z- transform of functions and select the necessary

transforms to solve difference equations.

UNIT – I Fourier Series

Convergence and divergence of infinite series of positive terms – definition and illustrative

examples. Fourier series of period 2l (SLE: Fourier series with period 2𝜋𝜋), Half range series,

complex form of Fourier series, Practical harmonic analysis. 9 hrs.

UNIT – II Partial Differential Equations

Formation of PDE, Solution of homogeneous and non-homogeneous PDE, Solution of

homogeneous PDE by direct integration. Solution of homogeneous PDE by the method of

separation of variables. Various possible solutions of one dimensional wave equation, (SLE:

heat equation and two dimensional Laplace’s equation). Solution of Lagrange’s linear PDE –

simple problems, D’Alembert’s solution of wave equation. 9 hrs.

UNIT – III Application of PDE and Fourier Transforms

Application of PDE – Solution of boundary value problems associated with one dimensional

wave equation, (SLE: heat equation) and two dimensional Laplace’s equation. Infinite

Fourier Transforms, Fourier sine and cosine transforms,Inverse Transforms.

8hrs

UNIT – IV Numerical Methods – 1

Numerical solution of a system of linear algebraic equations – Gauss Seidel & Relaxation

iterative methods. Computation of largest eigen value and the corresponding eigen vector by

Rayleigh’s power method. (SLE: Rayleigh’s inverse power method). Numerical solution of

algebraic and transcendental equations - Newton Raphson and Regula falsi methods.

9 hrs.

UNIT – V Numerical Methods - 2

Finite differences – forward and backward differences, Newton’s forward interpolation

formula, (SLE: Newton’s backward interpolation and Lagrange’s inverse interpolation

formula). Interpolation for unequal intervals – Newton’s divided difference formula,

Lagrange’s interpolation formula. Numerical differentiation associated with Newton’s

forward, backward and divided difference formulae. Numerical Integration – Simpson’s 1/3rd

rule, Simpson’s 3/8th rule, Weddle’s rule (All formulae without proof)

9 hrs.

UNIT – VI Z-Transforms

Difference Equations: Basic definition: Z-transforms - definition, Standard Z-transforms,

Linearity property – Damping rule, Shifting rule, Initial value theorem, Final value theorem.

Inverse Z-transforms. (SLE: Inverse Z-transforms by power series method). Application of

Z- transforms to solve difference equations.

8 hrs.

Text Books:

1. Higher Engineering Mathematics – Dr. B.S. Grewal, 42ndedition, Khanna

Publications.

2. Advanced Engineering Mathematics – Erwin Kreyszig, vol I & II, wiley

publications, 10th edition.

Reference Books:

1. Advanced Engg. Mathematics – H. K. Dass, Chand Publications.

2. Higher Engg. Mathematics – B. V. Ramanna, Tata McGraw-Hill Publications.

3. Advanced Engineering Mathematics- Peter O Neil; Thomas, Broks/ Cole, 7th

Edition

ANALOG ELECTRONIC CIRCUITS (4:0:0)

Sub. Code: EC0436 CIE: 50%Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Analyze diode circuits and its applications for rectifier.

2. Analyze and determine the performance parameters of BJT amplifiers and the brief

note on their design.

3. Analyze and classify power amplifiers for efficiency and distortion.

4. Analyze and determine the performance parameters of FET amplifiers.

.

Unit 1: Diode Circuits, Power devices and Applications:

Filters for rectifiers, LC filters- Analysis and design: Power devices; SCR, TRIAC and UJT,

their principle of operation, clipping and clamping circuits using diodes.

10 Hrs.

SLE: Review of Semi-conductor diodes, temperature dependence, DC load line, DC and AC

equivalent circuits.

Unit 2: Transistor as an Amplifier:

Small signal amplifiers using transistors, graphicalanalysis, re model of a transistor – analysis

of a transistor amplifier using re model, different configuration and their comparison –

emitter follower – effect of unbypassed emitter resistance. h model of transistor and transistor

analysis using this model. 9 Hrs.

SLE: High input impedance transistor circuits

Unit 3: RC Coupled Amplifier

Its frequency response – mathematical analysis of low and high frequency regions. Cascaded

stages and their effect on bandwidth and gain. 7 Hrs.

SLE: Hybrid π model.

Unit 4: Feedback Amplifier:

Concept of feedback, transfer gain with feedback – characteristics of negative feedback

amplifiers-analysis of voltage shunt, voltage series, current series, current shunt amplifiers.

8Hrs.

SLE: Practical negative feedback transistor circuits.

Unit 5: Power Amplifiers:

Classification of power amplifiers – class A and class B large signal amplifiers (transformer

coupled type), mathematical analysis of the above for efficiency

Distortion in power amplifiers – mathematical analysis. 8Hrs.

SLE: Complementary symmetry push pull amplifier – class AB and class C operation

Unit 6: FET Amplifiers:

Different types of FET – review of JFET, characteristics and their advantage over bipolar

junction transistor – biasing techniques for JFET. FET as an amplifier – small signal model of

a JFET and analysis of JFET amplifier (common source configuration), source follower –

FET at high frequencies. 10 Hrs.

SLE: Introduction to MOSFETs, MOSFET Amplifiers

Text Book:

“Electronic Circuits”,Nashelsky and Boylested, Prentice hall India, 9th Edition, 2007

Reference Books:

1. “Integrated Electronics”,Millman and Halkias, Tata McGraw Hill publications,

New Delhi, 1991 Edition

2. “Pulse digital and switching waveforms”, Millman and Taub, Tata McGraw Hill

publications New Delhi 1991 Edition.

3. “Electronics Circuit analysis and design”, D.A Neaman, McGraw Hill publications,

2nd Edition, 2002.

DIGITAL ELECTRONIC CIRCUITS (4:0:2)

Sub. Code: EC0502 CIE: 50% Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Apply algebraic and mapping techniques to minimize the hardware in implementation

of combinational circuits.

2. Design, analyze and implementation of sequential circuits with timing diagram

3. Describe the importance of constructing state diagram and state table in

implementation of sequential machines

4. Design a digital system in laboratory for various applications.

Unit 1: Boolean Algebra:

Concept of minterm and maxterm and their expansion. Introduction to K-map, Minimum

form of switching functions, two and three variable K-maps, four variable K-maps,

determination of minimum expressions, using essential prime implicants, five variable K-

maps, other uses of K-maps, other forms of K-maps, Quine – McCluskey method:

Determination of prime implicants, the prime implicant chart, Petrick Method, simplifications

of incompletely specified functions, simplification using map entered variable’s.

8 Hrs.

SLE: Different logic families and their comparison.

Unit 2: Design of Combinational Circuits:

Logic circuits design and timing analysis using MSI components and PLD’s. Design of

binary adders and substractors. Carry look ahead adders: design principles. Decimal adders

and IC parallel adders. Comparators: a general n-bit comparator, Logic design using

multiplexers and demultiplexers, Decoders, encoders and priority encoders, three state

buffers, Read Only Memory(ROM) 8 Hrs.

SLE: Programmable Logic Devices(PLD): PLA, PAL, CPLD, FPGA.

Unit 3: Design of Sequential Circuits:

Introduction, set – reset latch, gates D latch, edge – triggered D flip flop, SR flip flop, J-K

flip flop, T flip flop, flip flops with additional inputs. Registers and register transfers, parallel

adder with accumulator, shift registers, design of binary counter, counters of other sequence

counter design using D flip flop, counter design using SR and JK flip flops, derivation of flip

flop input equations. 10 Hrs.

SLE: ASIC Design

Unit 4: Analysis and Design of Clocked Sequential Circuits:

A sequential parity checker, analysis of signal tracking and timing charts, state table and

graphs, combination and interpretation of timing chart, general model for sequential circuits.

Summary of Design Procedure for Sequential Circuits, Design Example – Code Converter,

Design of Iterative Circuits, Design of Comparator. 10 Hrs.

SLE: Design of Sequential Circuits Using ROMs and PLAs and Sequential Circuits Design

Using CPLDs.

Unit 5: Derivation of State Graphs and Tables:

Design of sequence detector, more complex design problems, guidelines for construction of

state graph, serial data code conversion, alpha numeric state graph notation.

8 Hrs.

SLE: Modeling of digital System

Unit 6: Reduction of State Tables and State Assignment:

Elimination of redundant states, equivalent states, determination of state equivalence using an

implication table, equivalent sequential circuits, incompletely specified state tables,

derivation of flip flop input equations, equivalent state assignment, guidelines for state

assignment. 8 Hrs.

SLE:Digital Circuit parameters

Text Book:

“Fundamentals of logic design”, Charles H. Roth, Thomson books / Co. publications, 5th

Edition.

Reference Books:

1. “Digital Principles and Design”, Donald Givone, TMH-2003

2. “Digital logic and computer design”, M. Morris Mano, PHI publications.

DIGITAL ELECTRONICS LABORATORY

LIST OF EXPERIMENTS

1. Study of Digital IC trainer kit and verification of Basic gates

2. Simplification, Realization of Boolean expressions using logic gates/Universal gates.

3. Realization of Half/Full adder and Half/Full Subtractor using logic gates. and

realization of Parallel adder/Subtractor using IC7483 chip

4. Realization of i) Binary to Gray code converter and vice versa.

ii) BCD to Excess-3 code converter and vice versa

5. Realization of one/two-bit Magnitude comparator and study of IC7485 Magnitude

comparator.

6. Use of a) Decoder chip to drive LED display and b) Priority encoder

7. MUX/DEMUX using IC 74153, IC 74139 for arithmetic circuits and code converters.

8. Truth table verification of flip flops. (i) J-K flip flop, (ii) T flip flop and (iii) D-flip

flop

9. Design and Realization of 3 bit counters as sequential circuits using flip flops

10. Realization of (i) Synchronous counters using IC74192, IC74193. (ii) A-synchronous

Counter using IC7490

11. Shift left, Shift right, SIPO, SISO, PISO, PIPO using Universal Shift Register

IC74195

12. Johnson counter, Ring counter and sequence generators using Universal Shift Register

IC74195

NETWORK ANALYSIS (3:2:0)

Sub. Code: EC0402 CIE: 50% Marks

Hrs. /Week: 3 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Apply the nodal and mesh methods of circuit analysis.

2. Analyze complex circuits using Network Theorems and Resonant circuits

3. Apply Laplace transforms to perform transient analysis of RL, RC and RLC circuits.

4. Analyze two port networks.

Unit 1: Basic Concepts:

Practical sources, source transformation, network reduction using star-delta transformation.

Loop and node analysis with linearly dependent and independent sources for DC networks.

8 Hrs.

SLE: Application of loop and nodal analysis for AC networks

Unit 2: Network Theorems:

Superposition, Thevenin’s, Maximum power transfer and Millman’s theorems.

8 Hrs.

SLE: Reciprocity and Norton’s Theorems

Unit 3: Resonant Circuits:

Series and parallel resonance, frequency – response of series and parallel circuits, Q-factor,

Bandwidth. 6 Hrs.

SLE: Effect of source impedance on resonant circuits.

Unit 4: Transient Behavior and Initial Conditions:

Behavior of circuit element under switching condition and their representation, evaluation of

initial and final conditions in RL, RC and RLC circuits DC excitations. 6 Hrs.

SLE: Initial and final conditions in AC circuits

Unit 5: Laplace Transformation & Applications:

Solution of networks, step, ramp and impulse functions, waveform synthesis, initial and final

values, transformed networks and their solution. 8 Hrs.

SLE: Convolution integral

Unit 6: Two Port Network Parameters:

Short circuit admittance parameters, open circuit impedance parameters, transmission

parameters, hybrid parameters, relationship between parameters sets. 8 Hrs.

SLE: Interconnection of 2 port networks

Text Book:

“Network Analysis”, M.E. Van Valkenburg, PHI, 2nd Edition

Reference Books:

1. “Engineering Circuit Analysis”,Hayt, Kemmerly and Durbin, TMH, 2nd Edition

2. “Circuits”, A Bruce Carlson, Thomson learning, 2nd Edition

ELECTRONIC INSTRUMETATION (3:0:0)

Sub. Code: EC0301 CIE: 50% Marks

Hrs. /Week: 3 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Understand the design of an Ammeter, Voltmeter and Ohm meter, by applying the

principle of D’Arsonval meter

2. Measure the resistance, inductance, capacitance and frequency using bridges like

Wheatstone, Kelvin, Maxwell and Weins.

3. Capture and measure the signal parameters like frequency, amplitude etc. by using an

Oscilloscope.

4. Understand the function and working principles of signal generator.

5. Analyze the basic structure of transducers and select a transducer for a given

application circuit.

Unit 1: Measurement Errors:

Gross errors and systematic errors, Absolute and relative errors, Accuracy, Precision,

Resolution and Significant figures. International Standards. Calibration of Instruments,

calibration procedures and its importance.

Voltmeters and Multimeters

Introduction, Multirange voltmeter, extending voltmeter ranges, Loading effect

10

Hrs.SLE:AC voltmeter using Rectifiers

Unit 2: Digital Instruments:

Digital Voltmeters, DVM’s based on V–T, V–F and Successive approximation, Resolution

and sensitivity, General Specifications, Digital Multi-meters, Digital frequency Meters,

Digital Measurement of time 6 Hrs.

SLE: Digital Multi-meter

Unit 3: Measurement of Resistance, Inductance and Capacitance:

Wheatstone Bridge, Kelvin Bridge, AC Bridges, capacitance Comparison Bridge, Maxwell’s

Bridge, Wien’s Bridge 5 Hrs.

SLE: Maxwell’s Bridge

Unit 4: Oscilloscopes and Special Oscilloscopes:

Basic principles, CRT features, Block diagram and working, Typical CRT connections, Dual

beam and dual trace CRO’s, Delayed time-base oscilloscopes, Analog storage oscilloscopes

and Digital storage oscilloscopes 7 Hrs.

SLE: Delayed Time base

Unit 5: Transducers and Other Devices:

Transducers: Electrical transducers, Resistive Transducer, Resistive position Transducer,

Inductive Transducer , Capacitive Transducer, Transducer characterization, Pressure

Transducer, Signal conditioning, Strain gauges, Resistive thermometer, Thermistor, LVDT,

Piezoelectric Transducer, Photo electric Transducer, photo voltaic transducer, Semiconductor

photo devices, Display classification, LED’s and LCD’s. 10 Hrs.

SLE: LED’s and LCD’s. Signal conditioning

Unit 6: Signal Generators:

Fixed and variable AF oscillator, Standard signal generator, Function Generator, AF sine and

Square wave generator, 4 Hrs.

SLE: Standard Signal Generator

Text Book:

“Electronic Instrumentation”, H. S. Kalsi, TMH

Reference Books:

1. “Modern Electronic Instrumentation and Measuring Techniques”, Cooper D & A

D Heifrick, PHI, 1998

2. “Electronic Instrumentation and Measurements”, David A Bell, PHI.

COMPUTER ORGANIZATIONAND ARCHITECTURE (4:0:0)

Sub. Code:EC0403 CIE: 50% Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will

1. Explain the functionality and performance of various units of computers and learn the

basics of assembly language programs.

2. Learn different ways of connecting Input – Output Devices and Standard Busses.

3. Design and Learn the hardware like Memory, Arithmetic Unit and Processing Unit that

accomplish basic computational and I/O operations.

4. Explain Different applications of Microcontroller based Systems.

Unit 1: Basic Structures of Computers:

Computer types: Functional units: input unit, Memory Unit, Arithmetic and logic unit, Output

unit, Control unit; Basic OperationalConcepts: Bus Structures: Performance: processor clock,

Basic Performance Equation, Pipelining & Super Scalar operation, Clock rate, Performance

Measurement; Multiprocessors & Microcomputers. 4Hrs

SLE: Historical Perspective of computers

Unit 2: Machine Instructions & Programs:

Numbers, Arithmetic operations and Characters, Memory Locations &Address: Byte

addressability, Big – endian & Little – endian Assignments, Word Alignment, Accessing

Numbers, Characters & character Strings; Memory Operation:Instruction & Instruction

Sequencing; Register Transfer Notation, Assembly Language Notation, Basic Instruction

Types. Instruction Execution & straight – line sequencing, Branching, Condition Codes,

Generating Memory Address; Addressing modes; Assembly Language: Assembly Directives,

number Notation, Basic input and output Operations: Stacks & Queues: Subroutine &

Subroutine processors Stack, Parameters Passing, The Stack Frame; Additional Instructions:

Logic Instruction, Shift & Rotate Instructions, Multiplication & Division; Encoding of

machine Instruction. 12Hrs

SLE: General features of CISC & RISC.

Unit 3: Input/output Organization:

Accessing I/O devices; Interrupts hardware, Enabling & Disabling Interrupt, Handling

Multiple devices, Controlling Device Requests, Exceptions; Direct Memory Access: Bus

Arbitration; Buses: Synchronous Bus, Asynchronous Bus; Interface Circuits: Parallel Port,

Serial Port Standard I/O interfaces, PCS bus. 10Hrs

SLE: SCSI bus and USB

Unit 4: The Memory System:

Some Basic Concepts: Semiconductor Ram Memories: Internal Organization of Memory

Chips, Static Memories, Asynchronous DRAMs, Synchronous DRAMs, Structure of larger

Memories, Memory System considerations, RAM bus Memory, read only Memories: ROM,

PROM, EPROM, EEPROM, Flash memory;Speed, Size&Cost: Cache Memories: Mapping

Functions; Performance Considerations: Interleaving, Hit Rate & Miss Penalty; Virtual

Memories: Address Translation; 8Hrs

SLE: Secondary Storage: Magnetic Hard disks and Optical Disks.

Unit 5: Arithmetic:

Addition and Subtraction of Signed Numbers: Addition / Subtraction Logic unit; Design of

Fast address: Carry Look AheadAddition; Multiplication of Positive numbers: Signed –

Operand Multiplication: Booth Algorithm: Fast Multiplication: Bit-pair Recording of

Multipliers: Integer Division: Floating point numbers & Operations. 8Hrs

SLE: IEEE Standard for Floating Point Numbers, Implementing Floating – Point

Operations.

Unit 6: Basic Processing Unit and Embedded Systems:

Some Fundamental Concepts: Register Transfers, performing an Arithmetic and logic

Operation, fetching a word from Memory, Storing a word in Memory; Execution of a

Complete Instruction: Branch Instruction: Multiple Bus Organization: Hardwired Control:

A Complete Processor; Micro programmed Control: Microinstruction, Microprogramming

Sequencing, Microprogramming Instruction with Next-Address field. Examples of Embedded

Systems: Microwave Oven, Digital Camera, Home Telemetry. Parallel Processing, Principles

of Pipeline and Vector processing. 10Hrs

SLE: Multiprocessor architectures

Text Book:

“Computer Organization”, Carl Hamacher, Z Vranesic and S. Zaky, Tata McGrawHill, 5th

Edition

Reference Books:

1. “Computer System Architecture”, Morris Mano ‘PHI 2nd Edition

2. “Computer System Design and Architecture” V Heuring and H Jordan, Addison –

Wesley 1st Edition

CONSTITUTION OF INDIA ANDPROFESSIONAL ETHICS

Sub Code: HS0001 CIE: 50% Marks

Hrs./Week: 2 Hrs. SEE: 50% Marks

SEE Hrs.: 2 Hrs. Max. Marks: 100

Course outcome:

On successful completion of the course the students will be able to:

1. Understand the significance of many provisions of the Constitution as well as to

gain insight into their beck ground. They will also understand number of

fundamental rights subject to limitations in the light of leading cases.

2. Study guidelines for the State as well as for the Citizens to be followed by the State

in the matter of administration as well as in making the laws. It also includes

fundamental duties of the Indian Citizens in part IV A (Article 51A)

3. Understand administration of a State, the doctrine of Separation of Powers.

4. Know how the State is administered at the State level and also the powers and

functions of High Court.

5. Understand special provisions relating to Women empowerment and also children.

For the stability and security of the Nation, Emergency Provision Are Justified.

6. Understand election commission as an independent body with enormous powers and

functions to be followed both at the Union and State level. Amendments are

necessary, only major few amendments have been included.

7. Understand Engineering ethics and responsibilities of Engineers.

8. Understand the qualities, which will make them full-fledged professionals.

1. Preamble to the Constitution of India. Fundamental rights under Part III details of

Exercise of Rights, Limitations and Important Leading cases.

4 Hrs.

2. Relevance of Directive Principles of State Policy under Part-IV, IVA Fundamental duties.

3 Hrs.

3. Union Executive - President, Vice-President, Prime Minister, Union Legislature -

Parliament and Union Judiciary – Supreme Court of India.

3 Hrs.

4. State Executive - Governors, Chief Minister, State Legislature and High Court.

3 Hrs.

5. Constitutional Provisions for Scheduled Casters and Tribes, Women and Children and

Backward Classes, Emergency Provisions. 4 Hrs.

6. Electoral process, Amendment procedure, 42nd, 44th, 74th, 76th, 86th and 91st

Constitutional amendments. 3 Hrs.

7. Scope and aims of engineering ethics, responsibility of Engineers. Impediments to

responsibility. 3 Hrs.

8. Honesty, Integrity and reliability, risks, safety and liability in Engineering.

3 Hrs.

Text Book:

1. Durga Das Basu: "Introduction to the Constitution of India" (student edition) Prentice -

Hall EEE, 19th /20th Edition, 2001.

2. "Engineering Ethics" by M. Govindarajan, S. Natarajan, V.S. Senthikumar, Prentice -

Hall of India Pvt. Ltd., New Delhi, 2004

ANALOG ELECTRONIC CIRCUITS LABORATORY (0:0:2)

Sub. Code: EC0105 CIE: 10 Marks

Hrs. /Week: 3 SET: 10 Marks

SET Hrs.: 3 Hrs. PW: 5 Marks

Max. Marks: 25

Course outcome:

On successful completion of the course the students will be able to:

1. Analyze, design and conduction of Experiments on BJT, Diodes & FET’s for analysis

and interpretation of results.

LIST OF EXPERIMENTS

1. Analyze the VI characteristics of a Junction diode, Point contact diode and Zener

diode.

2. Analyze the input and output characteristics of a BJT in common emitter

configuration.

3. Analyze the VI and transfer characteristics of a JFET/TRIAC/SCR.

4. Design a half wave rectifier using diodes with and without filter for a given DC

output and determine its ripple factor, efficiency of rectification and percentage

regulation.

5. Design a Full wave rectifier using diodes (either centre tap version or bridge rectifier)

with and without filter for a given DC output anddetermine its ripple factor, efficiency

of rectification and percentage regulation.

6. Design a Zener diode regulator for a given line and load regulation.

7. Design a single stage transistor amplifier using BJT for a given gain & determine Zi,

Zo and draw its frequency response.

8. Design a JFET amplifier for a given gain and compute its frequency response.

9. Analyze/Design the diode clipping and clamping circuits

10. Design a Hartley oscillator using BJT for a given frequency and gain requirements.

11. Design a Colpitts oscillator using BJT for a given frequency and gain requirements.

12. Design a RC phase shift oscillator using BJT for a given frequency and gain

requirements.

13. A project work involving design and analysis of the above topics.

ENGINEERING MATHEMATICS – IV (4:0:0)

Sub code: MA0409 CIE : 50% Marks

Hrs./week: 04 SEE : 50% Marks

SEE Hrs.: 03 Total Hrs.: 52 hrs. Max. Marks: 100

Course Outcomes:

On successful completion of the course the students will be able to:

1. Use numerical techniques to solve ordinary and simultaneous differential equation with

initial conditions.

2. Apply the concept of analytic functions to solve fluid flow problems and compute the

images of certain plane curves under the given conformal transformation.

3. Compute complex line integrals using Cauchy’s theorem.

4. Compute the series solution of Bessel and Legendre differential equations also establish

recurrence relations and solve problems associated with them.

5. Apply the method of least square to predict the best fitting curve for a given data and

solve problems associated with discrete probability distribution.

6. Solve problems associated with continuous probability distribution, discrete joint

distribution and Markov chain using transition probability matrix.

Unit I: Numerical Methods

Numerical solutions of first order and first degree ordinary differential equations – Taylor’s

method, Modified Euler’s method, Runge-Kutta method of fourth order. Milne’s predictor

and corrector method (no proof). Simultaneous differential equations using Taylor’s and

RungeKutta methods. (SLE: Solution of second order ordinary differential equations using

Taylor’s and Runge-Kutta methods).

9 hrs.

Unit II: Complex Variables - 1

Function of a complex variable – Limit, Continuity, Differentiability – Definitions. Analytic

functions, Cauchy-Riemann equations in cartesian and polar forms, Properties of analytic

functions. Construction of analytic Functions-Applications. Conformal mapping – Definition.

Discussion of w = z2, w = z + (a2 / z), z ≠0[SLE: w = sinz, ez].

9 hrs.

Unit III: Complex Variables – 2

Bilinear transformations, Complex line integral, Cauchy’s theorem, Cauchy’s integral

formula. Laurent series expansion, (SLE: problems on Laurent series) Poles, Residues,

Problems on Cauchy’s residue theorem.

8 hrs.

Unit IV: Special Functions

Series solution of Bessel’s differential equation leading to Bessel function of first kind.

Equations reducible to Bessel’s differential equation, Recurrence relations (SLE: Series

solution of Legendre’s differential equation), Legendre polynomial, Rodrigue’s formula,

Problems.

9 hrs.

Unit V: Statistics and Probability - I

Curve fitting by the method of least squares: straight line, parabola and exponential curves.

Probability: (SLE: Basic definitions of probability and problems up toBaye’s theorem)

Random variables - discrete random variables, Binomial and Poisson distributions.

9 hrs.

Unit VI: Probability – II

Continuous random variables, Exponential and Normal distributions. (SLE: uniform

distribution), Joint probability distribution (Discrete), Markov chains – probability vector,

Stochastic matrix, transition probability matrix.

8 hrs.

Text Books:

1. Higher Engineering Mathematics – Dr. B.S. Grewal, 42ndedition, KhannaPublications.

2. Advanced Engineering Mathematics – Erwin Kreyszig, vol I & II, wiley publications,

10th edition.

Reference Books:

1. Advanced Engg. Mathematics – H. K. Dass (2008 edition), Chand Publications.

2. Higher Engg. Mathematics – B. V. Ramanna (2010 edition), Tata McGraw-Hill

Publications.

3. Probability, Statistics and Random Processes- 3rd edition Tata McGraw-Hill

Publications – T. Veerarajan.

LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (4:0:0)

Sub. Code: EC0437 CIE: 50% Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Pre-requisite: Analog Electronic Circuits (EC0436)

Course Outcome:

On successful completion of the course, the students will be able to

1. Analyze differential amplifiers and current sources used in linear integrated circuits

and to apply the concepts of loading, impedance matching, gain and frequency

response in electronic circuit design and analysis.

2. Discuss the linear and nonlinear applications of an Op-Amp.

3. Analyze and design amplifiers, active filters and waveform generators using Op-Amp.

4. Analyze and design of circuits using special IC chips.

Unit 1: Basics of Operational Amplifiers:

Brief review of Operational Amplifiers – Block diagram of an Opamp, Differential

amplifiers, 8 Hrs.

SLE: Frequency response of an Op-amp. Single supply Op-amps-other operational amplifiers

Unit 2: Linear applications of an Opamp:

Inverting, Non-inverting, voltage follower, summing, scaling and averaging amplifiers using

Opamps, Bridge amplifiers, Analog integrators, Differentiators, Line driving amplifiers, AC

coupled feedback amplifiers, voltage to current converters, current to voltage converter,

Instrumentation amplifier, Current amplifiers, Charge amplifiers. 10 Hrs.

SLE: Op-amp parameters and their measurement

Unit 3: Linear applications of an Op-Amp: (Contd.)

Active filters, precision AC/DC converters, 8Hrs

SLE: Sample and hold circuits

Unit 4: Op-Amp in Non-linear Applications:

Waveform generators, Comparators and Schmitt trigger, Log and antilog amplifiers and their

applications, Clipping and Clamping circuits. 8 Hrs.

SLE: Analog multipliers, Analog dividers, squarers and square-rooters

Unit 5: Additional Linear IC Circuits:

Phase locked loop, operating principles, monolithic phase locked loop. 565 PLL applications.

6 Hrs.

SLE:Analog to digital and digital to Analog converters

Unit 6: Integrated circuit timers:

Operating mode of the 555 timer, Astable operation, Monostable operation and other

Applications of the 555, IC voltage regulators. 10 Hrs.

SLE: Switching regulators

Text books:

“Op-Amps and linear Integrated Circuits”,Ramakanth A. Gayakwad, Prentice – Hall of

India, 3rd Edition, 1988.

Reference Books:

1. “Operational Amplifiers and Linear Integrated Circuits”, Robert F. Coughlin and

Fredrick F. Driscoll, Prentice – Hall of India, 4th Edition, 1987

2. “Integrated Electronics”,Millman and Halkias, Tata McGraw Hill Publication, New

Delhi, 1991 Edition.

3. “Linear Integrated Circuits”, B Roy Chaudary and SheilJain, New Age

International Pvt. Limited

MICROCONTROLLERS (4:0:2)

Sub. Code: EC0504 CIE: 50% Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Pre-requisite: Digital Electronics Circuits (EC0502)

Course Outcome:

On successful completion of the course, the students will be able to

1. Describe the importance of architecture and peripherals subsystem of microcontrollers

2. Develop assembly language program and optimized C code for the Microcontrollers

based system

3. Identify advancement in microcontroller based technologies to handle real time

applications.

4. Design and implement a microcontroller based system with peripheral devices

Unit 1: Microprocessors and Microcontroller:

Introduction, Microprocessors and Microcontrollers, A Microcontroller survey of RISC &

CISC CPU architectures, Harvard & Von-Neumann CPU architecture.

The 8051 Architecture: Introduction, 8051 Microcontroller Hardware, Input/Output Pins,

Ports and Circuits External Memory, Counter and Timers, Serial Data Input / Output,

Interrupts. 8 Hrs.

SLE: A brief overview and specifications associated with a modern day microcontroller like

AVR microcontrollers and some important specifications associated with a particular AVR

microcontroller.

Unit 2: 8051 Addressing Modes, Instruction Set and Programs:

Introduction, Immediate and Register Addressing modes, Accessing Memory using various

Addressing Modes, Bit Addresses for I/O and RAM. PUSH and POP operations.

Data transfer instructions, Example programs. Logical Instructions: Byte Level logic, Bit

Level logic, Rotate and Swap, Example Programs. Arithmetic Instructions: Flags,

Incrementing and Decrementing, Addition, Subtraction, Multiplication and Division, Decimal

Arithmetic, Example Programs. Program control Instructions: The JUMP and CALL Program

range, Jumps, calls and Subroutines, Interrupts and Returns, Example Programs

10 Hrs.

SLE: Dynamic programs which involves different addressing modes and different

operations involving both memory and register transfers within it.

Unit 3: 8051 programming in C:

Data types and time delays in 8051C, I/O programming, logic operations, data conversion

programs, accessing code ROM space, data serialization. 7 Hrs.

SLE: New semantics available in embedded C for programming the 8051 microcontroller

Unit 4: 8051 Timer / Counter Programming and Serial Communication:

Programming 8051 Timers, Counter Programming, programming timers 0 and 1 using C,

Basics of Serial Communication, 8051 connections to RS-232, 8051 Serial communication

Programming, Programming the second serial port, Serial port programming in C.

10 Hrs.

SLE: A practical program which shows clearly how serial communication takes place

inside a microcontroller. A chat program to transfer data between the 8051 and the computer.

Unit 5: 8051 Interrupts Programming:

8051 Interrupts, Programming Timer Interrupts, Programming External Hardware Interrupts,

Programming the Serial Communication Interrupts, Interrupt Priority in the 8051/52,

interrupt programming in C 8 Hrs.

SLE: Simulators which are interesting and useful while working with MC.

EdSim51 - http://www.edsim51.com/

JSIM51 - http://www.softpedia.com/get/Programming/Other-Programming-

Files/JSIM-51.shtml

MCU 8051 IDE - http://sourceforge.net/projects/mcu8051ide/files/

PICSimLab - http://sourceforge.net/projects/picsim/

Atmel Studio - http://www.atmel.in/microsite/atmel_studio6/

Unit 6: 8051 Interfacing and Applications:

Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor

interfacing, DC motor interfacing and PWM 8 Hrs.

SLE: Awareness about different types of sensors that could be interfaced to a

microcontroller. Examples are LDR, temperature sensors and their interfacing to an 8051

microcontroller and display the relevant recorded data on the LCD screen.

Text Book:

1. “The 8051 Microcontroller and Embedded Systems-using assembly and C”,

Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI,

2006 / Pearson, 2006

Reference Books:

1. “The 8051 Microcontroller Architecture, Programming and Applications”,

Kenneth J. Ayala; Penram International, 1996 / Thomson Learning 2005, 2e

2. “Microcontroller and its applications”, Dr.RamaniKalpathi and Ganesh Raja;

Sanguine Technical publishers, Bangalore-2005

MICROCONTROLLERS LABORATORY

LIST OF EXPERIMENTS

I. PROGRAMMING

1. Programs illustrating Data Transfer Operations

2. Programs illustrating Arithmetic Operations

3. Programs illustrating Boolean & Logical Operations

4. Programs illustrating Conditional CALL & RETURN instructions

5. Programs illustrating different code conversions

6. Programs using Timers, Counter, Serial Ports and Interrupts

II. INTERFACING:

Programs to interface 8051 chip to Interfacing modules

7. Simple Calculator using 6 digits seven segment display and Hex Keyboard interface

to8051

8. Alphanumeric LCD panel and Hex keypad input interface to 8051

9. External ADC and Temperature control interface to 8051

10. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC

Interface to 8051; change the frequency and amplitude

11. Stepper and DC motor control interface to 8051

12. Elevator interface to 8051

SIGNALS AND SYSTEMS (3:2:0)

Sub. Code: EC0404 CIE: 50% Marks

Hrs. /Week: 4 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Characterize and analyze the properties of CT and DT signals and systems

2. Analyze CT and DT systems in Time domain using convolution

3. Represent CT and DT systems in the Frequency domain using Fourier Analysis

tools like CTFS, CTFT, DTFS and DTFT.

4. Demonstrate the effects of sampling a CT signal

5. Analyze CT and DT systems using Z Transforms.

6. Usage of open source tools for analysis and interpretation of signals and systems

in Time and Frequency domains

Unit 1: Introduction:

Definitions of Signal and a System, Classification of Signals, Basic Operations on Signals,

Elementary Signals, Systems viewed as interconnections of operations, Properties of

Systems. 10 Hrs.

SLE: Comparison of CTS and DTS, MATLAB Programming to generate Basic elementary

signals.

Unit 2: Time-Domain Representation for LTI Systems:

Convolution, Convolution Sum, Properties of Convolution sum, Convolution Integral,

Properties of Convolution Integral, Difference equations, Block diagram representations.

10 Hrs.

SLE: MATLAB programming on Convolution, Differential Equation.

Unit 3: LTI System and Fourier Representation for Signals:

LTI System:

Inter Connection of LTI Systems, Impulse Response Representation, Properties of impulse

response representation, Step Response of LTI systems,

Fourier Representation:

Introduction, Fourier representations for four signal classes, Orthogonality of Complex

Sinusoidal Signals. 6Hrs.

SLE: DTFS representations

Unit 4: Fourier Representation for Signals:

Continuous-Time-Fourier-Series representations (CTFS), DTFT & FT representations,

Properties of Fourier representations. 6Hrs.

SLE: Numerical on Fourier representation for Signals.

Unit 5: Application of Fourier Representations:

Frequency response of LTI systems, Solution of differential and difference equations using

system function, Fourier Transform representations for periodic signals, Sampling of

Continuous time signals and signals reconstruction. 10 Hrs.

SLE: Comparison of difference and differential equation.

Unit 6: Z-Transforms:

Introduction, Z-transform, properties of ROC, properties of Z-transforms, inversion of Z-

transforms, transforms analysis of LTI systems; transfer function, stability and causality.

10Hrs

SLE: Unilateral Z-transform

Text Book:

“Signals and Systems”, Simon Haykin and Barry Van Veen, John Wiley and Sons.

Reference Books:

1. “Signals and Systems: Analysis of signals through Linear Systems”, Michel J

Roberts, Tata McGraw Hill.

2. “Signals and Systems”, Alan V. Oppenheim, Alan S. Willsky and S.HamidNawab,

Pearson Education Asia, 2nd Edition, 1997.

ELECTROMAGNETIC FIELD THEORY (3:0:0)

Sub. Code: EC0302 CIE: 50% Marks

Hrs. /Week: 3 SEE: 50% Marks

SEE Hrs:3Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course students will be able to,

1. Apply mathematical knowledge of vectors, Integral calculus to solve problems related

to Electric and Magnetic field.

2. Identify and analyze Electric and Magnetic fields due to various charge distribution

3. Apply knowledge of Coulomb’s law, gauss law to describe boundary conditions of

electric field and apply knowledge of Biot-Savart’s law, Ampere’s circuital law,

Faraday’s and Maxwell equations for magnetic fields.

4. Analyze the effects of time on electro-magnetic fields

Unit 1: Static Electric Fields:

Introduction, Coulomb’s law and electric field intensity: Experimental law of Coulomb,

electric field intensity, field due to continuous volume charge, line charge and sheet charge,

Electric flux density, Gauss’s law and Divergence: Electric flux density, Gauss’s law and its

application, vector operator (del)∇, 8 Hrs.

SLE: Divergence, Divergence theorem and applications

Unit 2: Energy:

Energy expended in moving a point charge in an electric field, line integral, definition of

potential difference and potential, potential field of point charge and systems of charges,

potential gradient. 6Hrs

SLE: Energy density in an electric field

Unit 3: Energy and Potential:

Conductors, dielectric and capacitance: current and current density, continuity of current,

metallic conduction, conductor properties and boundary conditions, capacitance and

examples. Solution of electrostatic problems: examples of the solution of Laplace’s and

Poisson’s. Equations. 7 Hrs.

SLE:Boundary conditions for perfect dielectrics

Unit 4: Magnetic Fields:

The steady magnetic field: Biot-savart’s law, Ampere’s circuital law, curl, Stoke’s theorem,

magnetic flux and flux density, scalar and vector magnetic potentials. Magnetic force,

material and inductance: magnetization and permeability, magnetic boundary conditions,

energy and force on magnetic materials, self-inductance. 7 Hrs.

SLE:Magnetic circuits

Unit 5: Magnetic and Time Varying Fields:

Force on a moving charge and differential current element, force between differential current

elements, force and Torque on a closed circuit,Faraday’s law, displacement current,

Maxwell’s equation in point and integral form. 7 Hrs.

SLE: Retarded potentials.

Unit 6: Electro Magnetic Waves:

Uniform plane wave, wave propagation in free space and dielectrics, propagation in good

conductors (skin effect) 4 Hrs.

SLE: Pointing vector and power considerations.

Textbook:

“Elements of Electromagnetics”, Mathew N O Sadiku, Oxford University Press.

Reference books:

1. “Engineering Electromagnetics”, William H. HaytJr and John A. Buck, Tata McGraw-

Hill publications, 6th edition, 2001.

2. “Electromagnetic with applications”, John Krauss and David A. FleischMcGrawHill,

5th edition, 1999.

POWER ELECTRONICS (3:0:0)

Sub. Code: EC0314 CIE: 50% Marks

Hrs. /Week: 3 SEE: 50% Marks

SEE Hrs.: 3 Hrs. Max. Marks: 100

Course Outcome:

On successful completion of the course, the students will be able to

1. Describe the operation of advanced Power electronic devices

2. Describe the operation of 4 types of Power electronic converter circuits.

3. Explain various commutation circuits and its importance.

4. Understand the Power electronics converter circuits and explain the same with

simplified equivalent circuits and waveforms, and solve problems

5. Conduct experiments to plot VI characteristics of SCR, TRIAC and interpret them.

6. Conduct experiments on Firing circuits, Converters and Choppers.

Unit 1: Power Semiconductor Devices:

Applications of Power electronics, power semiconductor devices, Control characteristics,

Types of Power electronic circuits, peripheral effects.

Power Transistors: Power BJT’s, switching characteristics, switching limits, base – drive

control power MOSFET’s switching characteristics, gate drive, di/dt and dv/dt limitations,

Isolation of gate and base drives. 7Hrs

SLE: IGBT

Unit 2: Thyristors:

Introduction, characteristics, two transistor model, turn – on and turn – off times of an SCR,

di/dt and dv/dt ratings of an SCR and their protection methods, R, RC, UJT and digital firing

circuits. 8Hrs

SLE: Introduction to TRIAC

Unit 3: AC Voltage Controllers and Controlled Rectifiers:

Introduction, Principles of ON – OFF and phase control, single phase bi-directional

controllers with R, L Loads.

Principles of phase controlled converter operation, HW, FW rectifiers with R, RL, RLE

loads. Single phase full converter (only qualitative analysis). 7Hrs

SLE: Single phase semi converters

Unit 4: Commutation Techniques:

Introduction, natural commutation, Forced Commutation: Self Commutation, resonant pulse

commutation and complementary commutation. (only qualitative analysis) 7Hrs.

SLE: Impulse commutation

Unit 5: DC Choppers:

Introduction, Principles of step down, step up Choppers, performance parameters, Chopper

classification, Analysis of Impulse Commutated thyristor chopper (only qualitative analysis).

6Hrs

SLE: Step down Choppers with RL loads

Unit 6: Inverters:

Introduction, Principles of operation, Single phase bridge inverters, voltage control of single

phase inverters. (only qualitative analysis). 5Hrs

SLE: Performance parameters

Text book:

“Power Electronics”,M.H. Rashid, Prentice Hall of India Pvt. Ltd./Pearson New Delhi

second edition, Feb. 2002.

Reference books:

1. “Power Electronics”, M. D. Singh and Khan Chandani, TMH publishing company

limited, reprint 2001.

2. “Power Electronics”, Cyril W. Lander, McGraw Hill, 3rd edition

3. “Power Electronics: Principles and applications”, J.M. Jacob, Thomson-vikas

publications.

4. “Power Electronics”,R S Anandamurthy&V. Nattarasu,2ndEdition, Pearson.2011

ENVIRONMENTAL STUDIES (2:0:0)

Sub Code : HS0102 CIE : 50% Marks

Hrs./week : 2 SEE : 50% Marks

SEE Hrs. : 2 Hrs. Max. Marks: 50

Course Outcomes:

On successful completion of the course, students will be able to

1. Investigate the relationship between human life and environment from scientific

perspective.

2. Appreciate the current and emerging problems and provide potential solutions.

3. Increase the awareness on environmental problems.

Unit -1: Introduction and definition of Environment. Man-Environment interaction. Impact

of mans’ activity on Environment. Ecosystems (kinds, component parts, pyramids etc., Pond

ecosystem as an example), Biodiversity (Hot spots). 4 hrs.

SLE:The need of Environment Education/Knowledge (from the point of view of Sustainable

Development).

Unit –II: Ecology Energy/nutrient flow (food chains etc.) b) Biogeochemical cycles (CNS

cycles) 4 hrs.

SLE:Concepts of limiting nutrients.

Unit –III: Natural Resources, Water resources – Availability & Quality aspects, Water borne

diseases & water induced diseases, Fluoride 43 problem in drinking water Mineral resources,

Minerals, Energy – renewable and non-renewable, 4 hrs.

SLE:Land and Forest Wealth.

Unit –IV:Environmental pollution- Water, Air, Soli, Noise. Solid waste generation and allied

issues. 4 hrs.

SLE:Sustainable development- Concepts

Unit –V: Some important local and global environmental issues) Global issues- global

warming, acid rain, ozone depletion. 4 hrs.

SLE:Local issues- specific to the locality

Unit –VI:Introduction to Environmental Impact Assessment (EIA), Environmental Auditing.

Environmental Legislation and Acts. Pollution Control boards. Regulatory standards.

SLE:Environmental Ethics. 6hrs

Text Book:

1. Benny Joseph “Environmental Science andEngineering.”. Tata McGraw-Hill Publishing

Company Limited.

Reference Books:

1. Gilbert M. Masters “Introduction to EnvironmentalEngineering and Science.”

Prentice-Hall of India Pvt. Limited.

2. Edward J. Kormondy “Concepts of Ecology”. Prentice Hall of India Pvt. Limited.

3. P.D. Sarma. “Ecology and Environment” Rastogi Publications.

LINEAR INTEGRATED CIRCUITS AND APPLICATIONS LABORATORY

Sub. Code: EC0107 CIE: 10 Marks

Hrs. /Week: 3 SET: 10 Marks

SET Hrs.: 3 Hrs. PW: 5 Marks

Max. Marks: 25

Course Outcome:

On successful completion of the course, the students will be able to

1. Analysis, design and conduct experiments on linear and non-linear applications of

Op-Amps

LIST OF EXPERIMENTS

1. Analyze the operations of voltage follower, inverting and non-invertingamplifier using

Op-amps

2. Analyze the operations of Adder, Subtractor using Op-amps.

3. Analyze the operations of Integrator, differentiator using Op-amps.

4. Analyze the waveforms like sine, square and triangular using 741 ICs, from first

principles.

5. Design and testing of comparator and Schmitt trigger circuits using 741.

6. Design a Monostable multivibrators using 555 timers.

7. Design a Astable multivibrators using 555 timers.

8. Design a Precision half wave and full wave rectifiers using Opamps.

9. Analysis and Conduction of RC triggering and UJT triggering of SCR.

10. Design of Active Filters (Low Pass Filter and High Pass Filter).

11. Design of Active Filters (Band Pass Filter and Band Elimination Filter).

13. Design a Three terminal voltage regulator and their regulation characteristics.

14. PLL and its applications.

15. A project work involving design and analysis of the above topics.

• 50% of the experiments will be conducted on simulation techniques