Scale-up and Dynamics of Large Grinding Mills - A Case Study

download Scale-up and Dynamics of Large Grinding Mills - A Case Study

of 19

Transcript of Scale-up and Dynamics of Large Grinding Mills - A Case Study

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    1/19

    Design and Installation

    of

    omminution ircuits

    Co Editors

    Andrew L

    Mular

    Professor of

    Mineral

    Process Engineering

    University of British Columbia

    Vancouver B. C

    Canada

    Gerald V. Jergensen II

    Tucson

    Arizona USA

    This

    volume

    was originated by the Mineral Processing Division

    of

    the Society

    of Mining

    Engineers of AIME to serve as a practical

    textbook o

    current comminution design

    and installation practice.

    Richard Addison

    Derek J Barratt

    James

    E

    Coburn

    Dale Dixon

    Robert EIsner

    Malcolm D. Flavel

    George

    A.

    Grandy

    Editorial Board

    Society of Mining Engineers

    of the

    Richard W.

    Harper

    Leonard Harris

    S.G. Malghan

    R E

    . Mcivor

    Stanley

    M. Moos

    Fred Pena

    Mathew

    A.

    Sochocky

    American Institute of Mining Metallurgical and Petroleum Engineers Inc.

    New

    York

    New

    York1982

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    2/19

    Chapter 6

    SCALE-UP

    ND

    DYN MICS OF L RGE GRINDING MILLS - A CASE STUDY

    Nathaniel Arbi t e r

    and

    Colin

    C.

    Harr is

    Henry Krumb

    School

    of Mines

    Columbia

    Univers i ty

    New York, N.Y . 10027

    ~ s t r c t

    Curren t

    sca le -

    up

    procedures

    are

    s c u s s e d c r i t i c a l l y

    inc luding:

    = . s t an t sp ec i f i c

    energy c r i t e r ion ;

    ~ t e r m i n a t i o n of mi l l

    s i ze and

    power

    a

    given

    ore , th roughput

    and mesh

    gr ind;

    sp ec i f i ca t io n

    of opera t ing

    S?eed and load ing . A major dynamic

    k in e t i c fac to r now

    recognized i s

    ~

    the

    r a t i o of

    media

    ro ta t iona l

    =-ow to ore

    ax ia l f low,

    and

    the

    num

    =e

    r

    of mil l r evo lu t ions

    t ha t

    ore i s

    s j ec ted to dur i

    ng

    r es idence , both

    i n i s h as m

    ill

    diameter i nc reases .

    = e s e fac to rs can

    lead

    to

    capac i ty

    i t a t i o n s when

    mil l

    diameters reach

    a c r i t i c a l

    range

    e spe c i a l l y

    r egard

    ~

    coar se

    s izes .

    Exper ience a t the

    g a in v i l l e

    and Pin to Valley opera

    =i

    ons

    i s cont ras t ed .

    Correct ive

    -

    asures

    s u

    ggested

    are

    to

    reduce

    o a d i n g

    and

    inc rease speed towards

    ~ e Davis b es t

    opera t ing

    speed.

    -

    t r oduc t ion

    Although

    problems

    in sca le -up

    f gr ind ing mil l s are r a re ly

    r epor ted

    ~ e c e n t

    publ i ca t ions by

    the

    s t a f f

    o f

    30uga inv i l l e Copper

    Ltd.

    Hinkfuss

    ~ 9 7 6 ;

    Steane

    and Hinkfuss , 1979;

    ~ l y a r d

    1981) have

    revealed

    a se

    r

    ous discrepancy between the

    des ign

    49

    c r i t e r i a

    for the capac i ty

    o f

    t h e i r

    5.9m 18 f t )

    b a l l

    mil l s

    and a c t ua l

    cap ac i t i e s

    in product ion. These

    publ i ca t ions

    provide in format ion

    a t

    the

    same

    t ime

    which

    suggests

    previous ly unrecognized e f f ec t s o f

    increased diameter

    on

    gr inding

    mil l

    dynamics.

    The

    discrepancy

    a t

    Bougainvi l le

    has

    l ed

    to

    recommenda

    t ions t h a t mi l l s of

    s imi la r

    s i ze

    should not be

    i ns t a l l ed

    e l sewhere

    u n t i l the Bougainvi l le

    problem i s

    b e t t e r

    understood

    Kjos, 1979).

    This i s

    in

    s p i t e of the fac t

    t h a t

    mil l s of

    i d en t i ca l

    s i ze opera t ing

    a t

    the

    Ci t i e s Serv ice Pin to

    Val ley

    Concent ra tor , are performing

    s a t i s f a c t o r i l y Kennedy, 1982) .

    This

    chapte r analyzes the

    problem

    in d e t a i l and suggests poss ib le

    so lu t ions fo r

    it Fur ther

    di scus

    s ion and

    bas ic

    in format ion has been

    provided

    elsewhere Arbi ter

    and

    Harr i s ,

    1980;

    Harr is

    and

    Arbi t e r ,

    1982) .

    SC LE - UP PROCEDURES

    Scale - up procedures cur ren t ly

    involve

    the

    fo l lowing

    s teps in

    o u t l i n e :

    1 . Est imat ing the sp ec i f i c

    energy

    requirement

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    3/19

    49

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    [power / t ons /h r )] fo r t he

    p a r t i c u l a r

    ore a t a spec

    i f i e d feed

    s i ze and

    mesh

    of g r ind .

    2 . From

    t h i s

    and des ign

    tonnage

    ra t e ,

    es t imat ing t he

    t o t a l

    power requirement .

    3. From t o t a l power and

    manu

    f ac tu re r s

    ' t ab l es ,

    char t s ,

    or equa t ions , es t imat ing

    t he

    s i ze

    and number of

    mi l l s .

    Spec i f i c Energy Requirement

    In

    t he

    twent ies (Taggart , 1927) ,

    lump sum

    averages

    were given

    for

    the

    energy

    to

    grind

    to

    a p a r t i c u l a r mesh ,

    with minor

    a t t en t ion

    to

    feed s i ze .

    Ore qr indab i l i t y dif fe rences

    were

    recognized by

    recommending a

    50 per -

    cen t increase fo r hard ores ,

    and

    r educt ion

    fo r

    so f t e r

    ores somewhat .

    It i s o f i n t e r e s t

    t ha t

    t he energy

    f igures

    do not

    d i f f e r

    s ign i f i can t ly

    from

    those

    ca lcu la t ed

    using the

    average

    Bond Work

    Index

    for copper

    ores app l ied to a 0 . 5

    in

    feed s i ze

    and to

    t he

    ind ica ted produc t s i zes .

    By t he t h i r t i e s

    and for t i e s

    s t andard gr indab i l i ty

    t e s t s

    were

    widely

    used,

    d i f f e r i n g in de t a i l

    with

    d i f f e ren t manufacturers . The

    r e su l t s

    were

    appl ied

    , along wi th those fo r

    comp ar i son ores for which commercial

    operat ing da ta

    were

    on

    f i l e ,

    to

    e s-

    t imate spec i f i c

    energy . Within t he

    l a s t

    two

    decades,

    the Bond Work Index

    has become an indus t ry s tandard .

    The

    Index

    i s

    ac tua l ly

    an

    energy/ ton

    pro-

    p o r t i o n a l i t

    y cons tan t ; it re fe rences

    t he gr i nda b i l i ty fo r a p a r t i c u l a r ore

    and

    mesh,

    which i s a

    gr ind ing

    r a t e

    [MT-1],

    t o a s t andard gr inding r e f -

    erence opera t ion . The r esu l t i ng

    Index

    i s

    then

    used

    by proport ioning

    t o

    ob ta in

    t he energy /

    ton

    fo r

    the

    design

    spec i f i ca t i on

    ,

    and th

    en t he

    t o t a l

    power requirements . Correc t ion

    f ac to r s

    a re

    a p p l i ed

    fo r

    such

    i tems

    as : dry versus wet

    gr inding;

    open

    versus closed c i r c u i t ; excess ive

    coa r seness

    o f feed o r

    f ineness of

    gr ind ,

    and

    m il l diameter . One m ~ -

    diameter f ac to r used, [ 8 /0 )0 . 2 ] ,

    reduces

    the r e l a t i v e

    power

    requ i r e -

    ment

    as

    m il l diameter

    increases

    to D l 2 . 5 f t

    (3 .8

    m);

    t he rea f t e

    r

    it

    remains

    unchanged a t

    0.914

    (Rowland and Kjos,

    1978)

    .

    As

    befo re ,

    manufacturers '

    , da::.:.

    fo r

    power

    and m i l l

    s i zes

    are

    use

    d

    to

    determine t he

    s i ze and nu

    mber

    mi l l s .

    Other

    des ign

    c r i t e r i a

    and

    des igner p refe rences

    based

    on ex

    pe

    r i ence a re

    used

    fo r

    t he d e t a i l s

    o=

    t he gr ind ing c i r c u i t ; in

    par t i cu

    la=

    these may a f f e c t t he

    type

    o f mil

    l

    and the s i ze and number o f mi l l s ,

    in r e l a t ion to fol lowing c i r c u i t s

    and

    to ove ra l l design

    cons t ra in t s

    .

    The

    s i ze arid

    number

    o f m il l s

    w i l l depend

    to some extent

    on whi

    manufacturer

    ' s d a t a

    are

    used . Fo r

    example, m il l

    s i zes

    pred ic ted b y

    d i f f e r e n t

    manufacturers

    for a 1 00

    HP

    power requirement

    are as fo l l o ;;o :

    l

    10

    X

    19

    f t . Lf

    = 40 ,

    fc=

    2.

    ll X 15 f t . Lf = 40 ,

    fc

    =

    3.

    11.9 X 1 2 f t .

    Lf=

    45 , fC= 71. 8

    4.

    1 0 X 16 f t .

    Lf

    = 45%, fc =

    75

    The d i f f e r ences

    are due

    to

    causes:

    ( l)

    d i f f e r e n t

    manufact

    urerE

    recommend d i f f e r e n t load f r ac t io ns

    and

    m il l

    speeds;

    and

    2) ,

    even

    f o r

    the same operat ing condi t ions d i f -

    f e ren t m il l s i zes

    may

    still

    be

    spec i f i ed .

    Discuss ion

    Three impor tant aspec t s o f t he

    manufacturers es t imat ing

    procedures

    need

    c l a r i f i c a t i on .

    l .

    The

    form

    and

    r e l i a b i l i t

    y

    of the r e l a t i onsh ip use

    to es t imate

    power as

    a

    funct ion o f m i l l s i z e a = ~

    opera t ing cond i t ions ,

    such

    as speed

    and lo a

    d.

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    4/19

    DYN MICS OF

    L RGE

    GRINDING

    MILLS

    49

    2. The

    unexplained

    imposi t ion

    o f

    a

    decreas ing

    f rac t ion

    c r i t i c a l

    speed

    ( fcs)

    re

    quirement wi th i ncreas ing

    m i l l

    diameter

    recommended

    by

    severa l

    manufac turers

    ( fcs D-O.l

    to D-O.l5)

    3.

    The un iver sa l

    assumption

    t h a t constancy of app l ied

    energy/ ton

    i s the

    i nvar

    i ab le

    and only

    c r i t e r i o n

    fo r scale-up. Each o f

    these

    fac to rs wi l l

    be

    b r i e f l y discussed,

    s ince

    each has

    a

    bear ing on the

    Bougainvi l le

    problems.

    Power

    Pred ic t ion

    Power consumption,

    im p l i c i t l y

    independent o f gr ind ing ac t ion , i s

    almost always

    es t imated

    by app l i ca

    t i o n

    of some

    form of

    the torque

    -

    arm

    equat ion (Hancock, 1934) ,

    wi th l

    ittl

    demons t ra t ion in the p as t

    t ha t opera

    t i n g

    mi l l s conform. However, Kjos

    (1979)

    has shown

    t h a t the

    A l l i s

    Chalmers modi f ica t ion o f the

    equat ion

    does pred ic t power

    d r a f t

    with

    ac

    curac ies with in

    a

    few

    percen t for

    l a rg e r

    ba l l

    and

    rod

    mil ls .

    A

    s impler equat ion,

    P/WND(l

    - Lf) constant

    (Harris and Arbi t e r , 1982) , (see

    appendix

    fo r der iva t ion) can be

    app l ied to

    much ava i lab le

    opera t ing

    data (Taggart , 1945;

    Kjos,

    1979) and

    holds

    su f f i c i en t ly

    wel l for pre l im

    ina ry es t imat ing . The constant has

    the

    fo l lowing

    values

    according to

    mil l type:

    Type of

    Mil l

    WND(l-Lf)

    a o

    f

    c

    Grate

    0.13

    54 0.78

    Tube

    0.12

    48

    0.76

    Autogenous

    O. l l5

    45

    Overflow

    O. l l

    43

    0.68

    Rod 0.09

    34

    0.59

    The i nd ica t ed

    angle ,

    a , i s t h eo re t

    i ca l l y the angle o f i nc l ina t ion of

    the charge surface

    to

    the hor izon ta l

    (angle o f repose) , but

    in view

    of

    var ious

    imprecis ions in

    us ing

    the

    equat ion

    fo r operat ing

    m il l s ,

    the

    absolute angle values a re not con

    s idered s i g n i f i c a n t

    .

    However, the

    apparent value

    i s

    ind ica t ive

    of

    d i f fe rences

    in

    both

    f r i c t i o n a l

    coe f f i c i en t s within the load

    and

    o f

    load ag a i n s t

    the l i ne r s ; a l so the

    angle depends on t he average

    f r ac

    t i ona l

    c r i t i c a l speeds

    . Tagg ar t s

    1945 opera t ing

    data

    show t h a t the

    average power coe f f i c i en t s

    and

    angles

    ca lcu la ted from

    them

    decrease reg

    u la r ly with average fcs

    values

    .

    The

    mean value and d i sper s ion

    for

    the

    power

    coe f f i c i en t s

    are

    0. ll . 01. Compared

    to

    impe l le r

    t ank power

    coe f f i c i en t s

    in mixing

    and

    f lo t a t ion c e l l s , which show about

    a t en - fo ld range ,

    the va r i a t ion

    in

    coe f f i c i en t s fo r g r ind ing mil l s i s

    r e l a t i ve ly small :

    10 percen t .

    This

    argues

    t ha t

    v a r i a t i o n s

    in the

    media /mi l l

    l i n e r

    shape

    f ac to r s have

    fa r

    l e s s

    in f luence on mil l

    power

    d r a f t

    than

    do t he im pe l l e r / s t a to r

    b a f f l e conf igura t ions in s t i r r e d

    tanks .

    Another fac to r

    in power

    es t ima

    t i on , which i s usual ly neglected , i s

    the weight

    o f

    pulp hold-up.

    The

    charge

    densi ty i s cus tomari ly

    taken

    as

    290-300 lb s /cu

    f t for

    b a l l s

    and

    340-390

    lb s /cu

    f t

    fo r

    rods , both

    f igures

    based on the apparent

    dens i ty

    o f

    a

    s ta t ionary

    load

    (appendix

    Table

    A2). Actual ly , the

    ro ta t ion

    o f the mil l

    causes

    expansion of the

    voidage o f

    the

    load in propor t ion to

    the speed as shown in appendix Tables

    A and

    7 .

    This can r e su l t

    fo r a 45

    percen t

    load

    f r ac t i o n

    in

    voidages

    from

    29

    to 39 p er cen t , i n s t ead

    o f

    19

    percen t fo r b a l l m i l l s ;

    and

    in

    voidages

    of

    from

    22 to 26

    percen t fo r

    rod m il l s . These a re

    for

    speeds

    from

    60

    to 80 percen t o f c r i t i c a l .

    Taking

    in to account the

    e f f e c t

    of presence

    o f pulp as void f i l l i ng on power ,

    draw

    r esu l t s

    in

    a

    10

    to

    15 percen t

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    5/19

    9

    DESIGN INSTALLATION

    OF OMMINUTION

    CIRCUITS

    i ncrease i n ca l cu l a t ed

    values

    fo r

    b a l l mil l s and a 5 to 10 percen t in

    c rease fo r rod mil l s see appendix

    for d e t a i l s ) .

    Recommended Mil l

    Speeds

    Mills

    speeds used in prac t i c e

    show cons ide rab le

    v a r i a t i o n and

    incons i s tenc ies .

    In

    the twent ies

    8 f t 2.4 m m il l s , t he

    l a rges t

    then

    in

    use, were opera ted a t speeds

    as

    high as 0 .89 fcs and t here was ad

    vocacy o f speeds

    in t he 0.80

    range

    for

    increased

    crushing

    of the coarser

    p a r t

    of the

    m i l l

    feed. However, a t

    the same t ime Taggart 1927) c i t e d

    data

    to

    show t ha t

    reducing

    fcs

    from

    0.89

    to

    0.57 reduced

    power

    subs tan

    t i a l l y ,

    had

    no e f f e c t

    on capac i ty ,

    while

    s ign i f i c an t ly

    reducing

    b a l l

    and

    l i n e r wear. Other data o f

    the

    same

    per iod showed the i n t e rac t i o n s among

    speed and b a l l s i ze with feed s ize

    and

    ore c h a r a c t e r i s t i c s ,

    but

    con

    t ro l l ed t e s t i n g was inf requent .

    There has been

    a

    c lea r

    t rend

    s ince

    then toward a

    reduct ion

    in mil l

    speeds ove ra l l , with a secondary

    t rend to

    reducing

    fcs

    with

    in

    c

    reas ing

    mil l

    diameters . For

    -

    example,

    t he

    All i s -Chalmers c

    ata logues

    have a

    b u t l t - i n reduc t ion according to

    fc -

    n-

    0

    15

    fo r mil l s

    l a rg e r than 9 f t

    2.7

    m),

    with a

    smal ler

    propor t iona l

    decrease for

    smal ler

    mil l s .

    This i s

    i l l u s t r a t e d by

    fcs va lues of 0.80 a t

    3ft 0.9 m);

    0.78 a t

    6ft 1.8 m);

    0.75 a t 2ft 3.7 m); 0.70 a t

    5ft

    4.6 m

    and

    0.68 a t

    8ft

    5.5 m).

    Similar but not

    i den t i ca l

    t rends are

    recommended

    by

    o ther

    manufacturers .

    Constant Energy/Ton Scale-Up Cri te r ion

    The power co r re l a t i o n

    equat ion

    previous ly

    given

    appendix) lends

    it-

    s e l f to a

    simple

    i l l u s t r a t i o n of the

    consequences o f var ious co n s t r a in t s

    on sca l e -up . It can be

    t ransformed

    as

    fo l lows:

    3

    P

    ND

    Lp

    Lf l -Lf)

    where the p ro p o r t i o n a l i t y

    term

    i s an

    appropr ia te cons tan t fo r mil l type .

    With Qf the hour ly

    tonnage

    r a t e ,

    P/Qf NDpL f l - L f ) t

    where

    the average

    re s idence

    t ime

    t

    i s volume/feed r a t e . At cons tan t

    load

    and load dens i ty

    t h i s

    reduces t o

    energy/ ton

    NDt-constant

    fo r

    the

    convent ional sca l e -up c r i t e r i o n .

    The

    quan t i ty Nt has

    been def ined

    as

    a mixing coe f f i c i en t , i

    Harr is

    and

    Arbi te r , 1982). This v a r i e s i nver se

    ly with mil l diameter

    r eg a r d l e s s

    of

    the N vs D r e l a t ionsh ip .

    Fur ther ,

    i f

    Nn

    5

    i s constant cons tant f cs ) , then

    E n-

    0

    5

    . Iff aon-

    0

    15

    see

    mil l

    c

    -0

    65

    speeds

    above) then

    ND and

    -0

    35

    then

    the e f f e c t o f t he reduc-

    t i o n in

    fc s with

    i ncreas ing

    m i l l

    diameter

    i s to modify the

    reduct ion

    in

    res idence

    t ime bu t a t the same

    t ime

    to

    reduce

    the

    growth

    of s p ec i f i c

    capac i ty o f a mil l s ince

    2.5

    Qf

    PD L a t cons tan t

    Qf/D2L

    D0.5

    o r

    f o r

    c

    2.35 -0 .15

    Q

    PD L a t f D o r

    f c

    Q /D2LD0.35

    f

    This

    discuss ion impl ie s t h a t

    sEeci f i c

    capac i ty

    increases

    as

    D

    5

    a t cons tan t ene rgy / ton and

    cons tan t f c s , but as n0.35 a t

    c

    ons tan t

    energy per ton

    and

    fcs

    decreas ing as n-

    0

    .1

    5

    . Fin a l l y ,

    as

    shown

    elsewhere

    Harr is

    and

    Arbi te r , 1982)

    the

    r a t i o

    o f

    the

    i n t e rna l flow of media

    to feed

    r a t e

    QI/Qf, which with b a l l s i ze can be

    r e l a t ed

    to

    the frequency o f impact

    of ba l l s

    with

    a u n i t o f ore , a l so

    v a r i e s i nver se ly

    with mil l diameter .

    This

    r a t i o

    i s a major f ac to r i n

    gr ind ing k ine t i c s .

    The above discussion o u t l i n e s

    th ree

    dynamic

    fac to rs

    involved

    in

    the

    discrepancy

    between

    l a rge mi l l

    and smal l m i l l / l ab o ra to ry

    work

    i nd ices :

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    6/19

    DYN MICS OF L RGE GRIN ING MILLS

    95

    1 .

    Reduced r a t i o o f i n t e rn a l

    media

    ro t a ry

    flow

    to

    feed

    flow, probably the main

    k ine t ic

    f ac to r .

    2.

    Reduced

    mixing

    co e f f i c i en t s

    depending

    on the combina

    t i on Nt,

    and

    not on

    speed

    a l

    one.

    3 . Reduced re s i dence t imes fo r

    l a r g e r

    m i l l s , the ex ten t

    depending upon the imposed

    N vs D

    r e l a t i o n .

    Al l

    th ree o f

    these depend

    in

    mag

    ni tude on the cons tant energy/ ton

    sca l e

    -

    up cons t ra in t .

    THE BOUGAINVILLE

    SCALE- UP PROBLEM

    This problem has been summarized

    in d e t a i l by the

    BCL

    s t a f f

    H

    i nkfuss ,

    1976; Steane and Hinkfuss , 1979;

    Ti

    l yard, 1981) . In b r i e f , extens ive

    l abora to ry

    gr indab i l i ty t e s t s on

    d r i l l cores gave a

    work index

    o f

    12.0 .

    Pi l

    o t

    p l an t opera t ion

    in

    a 1 .8 x 1 .5 m

    5 . 9 x 4.9 f t ) mi l l gave work

    ind ices

    in good agreement on

    a l

    l samples with

    labora tory indices

    on

    the

    same

    feed .

    Combined da ta gave a work

    index

    es t ima te

    fo r the

    f i r s t

    f ive year s of

    opera t ion

    o f

    11.42 . Plan t opera t ion

    fo r the f i r s t s i x months however

    gave

    ind ices

    ranging from

    1 2.1 - 24.2

    averaging 18.2 ,

    whereas

    the o r ig in a l

    design

    indices

    were 10.5 - 13 .6 ,

    averaging

    12

    .1 .

    The

    labora tory

    work

    ind ices on mi l l

    feed

    samples dur ing

    these

    s ix

    months

    ranged between

    7.2

    and 1 5.0 , but mainly between 10.5

    and 1 2 . 7, averaging 11.6 . The mil l s

    were es t imated

    to be 20

    percen t

    i n e f f i c i e n t

    as

    measured

    by

    work

    index.

    I n co n s t r a s t ,

    the

    C i t i e s Serv ice

    Pinto Val l

    ey

    opera t ion Gou

    ld

    , 1976) ,

    u s ing s ix mil l s

    of

    the same s i ze as

    a t

    Bou

    gainv i l l e

    ,

    obta ined

    an

    i n i t i a l

    13.2

    p l an t work

    index compared to an

    or ig

    i na l

    labora tory

    index

    o f

    12.8 .

    Recent

    opera t ions have

    increased

    d a i l y cap ac i t i e s

    from

    51,000

    tpd

    to

    55 , 000 for one mon t

    h ,

    and

    up

    to

    59,000

    tpd fo r

    a s ing le day Kennedy ,

    1982) . These f igures show a s ub

    s t a n t i a l decrease in the

    p l an t

    index

    compared

    to

    l abora to ry f igures .

    Gr i

    nd

    i

    ng

    Circ u

    t Size

    Dis t r i

    but ions

    Comparison o f

    s i ze

    d i s t r i b u t i o n s

    fo r mi l l feeds and

    cyc

    l

    one

    underf l ow

    c i rcu la t ing load) Table 1 ) go

    fa r

    toward expla ining the discrepancy

    between

    the

    mil l s i

    ndica ted

    above .

    These show c l ea r l y the tendency

    o f

    the

    Bouga i

    nv i l l e ore

    to b u

    i l d

    up

    in

    the c i r cu l a t i n g load in

    s i zes

    above

    6

    mesh

    -

    58 percent

    plus

    6 m

    esh

    in

    the

    feed

    and

    -32

    percen t

    in the C.L)

    with

    the

    weight propor t i ons

    of

    p l

    us

    6 mesh c i rcu la t ing l o a d ) / f e e d

    about

    32 x 4/58.

    In

    cons t ras t , the

    Pinto

    v a l l e y c i r cu l a t i n g load 5 . 5) shows

    1 0 percent p l us 6 mesh , wh le new

    feed has

    51 percen t .

    Grinding Kinet ics Factor

    The

    l

    ower

    r a t e

    of g r ind

    i

    ng

    fo r

    coarse s i zes has a l so been

    i l l u s t r a t

    ed a t Bouga inv i l le

    by calc

    u l

    a t ion o f

    breakage r a t e co e f f i c i en t s Fig . 1) ,

    with

    s i zes

    above 14 mesh B O ~ m

    showing

    decreas ing

    coef f ic ien t s com

    pared

    to

    f i n e r s i ze s . In

    co n s t r a s t

    ,

    s imi l a r

    da ta fo r the

    1 .7

    x 1 . 5 m

    5.6 x 4 . 9 f t ) p i l o t ml l s h ow no

    decrease , bu t

    cont inuing

    inc rease

    fo r

    s i zes

    coa rse r

    than

    14 mesh. Steane

    and

    Hinkfuss, 1976) .

    A

    more

    d e t a i l ed

    s tudy

    o f coarse

    p a r t i c l e gr inding k in e t i c s as a

    funct ion of mi l l

    d i

    ameter

    ,

    recen t ly

    made ava i l

    ab

    l e

    Kavetsky

    and

    Whiten,

    1

    981)

    Fig.

    2) ,

    found t h a t

    the m i l l

    diameter e f f ec t i s not unique to

    Bougainvi l le ores . The da ta a l so

    show t h a t where

    ore

    gr ind ing

    k i n e t i c s

    are

    s i ze

    sen s i t i v e

    ,

    the

    e f f ec t i s

    exh ib i t ed

    i n mi l l s

    above about 2.5 m

    8 .2 f t . )

    in

    diameter

    and

    not

    below

    .

    I t occu r s i n s i zes above 4 mesh

    4 7 5 0 ~ m ) , diminishing wi th

    s i zes

    f i n e r than about 10 mesh 0 0 ~ m .

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    7/19

    96

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    Table

    1 . Screen

    Analys is : Cumulative Percen t

    Oversize

    Pinto-Val ley*

    Bou9:ainville**

    Mesh

    Microns

    New

    Feed

    Cyclone

    New

    Feed

    Cyclone

    Tyler)

    Underf l ow

    Underflow

    C.L)

    C.L)

    0

    .50 in 12700 2.4

    0 . 37l in

    9423

    7.

    1

    0 . 2

    13

    . 3

    7.2

    3 6700

    27.4 2.9

    4 4750 40.1

    6 4 46.5

    26

    . 2

    6

    3350 50.9

    1

    0.4

    sat

    32

    t

    8

    2360 59

    . 0

    14.4

    65 . 0

    37.7

    10

    1700

    65 1

    18.7

    14 1180

    71.5 25

    . 2

    74

    . 3

    50.1

    20

    850

    75.9

    33.0

    28

    600 80.0 44

    . 6

    79.8

    65 . 3

    35

    425 82.7

    58.5

    48

    300 85.6 74.9 84

    . 6

    81.2

    65

    212 87.6

    83.2

    100 150

    89 . 6 88 . 9

    89.1

    89.0

    150 1

    06

    91.2 92.1

    200

    75

    92.6 93 . 9 94.0

    92

    1

    -

    200

    7 . 4 6.1 6 0

    7 . 9

    100.0 1

    00

    . 0 100.0 1 00 . 0

    Circu la t ing lo ad

    r a t i o -

    5.5

    4 . 0

    Data

    from Gould 1976) **Data from Hinkfuss

    1976)

    t In te rpo

    l a t ed

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    8/19

    DYNAMICS OF LARGE GRINDING MILLS

    497

    z

    0

    ,)

    z

    ::I

    ...

    z

    0

    t;

    L J

    ..J

    L J

    Vl

    1 0

    0 .8

    0 . 6

    0 4

    0 . 2

    -+- 1 7 - m MILL

    5.5 m MILL

    150 600 2400

    9600

    PARTICLE SIZE

    ,

    p m

    Fig

    u

    re

    1 . Se lec t ion

    funct ion as

    a func-

    t i o n

    o f p a r t i c l e

    s ize

    fo r

    p i l o t

    p l an t and l a rge - diameter ba l l -

    m il l s . Bougainvi l le opera t ion

    (Steane and Hinkfuss , 1979) .

    Mill

    Dynamics

    Factors

    The prev ious

    di scuss ion

    shows

    c l ea r l y t h a t

    the

    l es se r

    ef f i c iency

    of the Bouga inv i l l e mi l l s i s

    expla in

    ed

    by

    r e l a t i v e l y

    lower breakage

    co e f f i c i en t s fo r coarse r

    s izes

    in the

    plan t . The same

    tendency

    appears to

    be presen t

    i n

    the Climax

    2.74 m

    ( 9 f t )

    and 3.86m (12.6 f t ) mi l l s , and

    in

    the

    Mt. Lye

    l l

    3.05m (10 f t ) and

    4.58m

    (15

    . 0

    ft

    mi l l s .

    However

    ,

    the

    Pin to Val ley S.Sm

    mi l l s

    as

    evidenced

    by lack of bui ld- up

    of coarse s i ze s

    in

    the c i r cu l a t i n g

    l

    oa

    ds ,

    and

    by

    a

    lower

    p l an t

    work

    in

    dex compared to l abora to ry r e s u l t s ,

    do not

    show such

    a tendency . Thus

    the phenomenon i s s en s i t i v e to ore

    breakage

    c h a ra c t e r i s t i c s , as wel l as

    to mi l l s i ze

    and

    p a r t i c l e

    s ize .

    The

    fo l lowing quota t ion from

    Taggar t (1927) both provides an

    explana t ion and sugges t s a so lu t ion

    to t he

    problem: Davis

    (1919) shows

    t h a t the (proper)

    speed of

    the m il l

    i s c lo se ly r e l a t ed t o the s i ze o f the

    b a l l s ,

    and

    t h a t

    the proper

    co r re l a

    t ion

    i s

    ind ica ted by the s iz ing t e s t

    of

    the re tu rn

    sands from t

    he

    mi l l

    c l

    a s s i f i e r .

    With

    any

    given

    s ize

    o f

    b a l l , i nc rease in speed

    r e s u l t s

    in

    decrease

    in

    coarse mate r i a l

    in

    t he

    c l a s s i f i e r sands , i . e . , in inc reased

    crushing

    of

    the coarser p a r t

    o f

    the

    mi l l feed . . if the speed i s too

    low,

    t he

    b a l l s ize being r igh t

    fo r

    the feed,

    t he re i s

    heaping

    up of

    mater ia l in

    t he

    coarser

    s izes

    of

    c l a s s i f i e r

    sand;

    if t oo high heaping

    up

    in

    the f iner

    s i

    zes .

    E

    E

    ....

    E

    .....

    E

    co

    r

    E

    E

    "'

    "'

    II

    z

    z

    ?

    ....

    ~

    Cl

    r:

    .....

    CD

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    9/19

    98

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    This explana t ion and

    the fac t s

    on

    whic h it

    i s based , obta ined 60

    years

    ago,

    are

    in

    agreement

    with

    the

    fo l lowing t h e s i s : t h a t the p r in c ip a l

    cause

    of

    the

    Bouga inv i l l e

    discrepancy

    l i e s

    in the

    Q

    /Qf

    fac to r ,

    which

    var ie s

    inve rse ly witfi d1ameter ,

    reac t ing

    with

    Bougainvi l le

    ore coarse

    s i ze

    breakage

    chara

    c

    t e r i s t i c s . To

    a

    cons ide rab le

    e x t e n t , as

    a l r eady

    p

    ro

    p

    osed by

    t he

    Bougainvi l le

    s t a f f , l e s s

    favorable

    mixing e f fec t s

    may be involved , whi le

    o f l e s s e r importance i s the reduced

    r es idence t ime. However, lower

    breakage co e f f i c i en t s t oge the r wi th

    reduced r es idence t imes

    compared to

    smal ler

    mil l s ,

    may

    i n t en s i fy

    the

    d i s

    crepancy

    .

    Proposed Cor rec t ive Measures

    The

    evidence

    presen ted i n d i ca t e s

    the

    bui ld up o f coarse r s i zes of some

    ores

    in

    c i r cu l a t i n g loads

    with

    l a rg e r

    mi l l s . This i s suppor ted by evidence

    of decreased

    coarse

    s i z e breakage

    ra t e

    co e f f i

    c i en t s again fo r some

    but no t

    a l l

    ores .

    A

    so lu t ion

    to the

    problem,

    where it se r io u s ly

    a f f e c t s

    mi l l pro

    d u c t iv i ty ,

    i s

    in

    the

    d i rec t io n

    of

    inc reas ing ins tead o f

    decreas ing

    fc s

    with

    l a rg e r mi l l s . Before cons ide r ing

    the d e t a i l s o f inc reas ing speeds two

    ques t ions

    must be r a i s ed .

    l .

    Can the ore p roper ty respon

    s ib l e

    be i d e n t i f i e d in

    advance?

    2.

    What,

    if any,

    are the

    pos

    s i b l e s ide

    e f fec t s

    to

    be

    an t ic ipa ted?

    Id en t i f i ca t i o n o f Ore

    Proper t i e s

    Pred ic t ion o f

    coar se

    p a r t i c l e

    breakage ra t e decreases

    i n l a rge m i l l s

    in advance i s

    a

    d i f f i c u l t problem. t

    obviously cannot be

    accomplished

    by

    s tandard l abora to ry

    b a l l

    mi l l

    gr ind

    a b i l i t y t e s t s

    us ing minus

    6 mesh

    feeds,

    s ince it

    only

    a f fec t s s i ze s above

    about

    4 to 6

    mesh, and i s found

    only

    in

    mi l l s above m 9

    . 8

    f t ) in diameter

    .

    The problem i s

    s imi l a r t o the accu

    mulat ion of in te rmedia te s i zes in

    autogeneous mil l s .

    While no def in

    i c :

    so l u t i on

    i s known

    fo r b a l l

    mi l l s ,

    i s

    poss i b l e

    t h a t the competency t e s s

    used

    to

    eva lua te

    lump

    ore

    fo r auto

    geneous gr ind ing

    may

    be

    appl i cab le ,

    MacPherson

    and

    Turner ,

    1978)

    o r

    h e

    a d ro p tes t ,

    using

    a

    b a l l on plus 6-

    mesh s i ze s ,

    should be

    used .

    Side Effec ts

    Bal l and

    l i n e r wear

    i s

    t he ma jo=

    unknown in i nc reas ing speeds

    fo r l

    ~

    b a l l mi l l opera t ion . Although e r l

    ~

    work

    c i t ed on ca t a rac t in g speeds re

    por ted h igher s t e e l consumption

    , th i s

    preda ted

    modern

    a l loys for

    b a l l s an

    d

    l i n e r s . t i s a l so l ~ k e l y t h a t

    the

    probable r educ t ions in volumes p a r t ic

    u l a r l y in

    co a r ses t

    s i ze s , in c i r c u l

    ing loads would have

    a

    r e l a t i v e

    b en e f i c i a l

    e f f e c t

    on s t e e l wear . The

    f ina l

    proof must depend on t e s t i n g .

    I f

    speed

    i s inc reased

    to

    o b ta i

    n

    the b es t opera t ing speed

    BOS)

    with

    ou t dec reas ing the

    load

    f r ac t i o n ,

    power

    would

    be

    inc reased

    by

    about 20

    percen t over

    s tandard

    condi t ions ;

    t h i s i n tu rn would r e qu i r e

    a

    propor

    t iona te

    i nc rease in feed r a t e

    to

    mainta in t he

    same

    energy / ton , and

    power e f f i c i en cy . Under t hese

    condi t ions ,

    however ,

    feed r a t e i t s e l f

    could

    encounter

    a

    l i mi t a t i o n

    before

    ever

    r each ing t he l eve l necessary for

    cons tan t energy / ton

    if

    t he capac i ty

    of the media

    to

    ax i a l ore

    f low

    i s

    exceeded

    Harr i s

    and

    A rb i t e r

    , 1982).

    The

    mechanical

    problems

    o f

    dr iv ing mi l l s a t speeds about 20 per

    cen t h igher

    t han

    convent iona l

    must

    a l so be cons idered . Although opera

    t i n g exper i ence wi th l a rge b a l l mil l s

    a t such speeds i s

    non-ex is ten t ,

    much

    l a r g e r

    autogenous

    and semi -

    autogenous

    mi l l s a re repor ted

    to

    be opera t ing a t

    up to 90 percen t

    of

    c r i t i c a l , so

    t h a t

    no

    insuperab le dr ive

    problems

    a re

    an t i c ip a t ed

    .

    MacPherson and Turner ,

    1978).

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    10/19

    DYNAMICS

    OF L RGE

    GRINDING MILLS

    499

    Proposed

    Opera t ing

    Condi t ions

    In broad

    terms t he sca le -up of

    opera t ing condi t ions

    for

    l a rg e r mi l l s

    has u n t i l now been ch a rac t e r i zed by

    the

    two

    co n s t r a i n t s :

    1 . Use

    of

    cons tan t energy/ ton

    [power / ton/hr ) ]

    2. The progress ive reduc t ion

    of percentage

    c r i t i c a l

    speed with

    mi l l

    diameter .

    I s i s

    now

    proposed t h a t fo r ores

    which show

    lower

    breakage ra t e s

    in

    coarse

    f rac t ions

    with

    l a rg e r mi l l s

    the second

    cons t ra in t

    should

    be

    reversed

    , whi le

    mainta ining

    cons tan t

    energy per

    ton

    by

    i nc reas ing speeds

    and

    s imul taneous ly

    reduc ing l oad

    f r ac t io n s . t i s

    fu r ther

    poss ib le

    to obta in a

    load/speed

    combinat ion

    which

    gives c lose

    to

    t he Davis

    OS

    and

    t he

    same r a t i o

    of

    ro t a t iona l

    media f low to

    pulp

    flow

    as in the

    convent ional

    combinat ion of load

    and

    speed

    used

    in

    the

    l a rge

    mi l l s .

    This

    combination should produce

    an

    optimum

    dynamic condi t ion

    with

    a

    s u b s t an t i a l

    degree of b a l l ca t a rac t i n g ,

    t oge the r

    with

    t he loosening

    and swel l ing

    of

    the load

    to

    br ing

    l arge

    b a l l s and

    coarse

    rock to the surface

    o f

    the toe .

    This should break down

    t he

    coarser

    s izes more

    rap id ly

    and with l e s s

    f ine

    product ion

    Taggart

    , 1927) .

    The

    capaci ty o f t he media

    to

    ax ia l ore

    flow

    wi l l

    be

    a

    co n s t r a i n t

    on

    feed

    r a t e which

    should

    be taken in to

    account .

    To obta in the

    proposed optimal

    condi t ions use can be made of : the

    s impl i f ied power equa t io n ; the i n t e r

    nal ro t a t iona l

    flow

    equa t ion appen-

    dix)

    and

    the Davis equat ions. As an

    i l l u s t r a t i o n of t h e i r ap p l i ca t io n

    Figure 3 shows the equal

    flow

    and

    equal

    power

    i n t e r s ec t i o n s

    with

    t he

    Dav i s

    OS

    l i n e using t he base condi -

    t ions :

    L = 0 .

    4 ; f

    =

    0.68 which r e f e r

    to t he o ~ g a i n v i l l ~ o r i g i n a l operat jon.

    able

    2

    compares power /capaci ty/ f low

    f

    igures

    for

    an 17.4

    x 21

    f t mi l l under

    onvent iona l

    opera t ing condi t ions with

    0 90

    u

    0

    0 80

    ll

    II

    ..J

    ct

    .)

    t

    0

    70

    BASE

    a

    CONDITIONS

    .)

    z

    0

    1

    0 60

    .)

    ct

    a

    LL

    0 5 0 L.....--..L.---...L.---- ------1

    0 2 5

    0.30

    0

    .3

    5 0

    40

    0

    45

    LOAD

    FRACT

    ION Lt

    Figure 3.

    Davis b es t

    opera t ing

    speed

    BOS) , equal power r a t i o

    and

    equal ro t a t i o n a l

    flow

    r a t i o

    curves .

    Lf

    f

    c

    Base condi t ions

    0.40

    0 . 68

    Davis

    OS

    and

    equal

    flow

    0.31

    0 .8 1

    Davis

    OS

    and

    equal

    power

    0.28

    0 . 80

    those es t imated

    fo r t he

    proposed

    condi t ions .

    t i s of i n t e r e s t t h a t the

    Bougainvi l le

    mi l l speeds

    or ig ina l ly

    a t 0.68 fc s

    were increased to

    0.71

    in

    1977

    , with

    seve ra l

    mi l l s

    opera t ing

    a t 74 percen t

    in

    1980.

    In

    1982,

    an

    e leven th

    mi l l

    wi l l be commissioned

    a t

    82 percen t and a 12th a t

    86

    percen t

    o f

    c r i t i c a l

    Mcivor, 1982).

    However ,

    i nc reases in

    rpm without compensating

    decreases

    in load may

    c rea t e

    feed r a t e

    co n s t r a i n t s

    as

    a l ready descr ibed,

    and

    it

    i s

    hoped

    t ha t

    t hese

    w i l l be

    inves -

    t i g a t ed .

    Summary

    Evidence

    i s summarized

    to suppor t

    the decreased e f fec t iv en es s

    of

    l a rg e r

    diameter b a l l

    mi l l s

    fo r coar se p a r t i

    c l e +6 mesh)

    breakage with

    some ores

    .

    This i s

    r e l a t ed t o

    decreased

    media

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    11/19

    5

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    Table 2. Operat ing Condi t ions:

    Davis

    BOS, Equal Power and

    Equal Rota t iona l

    Flow

    (See Figure 3)

    D x L ( l ) l

    Lf

    Load

    N f

    Qf(2)

    p

    QI

    QI/Qf

    I

    Comments(

    3

    )

    c

    f t

    St

    rpm

    s t / h r

    HP

    s t / h r

    17. 4x21

    I

    0. 40 289.6

    12

    . 5 0.68

    2415 4410

    2.843xl0

    5

    117.7

    I Base

    Condi-

    t i ons(4)

    17.4x21

    I 0.31 224.4 14.9 0 . 81

    2564 4682 2.842xl0

    5

    110.8 I BOS and equal

    ro t a t i o n a l

    flow

    17.4x21 I 0 . 28

    202.7

    14.7 0 .80

    2386. 5 (

    3

    )

    4358(

    3

    2

    . 620xlo

    5

    109.8 I

    BOS and

    equal

    power - equal

    feed

    (1)

    Ins ide l i n e r s

    (2) Mil l feed;

    Qf/P 2415/4410

    (3)

    Discrepancies

    a re due to

    rounding

    e r ro r s

    (4)

    Bougainvi l le opera t ion

    (Harr i s & Arbi t e r ,

    1981)

    ro t a t i o n a l

    f low/feed f lo

    w r a t i o s with

    in creas ing

    mil l

    diameter , and to con

    t r i b u t i o n s

    from

    reduced mixing e f f ec -

    t i veness and reduced

    res idence

    t imes .

    Inc reas ing f r ac t io n c r i t i c a l speeds

    toward

    Davis '

    BOS

    with assoc ia ted

    ca t a rac t in g , t oge the r

    with

    reduced

    ba l l

    loads , a re

    suggested

    as

    co r

    r e c -

    t i v e measures.

    Acknowledgement

    Apprecia t ion

    i s

    extended to

    the

    Bougainvi l le Copper, Ltd. management

    and s t a f f

    for t h e i r

    p

    u b l i ca t io n s

    which st imula ted

    t h i s

    study; to

    Ci t i e s

    Serv ice

    Pin to

    Va

    l l e

    y s t a f f

    for

    prov

    id ing

    much in format ion ; and to

    R. E . Mcivor fo r he lpfu l

    sugges t ions

    about mil l speed i nc reases .

    This work i s supported

    by gr a n t s

    provided

    by Ci t i e s Serv ice co. We

    are

    g ra t e fu l fo r

    t h e i r generos i ty

    and

    encouragement.

    References

    Arbi te r ,

    N., and Harr i s ,

    C.C

    . , 1980,

    En

    e

    rg

    y and

    Scale-up

    Requirements

    in Mineral

    Process ing,

    Fourth

    J o i n t Meeting

    MMIJ-AIME

    Tokyo,

    pp

    63

    -

    83.

    Davis , E.W. ,

    1919,

    Fine

    Crushing

    in

    Bal l

    Mil l s , Trans. AIME, Vol 61,

    pp 250-296.

    Gould , W.D . , 1976 ,

    Pin to

    Val ley

    Concent ra tor Grinding with Large

    Diameter Mil l s

    , Trans. SME - AIME ,

    Vol 260,

    pp

    268-274.

    Hancock , R. T . , 1934,

    Discuss ion o f

    Bal l

    Mil l ing

    , Gow, A.M., e t a l .

    Trans.

    AIME, Vol 112,

    pp

    76-78.

    Harr i s ,

    c .c . ,

    and

    A rb i t e r , N., 1982 ,

    Grinding

    Mil

    l

    Scale-up

    Problems,

    Mining Engineer ing , Vol 34, No. 1 ,

    Jan . pp

    43-46.

    Hinkfuss, D.A.,

    197 6 ,

    The

    Bougainvi l le Copper Limited

    Concent ra tor

    Flo ta t i o n :

    A. M.

    Gaudin Memorial Volume,

    M. C.

    Fuers tenau,

    ed. , Vol

    2,

    Chapter 40 , AIME, New York,

    pp

    1125-1144.

    Kavetsky, A. , and Whiten,

    W.J.

    , 1981,

    Scale-up

    Rela t ions

    fo r In d u s t r i a l

    Bal l Mil ls , JKMRC Paper fo r

    Aus t ra l a s i an

    I n s t i t u t e

    of Mining

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    12/19

    DYNAMICS OF LARGE

    GRIN ING

    MILLS

    5 1

    and Metal lurgy, ( in pre ss ) .

    Kennedy, A.J . ,

    1982, Pinto

    Valley

    Concen t ra to r , (Pr iva te

    communica

    t ion ) .

    Kjos,

    D.M.,

    1979,

    Grinding

    Circu i t s :

    Current Sta tus

    and Pro jec ted

    Future

    Development,

    50th Annual

    Meeting

    of the

    Minnesota Sec t ion ,

    AIME,

    Minnesota,

    January 10-1 2 .

    MacPherson, A.R. , and

    Turner ,

    R.R. ,

    1978, Autogenous Grinding

    from

    Test

    Work to

    Purchase

    o f a

    Commercial

    Uni t ,

    Mineral

    Process

    ing Plan t

    Design,

    A.L. Mular

    and

    R.B.

    Bhappu,

    ed, Chapter

    1 3 , AIME,

    New York, pp 2

    79-305.

    Mcivor,

    R.E.,

    1981, The

    Effec t s

    o f

    Speed and

    Liner Configura t ion

    on

    Bal l

    Mil l Performance, SME-AIME

    Fa l l Meeting,

    Denver, Colorado,

    November 18-2

    0 ,

    p rep r

    i n t

    81-322,

    pp 1-10.

    Mcivor,

    R.E.,

    1982,

    Pr iva te

    communica

    t i on .

    Rowland,

    C.A. ,

    J r . ,

    and Kjos, D.M.,

    1978, Rod

    and

    Bal l Mil l s ,

    Mineral Processing Plan t Design,

    A.L.

    Mular and R.B. Bhapp

    u , ed,

    Chapter 12 ,

    AIME New

    York, pp

    239

    - 278.

    Steane, R.A., and Hinc kfuss ,

    D.A.,

    19

    79

    , Selec t ion

    and Performance

    o f Large Diameter

    Bal l -Mi l l s

    a t

    Bougainvi l le Copper, Ltd . ,

    Papua,

    New Guin

    ea ,

    Proceedings of the

    Eleventh

    Commonwealth

    Mining and

    Meta l lu rg i ca l Congress,

    Hong

    Kong

    1978,

    IMM

    London

    ,

    pp

    577

    -58

    4.

    Taggar t , A.F. , 19

    27

    , Handbook o f Ore

    Dress i

    ng

    ,

    Wiley,

    New

    York.

    Taggar t ,

    A.F. , 1945, Handbook o f

    Mineral

    Dressing,

    Wiley,

    New York,

    2nd Ed.

    Ti lyard ,

    P.A. ,

    1981,

    R

    ecen t Develop

    ments in Grinding and

    F

    l o t a t i on

    a t

    Bougainvi l le Copper, Ltd . ,

    Papua

    New

    Guinea,

    Transac t ions ,

    Ins t i tu t ion o f Mining and Metal

    lu rg

    y

    (Sect ion C, Mineral Process

    ing and Ext rac t ive Metal lurgy)

    Vol

    90,

    pp

    c

    89-95.

    APPENDICES

    Power Consumption in Tumbling Mil ls :

    Power Corre la t ion

    Fac t o r

    The load subtends h a l f

    angle 6

    a t

    cen te r . Rota t ion

    s h i f t s

    the

    load

    through

    ang

    l e

    a ,

    which i s th

    e

    angle

    o f repose

    ~

    . .

    o ,

    ' /

    /

    . l

    /

    -------.._. ....-...- ----

    /

    /

    '

    ,

    G

    w

    Weight

    o f charge:

    W

    2

    rrp LD

    Lf/4

    Load

    f rac t ion : (6-

    s in 6c os

    6 )

    /rr

    (2 6

    - s in2

    6 ) /2

    Center of grav i ty : t h i s t rea tment

    does

    not

    take

    account

    of the

    d i f f e r en t

    bulk

    dens

    i t i e s of the

    ascending

    and

    descending

    media

    flow

    paths ,

    nor the p i l ing-u

    p

    o f

    the media a t

    3

    the

    toe .

    OG = OG' = Dsin 6/3 ( 6

    - s in

    6

    cos

    6 )

    = Dsin3 6 /3rrLf

    Torque : T = Wg OG ' s in a

    Expe r imentat ion

    sh

    ows

    t h a t

    mo dera te speed changes

    do not

    a f f ec

    t

    t o rqu

    e

    very much.

    Power

    : P = 2 TN

    There are

    severa l

    a l t e r n a t i v e

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    13/19

    5 2

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    express ions

    for power depending on

    the v ar i ab l e s chosen to express mi l l

    opera t ing

    parameters . Two

    examples

    a re :

    p

    2DNWgsin

    3

    6

    s ina ) /3Lf

    (

    rr

    pgNLD

    3

    s in

    3

    6s in a

    ) /6

    An approximat ion to

    Sin

    3

    e i s

    4L

    1-Lf) . The

    fo l lowing

    t ab l e shows

    gooa

    agreement

    over the t y p i ca l opera

    t i n g

    range

    Lf -

    0.3S to 0.4S

    .

    Lf

    Sin

    3

    6

    4Lf l -Lf )

    0 . 30

    0.8Sl

    0.840

    0.3S

    0 .

    917

    0 .

    910

    0.40

    0.963

    0 .

    960

    0 .

    4S 0.991 0 .990

    0 .

    50

    1 . 000

    1.000

    Using

    these values

    , a

    use fu l

    cor re la t ing equat ion

    i s

    P / W N D l - L f )

    S g s i n

    When W i s in

    shor t

    tons , N in

    r .p .m.

    ,

    Pin H.P. , and D i n f ee t

    the

    equat ion

    becomes

    P / W N D l

    O . l 6 1 6 2 s in

    a

    Three

    values

    o f

    a

    quoted in

    the

    l i t e r a t u r e , and

    the cons tan t on the

    r i g h t hand

    s ide

    o f the above equat ion

    are :

    a

    Constant

    All is -Chalmers

    slowspeed)

    43

    0.11022

    normal mil l s )

    SID 0 .

    12S6

    Hancock

    sao

    0.1371

    Be c

    ause

    manufac turers

    o f

    l a rge

    diameter

    mi l l s reduce the f rac t ion

    c r i t i c a l speed

    as

    diameter

    inc reases

    it i s convenien t

    to

    cor re la te

    mil l

    da ta

    according to P/WND l-Lr.)

    versusD

    .

    Various manfacturers

    es t imated

    power

    requi rements

    are shown in

    Figure

    Al.

    Equal-Power

    and

    Throughput Ratio

    I f a mil l i s

    opera ted

    a t

    speed

    N

    1

    fc , l ) and load

    L f , l

    and then a t

    new speed N

    2

    fc ,

    2

    ) and load L f,

    2

    othe r

    th ings

    being

    equal , the

    power

    consumption

    and th roughput

    wil l remain

    unchanged if

    f / f

    c l

    c ,2

    Nl/N2

    L f , 2 l -L f , 2 ) / L f , l

    l -Lf , l )

    In t e rn a l Rotat ional Mass Flow

    Harr i s and Arbi te r ,

    1982)

    From

    dimensional cons ide ra t ions ,

    the

    ro ta t iona l

    mass

    flow

    QI

    i s

    r e la ted

    to the mi l l

    ro ta t iona l

    speed , N; mil l

    diameter ,

    D, and

    l eng th ,

    L,

    by con

    s tan t

    dimens ionless

    f low

    number,

    NQ

    QT/NLD

    2

    . Th us ,

    sp ec i f i c ro t a t i o n a

    l

    flow

    (

    flow

    per u n i t volume)

    i s

    propor

    t iona l

    t o mi l l ro t a t i o n a l speed , and

    because

    N

    decreases

    with

    i nc reas ing

    mi l l

    diameter

    roughly

    according to

    N ~ o-O . S) it fo

    ll

    ows

    t h a t

    sp ec i f i c

    ro ta t iona l flow diminishes

    with

    in

    creas ing

    mil l diameter according to

    - 0 .

    s

    th .

    f .

    D .

    Because

    bo

    s p e c ~ ~ c

    power

    and sp ec i f i c th roughput i nc rease with

    inc reas ing

    mil l diameter according to

    0.5 . 1

    D , the

    s t rong

    ~ n v e r s e

    sea

    e -

    up

    r e l a t i o n sh ip s

    :

    QI/Qf D-

    1

    ; QI

    /P

    1

    D :

    are ev iden t .

    An

    an a ly t i ca l

    express ion

    for

    QI

    in terms of

    the

    mil l parameters may

    be

    der ived

    by i n t e g ra t i

    nc

    t

    mass flow

    along annular r ings with in t he r o t a

    t i ng charge.

    A

    s impler approximate

    method

    based on

    the

    torque-arm

    model

    wil l be

    given

    here , which i s adeq

    ua t e

    fo r use with

    i n d u s t r i a l data .

    Q

    would assume

    its

    minimum

    value

    i f

    the icharge were d i s t r i b u t e d evenly

    around the

    she l l

    and

    then ro ta t ed

    with

    the sh e l l witho

    u t s l i p . I f

    t he weight

    of

    charge

    i s

    W then

    2

    QI = W = rrD

    LPNLf/4 .

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    14/19

    0.15

    0

    z

    31:

    ......

    0.14

    0..

    0

    1-

    0 .13

    u

    ct

    ...

    z

    :?

    0 .12

    1-

    ct

    ...J

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    15/19

    5 4

    DESIGN INST LL l iON OF

    OMMINUTION

    CIRCUITS

    At the

    o ther ex t re

    me ,

    the

    max

    imum

    value o f Q would occur

    if

    the

    charge

    were fasfl ioned in to a cy l inder

    of

    diameter ,

    d , and

    length ,

    L , ro ll

    ing

    without s l i p i n s ide

    the

    she l l

    then

    QI

    2

    WND/d = WN/Lf

    2

    0 . 5 /

    D LNLf 4

    A

    model in te rmedia te

    between t he

    above two

    i s

    provided by the

    media

    conf

    i gu ra t ion

    assumed in the torque

    arm

    mode l

    [per imeter

    = (8+sin 8 )D)

    der iva t ion o f power .

    Again

    , assuming

    ro l l ing

    w

    i th

    o

    u t

    s l ip

    ,

    QI

    nWN/ (8+sin 8 )

    n

    2

    D

    2

    LpNLf/4( 8+s in 6 )

    Comparing the

    t h ree models

    in

    terms

    o f the

    Q

    1

    /WN

    r a t i o : Mode l 1 , Q /WN=l ;

    Model

    2,

    Q

    1

    /WN=L- 0 .

    5;

    Model 3 I

    Q

    1

    /WN

    =n / 6+sin 6 ) . Comparat ive va l ues

    fo r

    the

    normal range

    o f

    Lf

    are

    given

    in the Tab l e Com

    pa

    r i son o f Models

    The inc rease in

    Q from

    ~ n ~ u

    to maximum (m

    odels

    1

    afld

    2 respec

    t ive ly )

    i s

    only

    o f

    the order

    o f

    50

    to

    70

    , while

    the value given

    by

    m

    ode

    l 3 i s almost t h e averag e o f

    mode

    l s 1

    and

    2 .

    The

    equa t ion fo r i n t e rn a l

    ro t a t i o n a l

    mass

    f low

    in

    convenient

    un i t s

    i s

    Q

    1

    s t /h r ) : l 88.5W(s t ) N (rpm )

    / (8+

    s in 6 )

    Equal

    In

    t e rn a l

    Rota t iona l Flow

    Rat io

    I f a m il l i s opera t ed a t speed

    N

    1

    (fc ,

    l )

    and

    l

    oad

    Lf

    , l (6

    1

    ) , and

    then

    a t new

    speed

    N

    2

    (fc ,

    2

    ) and l oad Lf ,

    2

    (6

    2

    ) , o ther th ings being equa l ,

    the

    i n t e rna l r o t a t

    i ona l flow wi l l remain

    unchanged

    if

    fc , l / f c , 2 = Nl /N2

    = Lf ,

    2

    (8+sin6)

    1

    /Lf ,

    2

    (6+s in 8 )

    2

    Comparison o f Models

    1 2

    3

    average

    Lf

    1

    Lf

    1

    n / 6

    +s in 6 )

    1

    and

    2

    0 .

    35

    1 1 . 6903 1 . 364 1 . 3452

    0 . 40 1

    1.

    5811

    1 .

    3085

    1 . 2905

    0.45

    1

    1. 4907

    1 . 2607

    1 . 2454

    Note: Dav i s

    (1 919) gives 1.44

    cyc les o f charge

    per mil l

    revo

    l

    ut ion

    a t proper

    speed.

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    16/19

    DYN MICS OF

    L RGE

    GRINDING

    MILLS

    Table Al.

    i l l

    Loading: Manufacturers Recommendations

    Al l i s - Chalmers:

    All mi l l s ,

    Lf

    - 35-45

    All

    mi l l s ,

    Lf

    -

    45

    Marcy: Rod mil l s

    and

    wet gra te ba l l mi l l s , Lf 45

    Denver:

    Wet overf low

    ba l l

    mi l l s

    40

    Nordberg: Rod mil l s ,* Lf

    =

    32-40 ; Bal l mi l l s , Lf ~

    Smidth : Wet overf low

    rod mil l s , Lf 40

    ;

    All

    o the r

    mi l l s ,

    t

    Lf

    35

    * T

    hese

    loadings

    expand to 40-50

    dur ing opera t ion.

    t Wet ove r f low ba l l

    mi

    s ,

    wet

    pebble

    m il

    l s ,

    wet

    autogenous and

    semi- autogenous m il l s .

    Table A2.

    Grinding Media Data

    (S

    t e e l

    de

    n

    s i t y

    -

    490

    l b

    s /cub

    ft

    Mil l

    Diameter

    Densi t

    y

    Voidage

    f t )

    (l bs/cub f t )

    (

    percen t )

    New r ods

    390

    21

    Wo rn - in

    charge

    3- 6

    36 5

    25

    6- 9

    360

    27

    9-12

    350

    29

    12- 15 34 0

    31

    Bal l s

    290

    41

    Taggart

    5-32)

    304

    38

    5 5

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    17/19

    5 6

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    Tab l e A3. Pulp Spec i f i c Gravi ty

    Sol ids by

    weigh t I

    Dry

    Ore

    Sp Gr

    (percent)

    2.2

    2.6

    2 . 8

    3.0 3.2 3 .4 3 .8

    40

    I

    l 28

    l 33 l 35 l 36 l 38 l 39 1 .42

    s l

    38

    1.44 1.47 l

    s

    1.52 l 55 l 58

    60

    I

    l 49 l 59 1.63 1 .67 l 70 l

    74

    l 79

    70

    I

    1 .6 2 l 76

    1.82

    1.88 1 .93 1 .98

    2.07

    80

    I

    1.77

    1.97

    2.06 2.14

    2.22

    2 . 30 2.44

    Table A4 .

    Average

    Recommended

    Operat in g

    Speeds

    (Percent Cr i t i ca l

    Diameter D

    f t

    I

    Rod Mills Bal l Mil ls

    l l is -Chalmers Marcy

    Smidth

    All is -Cha l mers Marcy

    Lf - 35-45

    45

    40

    Lf-35-45

    40

    3- 6

    76

    -73

    75 80 -

    78 79-78

    6 - 9

    73-70 73-67

    75

    78-75

    78-75

    9-

    12

    70-67 67-63 73-71

    75

    -

    72

    75

    -

    73

    12 - 15

    67-64 63

    - 61

    69

    - 68

    72-69

    73 - 71

    15-18 69

    -

    66

    71-70

    18-21

    Denver

    Rod Mil l s : 3- 6 f t , 72-70 ; 6 -7 f t , 70-69 ; 8-10 f t , 65-58

    Bal l Mi l l s

    :

    3-10 f t

    , -75

    t

    Smidth

    35

    78

    78-76

    76-75

    75-74

    74-70

    Marcy recommends

    t h a t

    rod

    m i l l

    speed

    should

    be determined

    by per iphera l speed,

    not percen t

    c r i t i c a l speed : speed f .p.m. = 2SOD0 . 3

    t

    Marcy recommends

    tha t :

    b a l l

    mil l

    percen t

    c r i t i c a l

    speed

    =

    93D

    - O. l

    All is -Chalmers da ta gives f fo r m il l s D9

    c c

    Notes

    Smidths

    speeds are the

    highes t

    in

    both

    ca tegor ies .

    All is -Chalmers rod

    m i l l

    . speeds are higher

    than

    Marcys but t h e i r

    l a rge b a l l m i l l speeds are cons iderab ly lower . The Bougainvi l le

    exper ience sugges ts t h a t the speed o f

    l a rge

    mi l l s could be

    increased

    with

    advantage in inc reased throughput .

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    18/19

    DYN MICS OF

    L RGE

    GRINDING

    MILLS

    5 7

    Table

    AS

    Mil l

    Type :

    Relat ive

    Power Requirements Based

    on Wet Overflow

    Ba l l Mill *

    Bal l

    Mil l s

    Rod Mil l s

    Wet Wet Wet

    Dry

    overf low

    Wetgrate

    Drygrate

    overf low

    pe r iphe r a l

    pe r iphera l

    Nordberg

    1 1

    13

    1 25 1 1 0 1

    24

    1

    37

    Al

    l i s

    - Chalmers 1 1 1 6

    1 08

    * It i s

    poss ib

    l e to compare

    the recommended

    opera t ing l eve l s of di f fe ren t mi l l

    types under otherwise i den t i ca l condi t ions in

    few

    cases

    T

    ab

    l e A .

    Rod Mill Grinding Media Expansion Due to Rotat ion

    Percen t c r i t i c a l

    speed

    f

    0

    50 60

    70

    80 90

    c

    Mil l

    l

    oading percen t

    Lf

    45

    . 0

    55 5 57 5

    59 . 5

    61 5 63

    . 5

    Media voidage percen t

    E *

    21 0 36 . 0

    38 2

    40 . 3

    42 2

    44 . 0

    LfE

    9 . 5

    20 0 22 . 0 24 . 0 26 0 28 . 0

    Table A7 . Grinding Media Expansion : Ball Mil l Media Voidage

    Mil l load ing percen t

    45

    50

    Media voidage percen t

    E * 41

    46 9

    Sta t ionary

    va l ues : Lf 45 , E 41

    *E [Lf - so l i d volume/mi l l volume ]

    /Lf

    55

    51 7

    28 . 5

    60 65 70

    55 8

    59 . 2

    62 1

    33 . 5 38 5 43 5

    95

    64 5

    44 . 9

    29 0

    75

    64 6

    48

    . 5

  • 7/25/2019 Scale-up and Dynamics of Large Grinding Mills - A Case Study

    19/19

    5 8

    DESIGN INSTALLATION OF OMMINUTION CIRCUITS

    Tabl

    e

    A8. Notat ion

    D Mill

    diameter

    measured i ns ide l i ne r s

    f

    Fract ion c r i t i c a l speed

    =

    NJD/76.63 where

    N

    s n

    r pm

    and

    D

    n

    fee t

    c

    L

    Mil l length measured in te rn

    a

    y

    Lf

    Loading: f r a c t i

    on of

    mil l volume occupied by gr inding

    media,

    me asured

    a t r e s t

    N

    Mil l

    ro t a t iona l

    speed: revolu t ions

    per un i t

    t ime

    n Average

    number of revolu t ions during the

    res idence

    of

    an

    element

    of

    ore

    n

    the

    mil l

    =

    Nt)

    P

    Mil l

    power consumption:

    ne t

    power =

    consumed

    power - id l ing

    power

    Qf

    QI

    t

    v

    v

    m

    v

    p

    w

    t

    e

    6

    p

    CJ

    T

    Mass feed r a t e of ore through mil l : ax ia l mass f low

    r a t e

    0 5

    [=new feed r a t e x 1 + c i r c u l a t i ng load r a t i o . Note: Qf/V D ]

    Mass

    ro t a t iona l

    f low

    r a t e : may r e fe r to s t e e l ,

    o r pulp, o r

    dry ore ,

    o r any combination , depending on densi ty te rm, p Q pNV

    Note:

    Q ; v ~

    0

    -0 .5

    I m

    Nominal

    residence

    t ime o f or

    e

    element n mil l

    = Vpcr

    /Qf)

    Mil l volume

    =

    Volume

    of mi l l occupied

    by media =

    VLf)

    Volume

    of

    pulp =

    Vm

    e )

    Weight o f mil l

    conten ts :

    may

    r e f e r

    to

    s t ee l or

    pulp or dry ore

    depending

    on densi ty term,

    p =

    Vm

    p )

    Angle of repose

    Grinding

    media void ra t io : void volume/bulk volume e - 0.41, new b a

    charge;

    e -

    0.38, seasoned ba l l charge Taggart

    5-32); e -

    0.4

    to

    0.6 ,

    expanded due to mil l r o t a t i on

    Autogenous mil l s : e =

    1;

    e

    =

    1 .2 ,

    expanded due to mi l l ro ta t ion

    Half

    angle subtended a t

    mil l cen ter by gr inding

    media

    a t r e s t

    [

    6 - s i n c o s / ~ = Lf]

    Densi ty

    of

    mil l

    conten ts o r o f

    a component

    of conten ts :

    bulk

    densi ty

    of

    ba l l

    load

    - 290

    lbs /cub

    f t ;

    s t ee l densi ty

    480

    lbs /cub f t

    Ore densi ty

    Tor

    q

    ue