Scalars in mechanics

28
Scalars in mechanics Photo: Flickr

description

An introduction to scalars in mechanics: energy, power & efficiency

Transcript of Scalars in mechanics

Page 1: Scalars in mechanics

Scalars in mechanics

Photo: Flickr

Page 2: Scalars in mechanics

Quantities

Scalars in mechanics 2

Scalar quantities Vector quantities

mass m (kg)

energy E (J)

power P (W)

displacement 𝑠 (π‘š)

velocity 𝑣 (π‘šπ‘ βˆ’1)

acceleration π‘Ž (π‘šπ‘ βˆ’2)

force 𝐹 (𝑁)

momentum 𝑝 (π‘˜π‘”π‘šπ‘ βˆ’1) torque 𝑇 (π‘π‘š)

β€’ Magnitude β€’ Magnitudeβ€’ Directionβ€’ Point of application

Page 3: Scalars in mechanics

History

Scalars in mechanics 3

17th centuryVector mechanics

GallileiHuygensNewtonLeibniz 19th century

Scalar mechanics

DavyRitter

OerstedFaradayKelvin

It was observed that β€˜natural forces’ could transform.19th century natural philosophers (later physicists)Searched for a conserved β€˜natural force’.

This resulted in the new concept β€˜ENERGY’

Page 4: Scalars in mechanics

Concept of energy

Scalars in mechanics 4

IT

β€’ Is transformed in all physical changes

β€’ Is required to make anything happen

β€’ Is puts limits to any process or activity

β€’ Is the most fundamental concept in modern science

pixabay

Page 5: Scalars in mechanics

Concept of work

Scalars in mechanics 5

StudentHotel

HollandISC

you (today)

𝑠 = 4.3π‘˜π‘š πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘

Assume constant π‘£π‘π‘–π‘˜π‘’ = 3 π‘šπ‘ βˆ’1 so Ξ£ 𝐹 = 0 β‡’

πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ = βˆ’ πΉπ‘Ÿπ‘œπ‘™π‘™ + πΉπ‘Žπ‘–π‘Ÿ = 12𝜌𝐴𝐢𝐷 π‘£π‘π‘–π‘˜π‘’+𝑣𝑀𝑖𝑛𝑑

2 + πΆπ‘Ÿπ‘œπ‘™π‘™ βˆ™ 𝐹𝑁 =

πΉπ‘Ÿπ‘œπ‘™π‘™

πΉπ‘Žπ‘–π‘Ÿ+

1

2βˆ™ 1.29 βˆ™ 0.4 βˆ™ 1 βˆ™ 3 + 5 2 + 0.02 βˆ™ 70 βˆ™ 9.81 = 16.5 + 13.7 = 30𝑁

Work done = π‘Š = 𝐹 βˆ™ 𝑠 = 30 βˆ™ 4.3 βˆ™ 103 = 1.3 βˆ™ 105π½π‘œπ‘’π‘™π‘’

Page 6: Scalars in mechanics

Work vs. Impulse

Scalars in mechanics 6

Why not use FORCE TIME as a measure of work?

πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘

πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘

start

same force, same time,…same work?

Impulse is a vector: 𝐹 βˆ™ 𝑑 = 𝐼

Vector Scalar = Vector

Work is a scalar: 𝐹 βˆ™ 𝑠 = π‘Š

Vector Vector= Scalar

Vector β€˜dot’ product

Page 7: Scalars in mechanics

Force & displacement at an angle

Scalars in mechanics 7

𝐹

𝑠

πœƒ

πΉβˆ•βˆ•π‘ 

𝐹βŠ₯𝑠

𝑠

90Β°

πΉβˆ•βˆ•π‘  = 0

𝐹βŠ₯𝑠 = 𝐹 𝐹

𝑠

πœƒ

πΉβˆ•βˆ•π‘ 

𝐹βŠ₯𝑠

π‘Š = πΉβˆ•βˆ•π‘  β‹… 𝑠 = 𝐹 β‹… πΆπ‘œπ‘ πœƒ βˆ™ 𝑠 = 𝐹 βˆ™ 𝑠 βˆ™ πΆπ‘œπ‘ πœƒ

Nett driving forceProvides energy

W > 0

Nett inhibiting forceWithdraws energy

W < 0

No driving forceNo energy transferred

W = 0

Page 8: Scalars in mechanics

Non-constant forces

Scalars in mechanics 8

𝐹 pulling force

𝑠 𝑠

𝐹

π‘ π‘šπ‘Žπ‘₯

πΉπ‘šπ‘Žπ‘₯

πΉπ‘Žπ‘£π‘”

π‘Š = πΉπ‘Žπ‘£π‘” βˆ™ 𝑠

π‘Š = 0

𝑠

𝐹 βˆ™ 𝑑𝑠

π‘Š = 0

𝑠

𝐹 βˆ™ πΆπ‘œπ‘ πœƒ βˆ™ 𝑑𝑠

π‘Š = 0

𝑠

𝐹 βˆ™ 𝑑 𝑠

more general

more generalwith angle

complete formas vector dot product

W=Area

Page 9: Scalars in mechanics

Work transforms energy

Scalars in mechanics 9

wikimedia

Page 10: Scalars in mechanics

Work transforms energy

Scalars in mechanics 10

wikimedia

Work by the resistant force of the target transforms kinetic energy of the arrow to heat in the target.

1 2 3

πΈπ‘β„Ž 𝐸𝑝 πΈπ‘˜ 𝑄

3

Work by the elastic force transforms elastic potential energy in the bow to kinetic energy of the arrow.

2

Work by the pulling force transforms chemical potential energy in master Kim’s arm to elastic potential energy in the string.

1

Page 11: Scalars in mechanics

Gravitational (potential) energy

Scalars in mechanics 11

+β„Ž1

β„Ž2

π‘š βˆ™ 𝑔

𝐹

π‘Š = 𝐹 βˆ™ 𝑠 = π‘š βˆ™ 𝑔 βˆ™ β„Ž2 βˆ’ β„Ž1 = βˆ†πΈπ‘

To lift the object, the average lifting force needs to equal π‘š βˆ™ 𝑔The lifting force performs positive workGravitational potential energy is built up

Strictly 𝐸𝑝 = 0 at the Earth’s centre.

Since this is not practical, we set 𝐸𝑝 = 0 and β„Ž = 0

at the lowest point in your context.

Page 12: Scalars in mechanics

Gravitational (potential) energy

Scalars in mechanics 12

β„Ž1

β„Ž2

π‘š βˆ™ 𝑔

𝐹

π‘š = 10π‘˜π‘”π‘” = 9.81π‘šπ‘ βˆ’2

β„Ž1 = 5.0π‘šβ„Ž2 = 7.0π‘š

To lift the object from the floor to β„Ž1, the lifting force performs work:π‘Š = π‘š βˆ™ 𝑔 βˆ™ β„Ž1 = 10 βˆ™ 9.81 βˆ™ 5.0 = 4.9 βˆ™ 10

2𝐽

Arrived at β„Ž1the object has a potential energy 𝐸𝑝 = 4.9 βˆ™ 102𝐽

To lift the object from β„Ž1 to β„Ž2, the lifting force performs work:π‘Š = π‘š βˆ™ 𝑔 βˆ™ β„Ž2 βˆ’ β„Ž1 = 10 βˆ™ 9.81 βˆ™ 2.0 = 2.0 βˆ™ 102𝐽

Arrived at β„Ž2the object has a new potential energy: 𝐸𝑝 = 4.9 βˆ™ 10

2𝐽 + 2.0 βˆ™ 102𝐽 = 6.9 βˆ™ 102𝐽

Example

𝐸𝑝 = 4.9 βˆ™ 102𝐽

𝐸𝑝 = 6.9 βˆ™ 102𝐽

𝐸𝑝 = 0

4.9 βˆ™ 102𝐽Work done

2.0 βˆ™ 102𝐽Work done

Page 13: Scalars in mechanics

Elastic (potential) energy

Scalars in mechanics 13

𝑠

𝐹

πΉπ‘šπ‘Žπ‘₯

𝐹 = 𝐢 βˆ™ 𝑠

𝑠

πΉπ‘šπ‘Žπ‘₯2

π‘Š = πΉπ‘Žπ‘£π‘” βˆ™ 𝑠 =1

2𝐢 βˆ™ 𝑠 βˆ™ 𝑠 =

1

2𝐢𝑠2 = βˆ†πΈπ‘

To pull the object, the average pulling force equals 1

2𝐢 βˆ™ 𝑠

The pulling force performs positive workElastic potential energy is built up

𝑠

Page 14: Scalars in mechanics

Elastic (potential) energy

Scalars in mechanics 14

𝐹 = 𝐢 βˆ™ 𝑠

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10

F (N

)

s (cm)

Example with spring 𝐢 = 0.20𝑁/π‘π‘š

The spring starts without potential energy: 𝐸𝑝 = 0

To extend the spring 4.0 π‘π‘š, the pulling force does work:

π‘Š = πΉπ‘Žπ‘£π‘” βˆ™ 𝑠 =0 + 0.8

2βˆ™ 0.040 = 0.016𝐽

The spring then has a potential energy: 𝐸𝑝 = 0.016𝐽

To extend the spring 3.0 π‘π‘š more, the pulling force does work:

π‘Š = πΉπ‘Žπ‘£π‘” βˆ™ 𝑠 =0.8 + 1.4

2βˆ™ 0.030 = 0.033𝐽

The spring then has a new potential energy: 𝐸𝑝 = 0.016 + 0.033 = 0.049𝐽

Area =1st W

Area =2nd W

Page 15: Scalars in mechanics

Kinetic energy

Scalars in mechanics 15

𝑑

𝑣1

𝑑1 𝑑2

𝑣2

βˆ†π‘£

βˆ†π‘‘

Total work done on an object ≑Work done by the overall force !

Ξ£π‘Š = Σ𝐹 βˆ™ 𝑠 = π‘š βˆ™ π‘Ž βˆ™ 𝑠

= π‘š βˆ™π‘£2 βˆ’ 𝑣1βˆ†π‘‘

βˆ™π‘£2 + 𝑣12

βˆ™ βˆ†π‘‘

= π‘š βˆ™βˆ†π‘£

βˆ†π‘‘βˆ™ π‘£π‘Žπ‘£π‘” βˆ™ βˆ†π‘‘

=π‘š

2βˆ™ 𝑣2 βˆ’ 𝑣1 βˆ™ 𝑣2 + 𝑣1

=1

2π‘šπ‘£2

2 βˆ’1

2π‘šπ‘£1

2 = βˆ†πΈπ‘˜Ξ£π‘Š = Ξ”πΈπ‘˜

Page 16: Scalars in mechanics

2nd law of Newton (rephrased)

Scalars in mechanics 16

Vector mechanics: the acceleration of an object equals the overall force divided by its mass

Scalar mechanics: the increase of object’s kinetic energy equals the overall work done on the object

Ξ£π‘Š = Ξ”πΈπ‘˜

Ξ£ 𝐹 = π‘š π‘Ž

Page 17: Scalars in mechanics

Energy transfer & efficiency

Scalars in mechanics 17

Photo: wikimedia

Aggregate

GeneratorEfficiency πœ‚2

πΈπ‘β„Ž

π‘Š

𝑄1

𝐸𝑒

𝑄2

Chemical 100J Work 30J

Heat 70J

Heat 8J

Electric 22J

Flows out of the system

The engine converts chemical energy to work with an efficiency

πœ‚1 =π‘Š

πΈπ‘β„Ž=30

100= 0.30 (30%)

The generator converts work to electrical energy with an efficiency

πœ‚2 =πΈπ‘’π‘Š=22

30= 0.73 (73%)

Overall efficiency =πœ‚ = πœ‚1 βˆ™ πœ‚2 =

0.30 βˆ™ 0.73 = 0.22 (22%)

EngineEfficiency πœ‚1

Page 18: Scalars in mechanics

Energy conservation

Scalars in mechanics 18

EngineEfficiency πœ‚1

GeneratorEfficiency πœ‚2

πΈπ‘β„Ž

π‘Š

𝑄1

𝐸𝑒

𝑄2

Chemical 100J Work 30J

Heat 70J

Heat 8J

Electric 22J

Surrounding air

Aggregate

Closed system

Loss for the aggregate

First law of thermodynamics (energy conservation law): In a closed system the total energy is conserved

Page 19: Scalars in mechanics

Conservation of energy – Example I

Scalars in mechanics 19

A ball is thrown vertically upwards with a velocity of 8.0 m/s. Which height will the ball reach (above the point of release)?

𝐸𝐴 = 𝐸𝐡𝐸𝑝𝐴 + πΈπ‘˜π΄ = 𝐸𝑝𝐡 + πΈπ‘˜π΅

0 +1

2π‘šπ‘£π΄

2 = π‘šπ‘”β„Žπ΅ + 0

1

2𝑣𝐴2 = π‘”β„Žπ΅

1

2βˆ™ 8.02 = 9.81 βˆ™ β„Žπ΅

β„Žπ΅ = 3.3π‘š

Strategy:

Indicate 2 points:A = point of releaseB = highest point

Set β„Ž = 0 in A (lowest point)So, in A there is NO potential energy

In B there is no kinetic energy

Solve the energy conservation law

B

A

𝑣𝐴

β„Žπ΄ = 0

𝑣𝐡 = 0

Solution:

Page 20: Scalars in mechanics

Conservation of energy – Example II

Scalars in mechanics 20

𝐸𝐴 = 𝐸𝐡

𝐸𝑝𝐴 + πΈπ‘˜π΄ = 𝐸𝑝𝐡 + πΈπ‘˜π΅

0 +1

2π‘šπ‘£π΄

2 = π‘šπ‘”β„Žπ΅ +1

2π‘šπ‘£π΅

2

1

2𝑣𝐴2 = π‘”β„Žπ΅ +

1

2𝑣𝐡2

1

2βˆ™ 8.02 = 9.81 βˆ™ 2.0 +

1

2βˆ™ 𝑣𝐡2

𝑣𝐡 = 5.0π‘šπ‘ βˆ’1

Strategy:

Indicate again 2 points:A = point of releaseB = highest point

Set β„Ž = 0 in A (lowest point)So, in A there is NO potential energy

In B there is both potential and kinetic energy

Solve the energy conservation law

B

A

𝑣𝐴

β„Žπ΄ = 0

Solution:

A ball is thrown upwards with a velocity of 8.0 m/s at a certain angle.The ball climbs 2.0 m. Calculate the magnitude of the velocity at the highest point

𝑣𝐡

β„Žπ΅

Page 21: Scalars in mechanics

Making work easier (but not less) - I

Scalars in mechanics 21

β„Ž1

β„Ž2

100π‘˜π‘” βˆ™ 9.81π‘šπ‘ βˆ’2

𝐹1

βˆ†β„Ž = 2.0π‘šπΉ2 𝑠

There is NO other force than weight.Only the vertical displacement requires work.

βˆ†πΈπ‘ = 𝐹1 βˆ™ βˆ†β„Ž = 𝐹2 βˆ™ 𝑠

981𝑁 βˆ™ 2.0π‘š = 𝐹2 βˆ™ 6.0π‘š

𝐹2 = 3.3 βˆ™ 102𝑁

Feels like 33kg

Page 22: Scalars in mechanics

Making work easier (but not less) - II

Scalars in mechanics 22

= 40𝑁 120𝑁

The pulley block carries the weight on 3 ropes.The load must be lifted 10 m up.

The weight is split in 3. One only needs to pull with 40𝑁 !

But!!

βˆ†πΈπ‘ = 120𝑁 βˆ™ 10π‘š = 40𝑁 βˆ™ 30π‘š

You need to haul in 30 m of rope

Page 23: Scalars in mechanics

Collisions

Scalars in mechanics 23

Elastic

Partlyinelastic

Before After Ξ£ 𝑝 Ξ£πΈπ‘˜Ξ£πΈ

Conservation of

Totallyinelastic

+ heat

++ heat

Page 24: Scalars in mechanics

Power

Scalars in mechanics 24

𝑃 =Δ𝐸

Δ𝑑

Power is the rate of energy conversion

1π‘Šπ‘Žπ‘‘π‘‘ = 1𝐽/𝑠

𝑃 =Ξ”π‘Š

Δ𝑑=𝐹 βˆ™ βˆ†π‘ 

βˆ†π‘‘= 𝐹 βˆ™

βˆ†π‘ 

βˆ†π‘‘= 𝐹 βˆ™ 𝑣

Page 25: Scalars in mechanics

Power

Scalars in mechanics 25

πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘

πΉπ‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑣

A car travels at a constant velocity 𝑣. Newton: πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ = πΉπ‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

The required power to keep the car driving at this velocity equals:

𝑃 =Ξ”π‘Š

Δ𝑑=πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ βˆ™ βˆ†π‘ 

βˆ†π‘‘= πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ βˆ™

βˆ†π‘ 

βˆ†π‘‘= πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ βˆ™ 𝑣 = πΉπ‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ βˆ™ 𝑣

Page 26: Scalars in mechanics

Power - Example

Scalars in mechanics 26

πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘

πΉπ‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑣

A BMW 7-series car has:Drag coefficient 𝐢𝐷 = 0.30Frontal area 𝐴 = 2.2π‘š2

Calculate the mechanical power required to drive 160 km/h.

𝑣 = 160π‘˜π‘šβ„Žβˆ’1 =160

3.6π‘šπ‘ βˆ’1 = 44.4π‘šπ‘ βˆ’1

Density of air = 1.29 π‘˜π‘”π‘šβˆ’3

πΉπ‘Žπ‘–π‘Ÿ =1

2πœŒπ΄πΆπ·π‘£

2 =1

2βˆ™ 1.29 βˆ™ 2.2 βˆ™ 0.30 βˆ™ 44.42

πΉπ‘Žπ‘–π‘Ÿ = 841𝑁

𝑣 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ β‡’ πΉπ‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ = πΉπ‘Žπ‘–π‘Ÿ

𝑃 = πΉπ‘Žπ‘–π‘Ÿ βˆ™ 𝑣 = 841 βˆ™ 44.4 = 37 βˆ™ 103π‘Š = 37π‘˜π‘Š

Solution

Page 27: Scalars in mechanics

Power & efficiency

Scalars in mechanics 27

πœ‚ =𝐸𝑒𝑠𝑒𝑓𝑒𝑙

πΈπ‘‘π‘œπ‘‘π‘Žπ‘™=

𝐸𝑒𝑠𝑒𝑓𝑒𝑙 𝑑

πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ 𝑑=𝑃𝑒𝑠𝑒𝑓𝑒𝑙

π‘ƒπ‘‘π‘œπ‘‘π‘Žπ‘™

Efficiency can be related to a ratio of energies or a ratio of powers. Look at the context and choose!

Page 28: Scalars in mechanics

END

Scalars in mechanics 28

DisclaimerThis document is meant to be apprehended through professional teacher mediation (β€˜live in class’) together with a physics text book, preferably on IB level.