Scalable’Nonlinear’Model’Predic0ve’Control’for’...

69
Scalable Nonlinear Model Predic0ve Control for Energy Applica0ons Mihai Anitescu* Mathema/cs and Computer Science Division Argonne Na/onal Laboratory With V. Zavala, E. Constan/nescu*, C. Petra, M. Lubin, S. Lee, MaE Rocklin, T. Krause Bucharest CSCS 2011. – (* PUB Graduates)

Transcript of Scalable’Nonlinear’Model’Predic0ve’Control’for’...

Page 1: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Scalable  Nonlinear  Model  Predic0ve  Control  for  Energy  Applica0ons  

 Mihai  Anitescu*  

Mathema/cs  and  Computer  Science  Division  Argonne  Na/onal  Laboratory  

With  V.  Zavala,  E.  Constan/nescu*,  C.  Petra,  M.  Lubin,  S.  Lee,  MaE  Rocklin,  T.  Krause    

Bucharest  CSCS  2011.  –  (*  PUB  Graduates)  

Page 2: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 3: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 4: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

-

  Increased  Complexity:      Financial  constraint  scales  approach  physical  constraints  scales    Loads  can  become  “ac/ve”  with  more  complicated  dynamical  behavior.    Shorter  /me  responses  from  smart  meters,  gas  plants  (which  are  faster).        

Page 5: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 6: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

-­‐  Opera0on  of  90%  of  Energy  Systems  is  Affected  by  Ambient  Condi0ons            -­‐  Power  Grid  Management:  Predict  Demands  (Douglas,  et.al.  1999)              -­‐  Power  Plants:    Produc0on  Levels    (General  Electric)            -­‐  Petrochemical:    Hea0ng  and  Cooling  U0li0es  (ExxonMobil)  

         -­‐  Buildings:  Hea0ng  and  Cooling  Needs  (Braun,    et.al.  2004)            -­‐  (Focus)  Next  Genera0on  Energy  Systems  assume  a  major  renewable  energy  penetra0on:  Wind  +  Solar  +  Fossil    (Beyer,  et.al.  1999)  

-­‐  But  increased  reliance  on  renewables  must  account  for  their  variability  …  

Page 7: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Weather  Condi0ons  (Temperature,  Wind  Speed,  Humidity  …)  have  high  variability/uncertainty              -­‐  Complex  Physico-­‐Chemical  Phenomena,  Spa0o-­‐Temporal  Interac0ons            -­‐  Inherently  Periodic  (Day-­‐Night,  Seasonal)  

2004   2005  

Total  Ground    Solar  Radia0on                Chicago,  IL  

Ambient  Dry-­‐Bulb          Temperature                  Pi\sburgh,  PA  

Page 8: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 9: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Dynamic    System  Model  

Stochas0c    Op0miza0on  

Weather  Model  

Low-­‐Level  Control  

Forecast  

Energy    System  

Set-­‐Points  

Forecast  &  Uncertainty  

Measurements  

Page 10: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Benefits:  Accommodate  Forecasts,  Constraint  Handling,  Financial  Objec0ves,  Complex  Models  

Stochas0c  NLMPC  

Complexity  (Solu0on  Time)  1,000  –  10,000  Differen0al-­‐Algebraic  Eqns  

100-­‐1000  Scenarios  First  entry  of  control  law  implemented  è  

recede    horizon  è  restart  

Determinis0c  NLMPC  

Page 11: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

CHALLENGES  

  Do  I  have  to  solve  a  nonlinear  program  at  each  step  …  that  sounds  expensive.      Benefits  of  considering  uncertainty  in  energy  systems  

–  Use  photovoltaic,  building  systems,  energy  dispatch  problems  as  test  cases.    –  Does  forecast  maEer?    –  Does  stochas/city  maEer?    

  How  do  we  solve  the  resul/ng  stochas/c  programming  problems?  –  …  Since  they  have  a  large  physical  layer.    –  How  do  I  obtain  scalable  algorithms  for  solving  them    

  Sampling  from  the  distribu/on  of  the  ambient  condi/ons.  –  How  do  I  create  and  manipulate  this  large  uncertainty  space?        

11

Page 12: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

OUTLINE  

   1:  Sequen0al  Quadra0c  Programming  for  NLMPC  

  2:  Benefits  of  Considering  Uncertainty  Informa0on  and  Long  Forecast  Horizons.    

  3:  Scalable  Stochas0c  Programming  for  NLMPC  

  4:    Sampling  from  Spa0o-­‐Temporal  Uncertainty  

12

Page 13: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 14: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

F(w,t) = 0! w = w(t)

!tF(w(t k ),t k ) = 0; F(w(t k+1),t k+1) = 0; t k+1 = t k + !t

!t

wk ! w(t k ) "O #t( )p( )

F(wk ,t k )+!wF(wk ,t k )(wk+1 " wk )+!tF(w

k ,t k )#t + rk = 0;

Page 15: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Ac0ve-­‐Set  SQP  

Interior  Point  

F(x,t) =!x f x,t( ) +!xc x,t( )T "

c x,t( )

#

$%%

&

'((; ) F(x,t)*N

!n+ +!mx( )

Page 16: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Generalized  Equa0ons  (GE)  Robinson,  1977,  1980    

First-­‐Order  KKT  Condi0ons  of        

Normal  Cone  Operator  (compare  with  NLE)  

Canonical  Linearized  Generalized  Equa0on  (LGE)  

Defini0on  (Robinson,  1977):    LGE  is  Strongly  Regular  at                if                                                  

Theorem:                      is  Lipschitzian  if:                      

Solu0on  Operator  

Ac0ve   Inac0ve  Degenerate  

1.                      Non-­‐Singular  

2.                                                                    Is  Posi0ve  Definite  

Page 17: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Context  of  NLP  

Solu0on  of    Perturbed  LGE                                                    Around       KKT  Condi0ons  of  Perturbed  QP  

Canonical  Form  

With  

From  Lipschitz  Con0nuity  and  Mean  Value  Theorem    

Op0mal  Solu0on  

Lineariza0on  Point  

QP  Solu0on  

-­‐  Strong  Regularity  Requires  SSOC  and  LICQ  -­‐  NLP  Error  is  Bounded  by  LGE  Perturba0on  -­‐  One  QP  solu0on  from  exact  manifold  is  second-­‐order    accurat  

Page 18: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

-­‐    A2:                    Exists  in  Neighborhood  and      

-­‐    A1:  LGE  is  Strongly  Regular  at  

But  I  am  never  EXACTLY  on  the  manifold:  Stability  of  uncentered  NLP  Error  

Theorem  

Time-­‐Dependent  QP  

For  sufficiently  small                  ,  I  can  track  the  manifold  stably,  solving  1  QP  per  step    

Stability  Holds  Even  if  QP  Solved  to                                        Accuracy  ..  Can  use  itera0ve  methods.  

Page 19: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 20: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 21: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 22: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Managament  under  uncertainty  paradigm:  stochas0c  programming.    Two-­‐stage  stochas/c  programming  with  recourse  (“here-­‐and-­‐now”)  

     

22  

Min

x0

f0 (x0 ) + E Minx

f (x,! )"#

$%{ }

subj.  to.  

subj.  to.  

con/nuous   discrete  

Sampling  

Inference  Analysis  

M  samples  

Sample  average  approxima/on  (SAA)    

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 23: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 24: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Power  Losses  

Solar  Radia0on  

Storage  

MPPT

•   Opera0ng  Costs  Driven  by  Uncertain  Radia0on  Ulleberg,  2004  •   Performance  Deteriorates  by  Mul0ple  Power  Losses  

Load  Demand  

Power  Losses  

Power  Losses  

Page 25: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Effect  of  Forecast  on  Economics  Z.,  Anitescu,  Krause  2009  

Minimize  Opera0ng  Costs  +  Maximize  H2  Produc0on  

Energy  Balances  

State-­‐of-­‐Charge,  Fuel  Cell  and  Electrolyzer  Limits  

•   Forecast  Horizon  of  One  Year  –  Highest  Achievable  Profit  •   Receding-­‐Horizon  with  1hr,  1  Day,  …,14  Days  Forecast  -­‐  8,700  Problems  in  Each  

Scenario  

True  Future  Radia0on  

Chicago,  IL  2004  

Page 26: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

 Reac0ve      (Steady-­‐State)  

Proac0ve    1Day  

•   Costs  Reduced  By  300%  From  1-­‐Hr  to  14-­‐Day  Forecast  

•   Close-­‐to-­‐Op0mal  Profit  Achieved  with  Short  Forecasts  

14  Day  

1Hr  

Page 27: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Profiles  of  Fuel  Cell  Power  

Short  Forecasts  =  Aggressive  Controls    

Long  Forecasts  =    Smooth  Controls    

Page 28: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Load  Sa0sfac0on  Determinis0c  (“Op0miza0on  on  Mean”)  vs.  Stochas0c  

Determinis0c  Fails  to  Sa0sfy  Load  

Therefore,  the  alterna0ve  to  stochas0c  programming  can  turn  out  infeasible  !!  

Handling  Stochas0c  Effects  Par0cularly  Cri0cal  in  Grid-­‐Independent  Systems  

Page 29: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 30: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Pi\sburgh,  PA    2006  

Minimize  Annual  Hea0ng  and  Cooling  Costs  

NLP  with  100,000  Constraints  &  20,000  Degrees  of  Freedom  

Time-­‐Varying  Electricity  Prices  à  Peak  &  Off-­‐Peak  

Energy  Balances  

www.columbia.edu/cu/gsapp/BT/LEVER/    

Page 31: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

1hr  

24  hr  

Forecast  Leads  to  20-­‐80%  Cost  Reduc0on  (Depends  on  Insula0on  Quality)  

Exploit  Comfort  Zone  and  Weather  Info  to  Heat/Cool  when  Cheaper  Braun,  1990  

Comfort  Zone  

24hr  Forecast      1hr  Forecast  

Effect  of  Forecast  on  Energy  Costs  

Page 32: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Performance  Op0mizer  using  WRF  and  GP  Model  Forecasts  

Perfect    Forecast  

Gaussian  Process    Model  

WRF    Model  

Page 33: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 34: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Supply Bids

Clearing Prices, Unit Commitment

GENCOs Utilities, Consumers Transmission

ISO

Power Levels Demand Bids

Weather -Forcing-

Dynamic & Uncertain Forcing Factors -Weather- Drive Markets Volatility Due to Market Friction: (Generation Ramping, Congestion)

Page 35: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Stochas0c  Unit  Commitment  with  Wind  Power  (SAA)  

  Wind  Forecast  –  WRF(Weather  Research  and  Forecas/ng)  Model  –  Real-­‐/me  grid-­‐nested  24h  simula/on    –  30  samples  require  1h  on  500  CPUs  (Jazz@Argonne)  

35  Zavala  &  al  2010.  Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 36: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

0 24 48 720

200

400

600

800

1000

1200

To

tal P

ow

er

[MW

]

Time [hr]

   Unit  commitment  &  energy  dispatch  with  uncertain  wind  power  genera/on  for  the  State  of  Illinois,  assuming  20%  wind  power  penetra/on,  using  the  same  windfarm  sites  as  the  one  exis/ng  today.    

 Full  integra/on  with  10  thermal  units  to  meet  demands.  Consider  dynamics  of  start-­‐up,  shutdown,  set-­‐point  changes  

   The  solu/on  is  only  1%  more  expensive  then  the  one  with  exact  informa/on.  Solu/on  on  average  infeasible  at  10%.  

wind  power  

36  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Demand Samples Wind

Thermal

Wind  power  forecast  and  stochas0c  programming    

Page 37: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

100

101

102

102

CPUs

Scalability on Jazz

Linear Scalability

WRF  scalability  on  Jazz  

11/17/09  

Mathema/cs  and  Computer  Science  

37  

   24  hours  [simula/on  /me]  -­‐>  one  hour  [real  /me]  on  Jazz  with  30  members;  [2  km];  (almost)  linear  scalability  with  area  

   ✔  Illinois  [2km]:  500  processors  

   ☐  US  [2  km]:  ~50,000  processors  

   ☐  US  [1  km]:  ~400,000  processors      

1  member  24  hours  

Grid Size#1 - 32 km2 130× 60#2 - 6 km2 126× 121#3 - 2 km2 202× 232Illinois:  

US:  

   Two-­‐level  paralleliza/on  scheme  –  very  scalable:  (A)  realiza/ons  are  independent,  (B)  each  is  parallelized,  and  (C)  explicit  

(A)    

(C)    

(B)     32p/member  

(C)    

CPU Wallclock[min]

4 1578 9516 6532 45

Page 38: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 39: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Linear  Algebra  of  Primal-­‐Dual  Interior-­‐Point  Methods    

39  

subj.  to.  

Min    

Convex  quadra/c  problem   IPM  Linear  System  

Two-­‐stage  SP  

arrow-­‐shaped  linear  system  (via  a  permuta/on)  

Mul/-­‐stage  SP  

nested    

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 40: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

The  Direct  Schur  Complement  Method  (DSC)    Uses  the  arrow  shape  of  H  

  Solving  Hz=r  

40  

Back  subs/tu/on  

Implicit  factoriza/on  

Diagonal  solve   Forward  subs/tu/on  Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 41: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

High  performance  compu0ng  with  DSC  

41  

  Gondzio  (OOPS)    6-­‐stages  1  billion    variables    Zavala  et.al.,  2007  (in  IPOPT)    Our  experiments  (PIPS)  –  strong  scaling  is  inves/gated  

  Building  energy  system  •  Almost  linear  scaling  

  Unit  commitment    •  Relaxa/on  solved  •  Largest  instance  

•  28.9  millions  variables  •  1000  cores  

12  x    

on  Fusion  @  Argonne    Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 42: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Scalability  of  DSC  

42  

Unit  commitment    76.7%  efficiency  …    

…but  not  always  the  case,  since  first  stage  calcula/ons  can  keep  everyone  blocked    

Large  number  of  1st  stage  variables:  38.6%  efficiency  

on  Fusion  @  Argonne    Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 43: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

BOTTLENECK  SOLUTION  1:  STOCHASTIC  PRECONDITIONER  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

43  

Page 44: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Precondi0oned  Schur  Complement  (PSC)  

44  

(separate  process)  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 45: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

The  Stochas0c  Precondi0oner    The  exact  structure  of  C  is  

  IID  subset  of  n  scenarios:    

  The  stochas0c  precondi0oner  (Petra  &  Anitescu,  2010)  

  For  C  use  the  constraint  precondi/oner  (Keller  et.  al.,  2000)  

45  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 46: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Quality  of  the  Stochas0c  Precondi0oner  

  “Exponen0ally”  be\er  precondi0oning    (Petra  &  Anitescu  2010)  

  Proof:  Hoeffding  inequality  (p  is  dim  on  S;  L  is  a  bound  on  data)    

  Assump/ons  on  the  problem’s  random  data  1.  Boundedness  2.  Uniform  full  rank  of                        and      

46  

not  restric/ve  (=>  L)  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 47: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Quality  of  the  Constraint  Precondi0oner  

                       has  an  eigenvalue  1  with  order  of  mul/plicity          .  

  The  rest  of  the  eigenvalues  sa/sfy  

  Proof:  based  on  Bergamaschi  et.  al.,  2004.  

47  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 48: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

The  Krylov  Methods  Used  for    

  BiCGStab    using  constraint  precondi/oner  M  

  Precondi0oned  Projected  CG  (PPCG)  (Gould  et.  al.,  2001)  –  Precondi/oned  projec/on  onto  the    

–  Does  not  compute  the  basis            for                                  Instead,    

–     

48  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 49: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Performance  of  the  precondi0oner  

  Eigenvalues  clustering  &  Krylov  itera/ons  

  Affected  by  the  well-­‐known  ill-­‐condi/oning  of  IPMs.  

49  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 50: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

The  “Ugly”  Unit  Commitment  Problem;  PSC  gets  further  

50  

  DSC  on  P  processes  vs  PSC  on  P+1  process  Op/mal  use  of  PSC  –  linear  scaling    

Factoriza/on  of  the  precondi/oner  can  not  be  hidden  anymore;  we  need  to  accelerate  it  as  well;  cannot  solve  larger  problems  where  improvement  would  likely  be  larger  

•  120  scenarios  -­‐  #  cores  used  for  precondi/oner  

•  Conclusion:  PSC  hides  the  latency  well,  but  it  eventually  hits  a  memory  wall  as  well.  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 51: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

SOLUTION  2:  PARALELLIZATION  OF  STAGE  1  LINEAR  ALGEBRA  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

51  

Page 52: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Parallelizing  the  1st  stage  linear  algebra  

  We  distribute  the  1st  stage  Schur  complement  system.  

  C  is  treated  as  dense.  

  Alterna/ve  to  PSC  for  problems  with  large  number  of  1st  stage  variables.  

  Removes  the  memory  boEleneck  of  PSC  and  DSC.    

  We  inves/gated  ScaLapack,  Elemental  (successor  of  PLAPACK)  –  None  have  a  solver  for  symmetric  indefinite  matrices  (Bunch-­‐Kaufman);  –  LU  or  Cholesky  only.  –  So  we  had  to  think  of  modifying  either.    

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

52  

dense  symm.  pos.  def.,     sparse  full  rank.  

Page 53: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Cholesky-­‐based            LDL^T      -­‐like  factoriza0on  

  Can  be  viewed  as  an  “implicit”  normal  equa/ons  approach.  

  In-­‐place  implementa/on  inside  Elemental:  no  extra  memory  needed.  

  Idea:  modify  the  Cholesky  factoriza/on,  by  changing  the  sign  a{er  processing  p  columns.      

  It  is  much  easier  to  do  in  Elemental,  since  this  distributes  elements,  not  blocks.  

  Twice  as  fast  as  LU  

  Works  for  more  general  saddle-­‐point  linear  systems,  i.e.,  pos.  semi-­‐def.  (2,2)  block.  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

53  

Page 54: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Distribu0ng  the  1st  stage  Schur  complement  matrix  

  All  processors  contribute  to  all  of  the  elements  of  the  (1,1)  dense  block  

  A  large  amount  of  inter-­‐process  communica/on    occurs.  

  Possibly  more  costly  than  the  factoriza/on  itself.  

  Solu/on:    use  buffer  to  reduce  the  number  of  messages  when  doing  a    Reduce_scaOer.    

                         approach  also  reduces  the  communica/on  by  half  –  only  need  to  send  lower  triangle.                                                                                              

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

54  

Page 55: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

A  Parallel  Interior-­‐Point  Solver  for  Stochas0c  Programming    (PIPS)  

  Convex  QP  SAA  SP  problems  

  Input:  users  specify  the  scenario  tree  

  Object-­‐oriented  design  based  on  OOQP  

  Linear  algebra:  tree  vectors,  tree  matrices,  tree  linear  systems  

  Scenario  based  parallelism    –  tree  nodes  (scenarios)  are  distributed  across  processors  –  inter-­‐process  communica/on  based  on  MPI  –  dynamic  load  balancing  

  Mehrotra  predictor-­‐corrector  IPM    We  inves/gated  scaling  up  to  130K  processors.    

55  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 56: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Large-­‐scale  performance  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

56  

  Comparison  of  ScaLapack  (LU),  Elemental(LU),  and                            (1024  cores)  

  Strong  scaling      90.1%  from  64  to  1024  cores;    75.4%  from  64  to  2048  cores.    >  4,000  scenarios.  

SAA  problem:    189  million  variables  

Page 57: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Argonne  Leadership  Compu0ng  Facility  (ALCF)  –  BG/P  system      

BG/P  Surveyor  System    13.6 TF/s 1 rack BG/P"

"1024 compute nodes ""(4096 CPUs)"

BG/P  Intrepid  System ""557.1 TF/s 40 rack BG/P ""40960 compute nodes""(163840 CPUs)  

Page 58: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Results  on  BG/P  

  Now  include  transmission.       3B  variables,  100K  primal  variables,  32K  scenarios  -­‐-­‐  one  problem  solved  in  about    10  hours  –  we  are  working  on  “real-­‐/me”  –  1  hour.    

58  

Generator  

Load  node  

Page 59: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Using  BG/L  for  energy  dispatch  

  Is  it  really  worth  using  a  supercomputer  for  this  task?      Let’s  look  at  the  most  pressing  item  of  Supercompu/ng  usage:  power.      BG/P  needs  about  20MW  of  power.      The  Midwest  US  has  140GW  of  power  installed,  and  the  peak  demands  runs  up  to  

110GW.      We  will  never  reduce  power  consump/on,  but  we  will  make  it  more  reliable,  and  

cheaper.  (we  es/mate  1-­‐5%)    This  is  worth  on  the  order  of  100-­‐500MW,  far  above  what  BG/P  costs  in  power  

consump/on.    

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

59  

Page 60: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!
Page 61: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Uncertainty  representa0on  in  weather:    

  The  gold  standard  in  weather  forecast:  Hidden  Markov  Model    Assume  a  /me-­‐discre/zed  process    with  imperfect  ini/al  state  and  forcing  

informa/on  and  noisy  measurements.  

  M:  physical  model,  a  mul/-­‐variable,  mul/-­‐dimensional,  /me-­‐dependent  par/al  differen/al  equa/on  (state  size  for  1  /me  step:  10^4—10^12)    

61  

Page 62: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Uncertainty  in  dynamical  systems:  2.  the  posterior.    

  Under  the  typical  4D  Var  assump/ons  (normality  of  noise  and  input)  we  can  write  down  the  posterior  …  

   A  very  difficult  distribu/on  to  sample  from.      Solu/on:  first,  find  the  best  es/mate  of  the  state.      Then,  approximate  the  prior  covariance  by  an  ergodic/Gaussian  Process  

method.  

62  

Page 63: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Do  I  really  need  to  do  it  by  myself?    

  NWS  gives  excellent  es/mates  for  large  scale  paEerns,  but:    

  NWS  gives  me  too  coarse  of  a  resolu/on  forecast  for  energy  apps.  I  need  resolu/on  because  wind  has  enormous  variability  

  NOAA/NCEP  gives  me  an  even  coarser  resolu/on  for  uncertainty  forecast  (200km).  

  Data  at  heights  relevant  for  wind  applica/ons  (100m)  is  most  o{en  not  reported  (emphasis  on  surface).  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

63  

Page 64: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Current  Time  

Reconcilia0on   Forecast  

• Use  some  form  of  an  ergodic  hypothesis.  Take  

• Our  uncertainty  model  for  mul/-­‐period  forecas/ng:    • Mean:  Best  Es/mate  using  a  varia/onal  methods.    • Covariance:  Fixed  correla/ons  at  current  moment,  variance  adjusted  from  physical  data  and  best  es/mates  update  size.    • Sampling:  Take  samples,  propagate  through  the  model  =  empirical  ensemble  

Page 65: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

5/29/11  

   Designed  an  UQ  framework  to  generate  forecasts  with  confidence  intervals  

Short-­‐term  wind  speed  predic0on  using  numerical  weather  predic0on  models  

18 30 42 54 66 78 90 1020

1

2

3

4

5

6

7

8

9

10

Local time from June 1st

[hours]

Win

d s

peed [m

/s]

18 30 42 54 66 78 90 1020

2

4

6

8

10

12

Local time from June 1st

[hours]

Win

d s

peed [m

/s]

18 30 42 54 66 78 90 1020

2

4

6

8

10

12

Local time from June 1st

[hours]

Win

d s

peed [m

/s]

Page 66: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

5/29/11  

Long-­‐term  predic0ons:  wind  speed  

   Wind  2009:  at  80m  above  ground  

48 49 50 51 52

0

5

10

15

Julian time [days]

Win

d s

peed [m

/s]

Page 67: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Conclusions  

  NLMPC  can  model  complex  energy  systems.  Physical  layer,  financial  and  economic  effects,  commodity  markets.    

  We  proved  that  sequen/al  quadra/c  programming  is  a  good  solu/on  for  NLMPC;  relaxa/ons  can  be  used  for  real-­‐/me  applica/ons.    

  We    have  demonstrated  that  forecast  and  stochas/c  programming  maEers  for  energy  applica/ons;  the  costs  do  not  increase  by  much  but  we  are  always  feasible  –  so  benefit  of  considering  uncertainty  is  in  the  reliability.  

  We  presented  several  techniques  for  scalable  stochas/c  quadra/c  program  used  in  NLMPC.  We  inves/gated  –  successfully  –  scaling  to  130K  processors  for  problems  with  3B  variables.      

67  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 68: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

Future  work    BeEer  uncertainty  models  for  weather  forecast  (how  do  we  eliminate  the  nagging  

alpha  parameter  and  have  a  more  solidly  founded  uncertainty  approach).    

  Other  lineariza/on  approaches  for  NLMPC  with  even  cheaper  subproblems.    

  Do  the  conclusions  hold  when  I  have  to  add  more  details  in  the  simula/on  (e.g  transmission  lines,  model  the  airflow  in  the  building,  etc  …)  

  New  math  /  stat  for  stochas/c  programming  –  Asynchronous  op/miza/on  –  SAA  error  es/mate  

  New  scalable  methods  for  a  more  efficient  so{ware  –  BeEer  interconnect  between  (itera/ve)  linear  algebra  and  sampling    

•  importance-­‐based  precondi/oning  •  mul/grid  decomposi/on  

–  Target:  emerging  exa  architectures  

68  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

Page 69: Scalable’Nonlinear’Model’Predic0ve’Control’for’ Energy’Applica0ons’anitescu/Presentations/2011... · 2011. 6. 2. · In_place!implementaon!inside!Elemental:!no!extramemory!needed.!

References  

  Victor  Zavala,  Emil  Constan/nescu,  Theodore  Krause,  and  Mihai  Anitescu."  On-­‐line  economic  op/miza/on  of  energy  systems  using  weather  forecast  informa/on."  Journal  of  Process  Control,  Volume  19,  Issue  10,  2009,  Pages  1725-­‐1736  

  Emil  Constan/nescu,  Victor  Zavala,  MaEhew  Rocklin,  Sangmin  Lee,  and  Mihai  Anitescu.  A  Computa/onal  Framework  for  Uncertainty  Quan/fica/on  and  Stochas/c  Op/miza/on  in  Unit  Commitment  with  Wind  Power  Genera/on.  IEEE  Transac/ons  on  Power  Systems,  26(1),  pp.  431-­‐-­‐441  (2011)    

  Victor  Zavala  and  Mihai  Anitescu.  On-­‐Line  Nonlinear  Programming  as  a  Generalized  Equa/on.  SIAM  J.  Control  OpWm.  Volume  48,  Issue  8,  pp.  5444-­‐5467  (2010).  

  Cosmin  Petra  and  Mihai  Anitescu.  "A  precondi/oning  technique  for  Schur  complement  systems  arising  in  stochas/c  op/miza/on".  Preprint  ANL/MCS-­‐P1748-­‐0510.  SubmiEed  to  ComputaWonal  OpWmizaWon  and  ApplicaWons.  

  Miles  Lubin,  Cosmin  G.  Petra,  Mihai  Anitescu,  and  Victor  Zavala.Scalable  Stochas/c  Op/miza/on  of  Complex  Energy  Systems.  Preprint  ANL/MCS-­‐P1858-­‐0311  

Mihai  Anitescu  -­‐-­‐  Stochas/c  Programming  

69