(SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC,...

8
HWAHAK KONGHAK Vol. 38, No. 2, April, 2000, pp. 269-276 (Journal of the Korean Institute of Chemical Engineers) 269 (SBR) phenol * ** *** * ** ***( ) (1998 10 27 , 1999 10 26 ) Effects of Heavy Metals and Phenol on the Operation of Sequencing Batch Reactor Added Activated Carbon Sanghoon Lee, Jihun Lim, Chulhwan Park, Sangyong Kim*, Jinyong Park**, Yongmyun Lee*** and Jinwon Lee Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea *Korea Institute of Industrial Technology **Department of Environmental Engineering, Hallym University ***Osung Envi-Tech Company (Received 27 October 1998; accepted 26 October 1999) (sequencing batch reactor, SBR) . , 3 . SCOD(soluble chemical oxygen demand) , (adsorption isotherm) (adsorbed loading) (apparent loading) (bio- logical activity) (synergistic effects) . - 16% , Freundlich SCOD , , . (inhibition) , . Pb, Cd, Cr, phenol (inhibitor) , Pb 10 mg/L (PK1-3) 500 mg/L 32.6% , Cd 27.2%, Cr 22.3%, phenol 9.4% . Abstract - The process of sequencing batch reactor(SBR) added the activated carbon were studied. To investigate the influ- ence of the activated carbon on the treatment of organic materials and the effects of heavy metals on the process, three differ- ent kinds of granular activated carbons(GAC) were tested. The decrease of SCOD(soluble chemical oxygen demand) was measured at the different concentrations of the activated carbon. Synergistic effects of GAC on the biological activity in the SBR were confirmed from the data comparing adsorbed loadings with apparent loadings. When SBR was operated with GAC, the efficiency of wastewater treatment increased 16%. By comparing the adsorped amount of SCOD estimated from Freund- lich isotherm and the decrease of apparent loading, biological synergistic effect was confirmed. The inhibition of SBR perfor- mance from heavy metals or toxic chemicals could be reduced when GAC was added into the SBR process. Pb, Cd, Cr, and phenol were tested as typical inhibitors. When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words: Sequencing Batch Reactor(SBR), Activated Carbon, Heavy Metal, Soluble Chemical Oxygen Demand(SCOD), Wastewater E-mail: [email protected]

Transcript of (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC,...

Page 1: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

HWAHAK KONGHAK Vol. 38, No. 2, April, 2000, pp. 269-276(Journal of the Korean Institute of Chemical Engineers)

���� ��� � �� ��(SBR) ��� ����� � phenol� ��

�������������*����**��� *** ����†

����� ���� �����*�� ����

**���� ����***(�)�� ����

(1998� 10� 27� � , 1999� 10� 26� !")

Effects of Heavy Metals and Phenol on the Operation of Sequencing Batch Reactor Added Activated Carbon

Sanghoon Lee, Jihun Lim, Chulhwan Park, Sangyong Kim*, Jinyong Park**, Yongmyun Lee*** and Jinwon Lee†

Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea*Korea Institute of Industrial Technology

**Department of Environmental Engineering, Hallym University***Osung Envi-Tech Company

(Received 27 October 1998; accepted 26 October 1999)

� �

� ����� �� � �� (sequencing batch reactor, SBR)� ���� ��� ��� ���� ���. ���

� ��� �� � �� !"# $%& '(��) *+� #,� -.� /0� 12345, 367 8� �

��� ���� 9:� 3;�. SCOD(soluble chemical oxygen demand) <= >?� �3@ ABC��D, EF GH

(adsorption isotherm)� � �IJ EFK(adsorbed loading)L 9$ <=K(apparent loading) MN� O#PJ ��(bio-

logical activity) QRS >L(synergistic effects)T UV3;�. ���-�� � �� ��W �� � �� X

� YZ3;� [C� \ 16% ]^ >?� _�3;�`, Freundlich EF GH� � �IJ EFKL 9$ <=�

SCODK� MNa���, ��� �� �� ]^ >? _�� bS ��� EFKX� cd4, O#PJ �� QRS

>L� ef� _g3;�. '(��) *+� #,� !8hi� jk �� � �� � el� m+(inhibition)

n�� ABC��D, ���� ��3;� [ �o� m+ /0� <=Qp� >LT �KJ�� q�3;�. Pb, Cd, Cr,

phenol� m+$(inhibitor)�� 9:3;�`, Pb� 10 mg/LV O�3r� ���(PK1-3)� 500 mg/L� s83;� jk�

� s83S tW jkC� ]^?� 32.6% _�hi4, Cd jk� 27.2%, Cr jk� 22.3%, phenol jk� 9.4%

]^>?� uu _�hi�.

Abstract − The process of sequencing batch reactor(SBR) added the activated carbon were studied. To investigate the influ-

ence of the activated carbon on the treatment of organic materials and the effects of heavy metals on the process, three differ-ent kinds of granular activated carbons(GAC) were tested. The decrease of SCOD(soluble chemical oxygen demand) was

measured at the different concentrations of the activated carbon. Synergistic effects of GAC on the biological activity in the

SBR were confirmed from the data comparing adsorbed loadings with apparent loadings. When SBR was operated with GAC,

the efficiency of wastewater treatment increased 16%. By comparing the adsorped amount of SCOD estimated from Freund-

lich isotherm and the decrease of apparent loading, biological synergistic effect was confirmed. The inhibition of SBR perfor-

mance from heavy metals or toxic chemicals could be reduced when GAC was added into the SBR process. Pb, Cd, Cr, and

phenol were tested as typical inhibitors. When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L

GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively.

Key words: Sequencing Batch Reactor(SBR), Activated Carbon, Heavy Metal, Soluble Chemical Oxygen Demand(SCOD),

Wastewater

269

†E-mail: [email protected]

Page 2: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

270 �������������������� ����

1.� �

��� ��� �� �� ��� �� �� � �� ��

�, ��� ��� � ! " #� $%� &'() *+� ,�

��-. ./� 01� )23 '4(�5, 67 �8 9:;<�

=>?3 @A�B8) C D%�-. �7� 9:;<� #�E F

G5 �< ;�� HI J K2! =� %LM, $$LNO !

=� PQ, R�) �S(: F(6 TU �V� #�WX Y! =�

Z[� \](-[1-4]. 6:!, �� ��#^ _[� `), ab /B

� cd(�� 01��E #�(: FG5 =�e #�fg�

Hh�� ij2 k](8�, l�e fg! =� ij2 m� k]

(-) n � C-. l�e #�o!5 �eM 8pD% J 'c

.��� qr! st� Tu� v$% J ow� &'�B TU

� �� t�T�) �Tx ��y, �7� l�e #� =r8

p! =(6 z{ 67 |}� ��#� WX� ~ F(� ij�

) C?y, ��� *+TI WX<� &'(: F� ij� d'�

���) C-.

� ij!5 ��#� WX k (�I i� ��� ���! d

q�� ��� #� $%� =r?3 ��-. dq�� �U� ��

#� $%� �� ��T �F $%(chemical unit process)?3 �

� C?y, i� ��� ���E �U� ��#� $%� c;�T

�F $%(biological unit process)?3 � � C-. i� ��� �

�� -� dq �78 XO �� � &� ��� �!5 ��, �

:, �4 Y� e� ���:!, i� ��� $%O �� s�T

ow� ��� Y� \]�-.  �5, �� ��M ¡� `� _[

E �� 8pT r¢! Tt(-) n � C£-. ¤�, i� ���

���E -�¥3 gwn � i� ��� $%O ¡� ��E i

�T?3 #�n � C?¦3, §� 9>� #�n ¨!2 �V(-

[5-8]. i� ��� ���M ¡� dq �78 $X!5� 9:; �

S �78� dq ©�(active sites)! ª«� 9:;� ¬­� ¬

­ $%O �L- ®�� xB� ¯c;� =°(metabolic assimila-

tion)O%! �G5 g±�B� � C?y, ²�Gq�� ³q;�, ¤

k´� Y� 9:;�O µ¶ ���! 9·��, �7� c;�

T #� $%! ¸GM ³q(toxity), ¹(competition)� PQ� �º

²-[9-13]. x�T?3 �4;35 »{( k´�� pH� ¼�!

�G5 UG½ � C ¾, � c;�T #� *OE ¿lfÀ:),

f�, ÁÂ0(humic acid)O ¡� Ã% 9: �t;� c;�T �G

UGq Ät;3sÅ ³q k´�� UAfÀ), � pf c;�

T dq! PQ� ¯wy, j�, �i, �Æ, Ç, ÈÉÊ, �ËO ¡�

k´�� ¯c; *l(enzyme)M ��(6 ;�=°� �2E ¸(

fÀ), �7� k´� ©Ì� ¸GM ³q� PQ� �ºÍ-. ¤�,

k´�� �78� dq ©�! 9:;O �Î� ¹(6 9:; ¬

­� WG(), ¯c;! �� SCOD ¿l *+!2 §� PQ� Ï

w¦3, i� ��� ��� Ð4! CB5 � §� ���T Ì}

fÑ(hydraulic retention time, HRT)� ]j(S�, ��Ò?3sÅ�

�S, ¤ 4#� $% Y s�T $%� \]3 (� �-[14-16].

dq� �� $%� k´�� dq�! C §� dq ©�! 9

:; L- Ó¸ ¬­�: ¨�!, �7� k´� PQ� ¿lfÔ �

C-. R7¦3, dq�� ¬­ VÎ� ��! »{( 9:; ¬­

�� ���, ²�Gq�� ³q �t;, k´� Y� ¬­µ?35

¯c; dq� ¸G*OE ¿lfÕ ���� 9:; ¿l *+� ,

x � C-. ¤�, ¯c;2 dq� Ö�! ¬­×?35, ØÙÚ7Ð

9:; s(! L- � �%T?3 =#n � C), �78� �4�

U�(� µ?35 �4 $%! l]� fÑ� uÛ(6, ���

Ð4 Ü:E ¿lfÔ � C s�T *O2 Ý� � C-. x�T

?3 ·r dq�(granular activated carbon, GAC)� �Þ dq�(pow-

dered activated carbon, PAC)L- �4 *+� � ß?y, dq� {c

¤� �Þ dq�L- � U�(-[17].

i� ��� ���!5� ²�Gq ;�! =� ij3 , German

O Romulo[18]� i� ��� ���!5� 9:; ¿lM ²�Gq

;�I phenol �t;� c;�T �G! =� ijE (à?y, k

´�� PQ! =(65 ChuaM Hua[19]� i� ��� ���E

�U� 9:; ¿l! CB5, k´�� ¯w PQ! =G ij(

à-. ¤�, Sublette Y[20]� PAC $%! =� ij!5, c;�T

dqO dq� ¬­� 53 fá8 *OE �â.y, �7� fá8

*O ã3 c;�T dq� ©ä(stimulation of biological activity)O

dq�� c;�T {c(bioregeneration)��) (à-. ¤�, Márquez

M Costa[21]2 PAC $%!5 dq�� ¬­ $%� 9:; ¬­O

¯c; ¬­� å - �æB8¦3, �7� $%� 9:; �S! C

B5 fá8 *OE �â.y, �7� ¬­ $%� Ü3 ��ç� 9

:;, k´� R�) ²�Gq ;� Y� �S! °U�B8) C-

) (à-.

� ij!52 dq�O i� ��� ���E �U(6 �� #�

Dè� ��(à-. Ó¸ Ü] =r $%I i� ��� ���! 3

|}� -� ·r dq�� s9r?3 ��é� ¨� #�*+, �

êë3 i� ��� ����� Ð4(à� ¨M dq�� ��é�

¨� SCOD ¿l b! �� D� ¿l>O dq� ¬­ Yì�!

�� �íT ¬­>� îïµ?35, dq� �� $%� fá8 *

OE �°(à?y, ð8ñ?3 k´��� òóO ¡� ²�Gq 9

:;� ��� ç! 9·�ô� ¨, c;�T �G! ¯w ¸G P

QO dq� ��3 I�, ¸G PQ ¿l! =G5 ij(à-.

2.� �

2-1.���-�� ��� �� SCOD � �� ��

°Uõ fö j�f I÷� o© iø cd (�E °U(à-.

U» 9:;� �� SCOD3 ù%(à), �E ù%(: F� 4#

� O%?35 1.2µm� $ä �:E ú 9� û9 6O8(What-

man GF/C)3 1b 6OE �ü, 0.2µm membrane filter3 2b 6

OE (à-. �ý� K2Cr2O7� �U(6, Standard Methods� WX

[22]�  þ?y, °Uõ dq�� ÿÿ PK1-3, GAC 1240, R�)

ROW 0.8 SUPRA35 ��<� e� NORIT°(Netherland)� ·r

dq��y, .q �î��(Ü)� z{ �� ��!5 �m() C

��<�-. dq�� ;qÖ Table 1! �ºçô-. dq� Ü·�

0 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, R�) 500 mg/L� K23 Ü·

(à?y, � Dè! �I ��� 8�� 0.15 m, ,� 0.3 m� Ò

:� e�?35 4Ì s�� Û 5.3 L�-. 6:! 4 L� ��E �

ÜB5 Dè� (à-. ��� ç� ì2 ìowE �U(6

30 oCE 98(6 Üô?y, ï� �2 230 rpm?3 �%GÜô),

h�� 0l $�� F(6 �:E GÜô-. °Uõ ��� e�

5&�y, {zq Dè� �G5 e ���� 53 î�� #�+�

L� �� HI(à-. ���� j�! =� R�� Fig. 1! �º

çô-.

2-2.��� �� �� �� ��

°Uõ dq�� ÿÿ PK1-3, GAC 1240 R�) ROW 0.8 SUPRA

� ·r dq�?35, ì2!  � ¬­ �2 b�E @�(: F(

6, 25oC� ì� ç!5 Dè(à-. ·r dq�� �$ çs!

»{( $: 9:;� ¬­ ¸� ��fÀ¦3, $:E �S(

: F(6 N�� dq�� ¯� �>(6 x%>� �}�(100 ml)

���� �38� �2� 2000� 4�

Page 3: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

���� ��� �� ��� ��� 271

! dq�� ���ô-� °U(à-. ¬­õ ¬­�� K2 �ý�

SCODE �U(6 �ý(à?y, °U�B� �� ¯c;! ��

SCOD ¿lE @�(: F(6, 120oC!5 20�Ñ ��� � °U

�ô-. dq�O ��E 250 ml� �ÿ ��Ú�! Ü·(6, �4

��� F(6 24fÑ��, M}� cq�8 �2� 150 rpm?3 ï

�fÕÜ�5 Dè(à-. ¬­ Yì�� j(: FG5 dq��

K2 ¼�!  � ��� K2 ¼�E ù%G� (¦3, 50 mg/L!5

1,000 mg/L�8 dq� K2 ¼�!  � ��� SCOD K2E ù%

(à-. Dè� .b�¥M data distribution� ¿�(6 dq�� K

2 ¼� 100 mg/L �F3 ¼�f ?y, jG� ¾�Å� fitting�

FG5 GRAPHER� !3R"� °U(à-. ¬­ Dè �, Ý

B� ¾�ÅE TU(: F� ¬­ Yì�� �#�! §� ��

Freundlich� ¬­ Yì�� °U(à-[11].

2-3.���� ��� ��� � �!� "#$� %! &' ()

��

��� �! k´��� ²�Gq ;�<� 9·?3 I� 9:;

#� *+ ¿lE #�L: F(6, k´�O ²�Gq ;�O ¡�

¸G�E ��(à� ¨, ���� #� *+! =(6 Dè(à-.

� Dè! °U�B� 5&� ��� $� dq�-i� ��� ��

�� SCOD ù% Dè! °U�B� ���M ¡), ��� �� Ð

4 �N ¤� �x(-. °U�B� k´�?3 Pb, Cd, R�) Cr

�y, ²�Gq ;�3 phenol� °U(à?y, dq�� ¬­ Yì

�! �(6 ¬­V� ß� �?3 HIõ PK1-3� °U(à-. e

� 5&� ���E Ð4(à?y, ÿÿ� k´�O phenol! =(6,

% êë ��� ¸G�� dq�� 4& '8 �) Ð4µ?35

(�� i� ��� ���� �GV� �)L�?y, -� 2&� �

��! ¸G�E 10 mg/L, 30 mg/L* Ü·µ?35, ¸G� K2!

=� PQ� �)L�-. �+8 � &� ���! ¸G� 10 mg/

LM dq� 500 mg/L, ̧ G� 30 mg/LM dq� 500 mg/LE Ü·(

6, ÿÿ� ��� ç� SCOD ¿l! =� ¸G PQO dq�!

�� ¸G PQ ¿l! =(6 �)L�-.

3. �� �

i� ��� ���! 3|}� ·r dq�� s9r?3 ��(6

SCOD ¿l! =� Dè� (à-. fö ç! »{( ¯c;! �

� SCOD �G Dè� (à?y, dq� |}!  � #�*+� #

�L�-.

Fig. 2 dq�� Ü·K2E ,%(: F� OD-� ù%� R�

?35, j�f o© iø� .= ¬� /o?3 Dèõ 480 nm!5

ù%� dq� K20 OD-�-. Fig. 2E �)L�, 400-600 nm j

ÑO 1,400 nm jÑ� .l� OD-� L� �� # � C-. d

q�� .l Ü·>, 2bT .1O �T îU Y� )2(6

Û 500 mg/LE � Dè!5� Ö3 Ü· K23 ,%(à-.

Fig. 3� ·r dq�I PK1-3� ��� �! s9r?3 Ü·(à

� ¨, 7x ��� SCOD ¿lE L6Ü) C-. dq� Ü· K2

0 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, R�) 500 mg/L?35, i� �

�� ����� Ð4(à� ¨(0 mg/L) Û 56.5%, 50 mg/L3 Ü·

n ¨ Û 56.5%, 100 mg/L� 65.9%, 200 mg/L� 64.7%, R�), 500

mg/LE Ü·(à� ¨ Û 70.6%� SCOD� ¿l�ô?y, ���

dq�>� ��n�� SCOD #� *+� � ,��- �� �¯

�-. �7� �9 i� ��� ����� Ð4(à� ¨ �8

¯c;! �� c;�T #� $%�?3 9:;� ¿l�8�, i�

��� ���! dq�� ��( $%� c;�T #� $%! ¬

­ $%� s��ô: ¨�! #� *+� �� ��õ-) °öõ

-. �4� PK1-3� 500 mg/L� K23 ��� �! Ü·f � ¨,

i� ��� ����� Ð4(à� L̈-2 Û 14.1%� #� *+ �

�E Là-.

Fig. 4 ·r dq�I GAC 1240� Ü·(à� ¨� SCOD ¿

Table 1. Specifications of activated carbons tested in the experiments

PK1-3 GAC 1240 ROW 0.8 SUPRA

Molasses number 500 min. 230 350Total pore volume(cm3/g) 1.2 0.85 1.0Moisture(as packed, %) 2 max. 2 2Apparent bulk density(g/L) max. 315 500 min. 350Iodine adsorption(mg/L) 800 - 1100Ash content(%) 7 - 8Density backwashed and drained(g/L) 230 440 335

Fig. 1. Sequencing batch reactors used in this research.

HWAHAK KONGHAK Vol. 38, No. 2, April, 2000

Page 4: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

272 �������������������� ����

lE L6Ü) C-. i� ��� ����� Ð4(à� ¨ 59.3%

� #�*+� L6Ü) C?y, dq� Ü· K2� 50 mg/Lx ¨

64.4%, 100 mg/Lx ¨ 71.2%, 200 mg/Lx ¨ 72.9%, R�

) 500 mg/LE Ü·(à� ¨ 76.3%� #� *+� L6Ü) C

-. 6:52 dq�>� ��½�� #� *+� �� ��� �

� � � C-. GAC 1240� 500 mg/L� K23 ��(à� ¨

i� ��� ��:�� Ð4(à� ¨L-2 SCOD ¿l *+� Û

17%%2 ��� �� # � C-.

Fig. 52 ·r dq�I ROW 0.8 SUPRAE Ü·(à� f� SCOD

¿lE L6Ü) C-. i� ��� ��:�� Ð4(à� ¨!

43.8%, 50 mg/LE ��(à� ¨ 35.4%, 100 mg/Lx ¨ 47.9%,

200 mg/Lx ¨ 52.1%, 500 mg/Lx ¨ 60.4%� #�*+� L

6Ü) C?y, dq�>� ��×!  � #� *+� � ß�5-.

ROW 0.8 SUPRAE 500 mg/L� K23 Ü·(à� ¨ i� ��

� ��:�� Ð4(à� ¨L-2 Û 16.6%� SCOD #� *+�

��( �� # � C-.

Fig. 3-5!5 dq� ܷ?3 I� SCOD #� *+ ��� �8

dq� ¬­�?3 I� SCOD #� *+ ��I8, ��� dq�

�� $%O i� ��� ���M� ,t! �� c;�T dq�

��M ¡� fá8 *O� C 8E HI(: F(6, �íT ¬­

>O D� ¿l>� îï(à-. �íT ¬­>� ¬­ Yì�! �

(6 jG� � C?y, D� ¿l>� i� ��� ����� Ð4

(à� ¨� SCODM dq�-i� ��� ���E Ð4(à� ¨�

SCOD b3 jG� � C-. �E F(6 Ó¸ dq� ¬­ Yì�

� j(à?y, Fig. 6! �ºçô-. dq� ¬­ Yì�� îïT �

#�! Tt(-) #2� Freundlich ¬­ Yì�� °U(à?y,

ÿÿ� dq�! =� ¬­ Yì�� r�-� Table 2! �ºçô-.

Table 2!5, Kf(L/g) dq�� ¬­V(capacity)� �ºç ¾, �

-� 6�� ¬­V� � ß� �?3 #2â C?y, 1/n(unitless)-

� dq� Ö�� ��7(heterogeneity factor) ¤ ¬­ �2� 8

Ö35 T% F 0-1 %2�), 0?3 ��� 8�� dq� Ö�

Fig. 2. Color removal from wastewater by activated carbon at 480 nmwavelength.

Fig. 3. SBR treatment with activated carbon PK1-3.

Fig. 4. SBR treatment with activated carbon GAC 1240.

Fig. 5. SBR treatment with activated carbon ROW 0.8 SUPRA.

���� �38� �2� 2000� 4�

Page 5: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

���� ��� �� ��� ��� 273

� ��� ��(heterogeneous)I �� �ºÍ-. ¬­ Yì�! �(

� PK1-3� ß� ¬­V� �� �?3 �º9-. �7� dq� ¬

­ Yì�� �U(6, 7x ��� ¬­õ SCOD �O ��� ç!

5 ¿lõ SCOD �� îï(6, dq� ¬­O ¯c;! �� c;�

T �G! =G5 #�L�-. 24fÑð- ù%� �9 Freundlich Y

ì�� jn ¨! 24fÑ� ��fÑ?3 �%(à?¦3, 24fÑ �

F3 ��� SCOD K2 ¼�E ù%(à-. PK1-3! =G5 Fig. 7,

GAC 1240! =G5 Fig. 8, R�) ROW 0.8 SUPRA! =G5

Fig. 9! ÿÿ �ºçô-.

Fig. 7-9 7x ��� ��� ç� SCOD ¿l> ¼�M Freund-

lich ¬­ Yì�� �U(6 j� 7x ��� dq�! ¬­õ

SCOD �� ¼�E L6Ü) C-. Ð4 ::! ¯c;! �� c

;�T �GL- dq� ¬­� � ;� xB�: ¨�!, SCOD ¿

l> k ¬­! �� �� < s�� b8() C �� � � C

-. ��! =G5 ¬­VÎ� ß� �?3 Dèõ PK1-3� Fig. 2

!5 ±=� # � C-. Ð4 1xë! i� ��� ����� Ð4

(à� ¨, > c;�T �G! �� SCOD ¿l 12 mg/L! ?O

(8�, dq� 500 mg/LE Ü·� ���� SCOD ¿l 48 mg/Là

-. � Ð4 ::! ¯c;� ��! T�(: F� 8i:(lag phase)

O%! C?¦3 SCOD ¿lE 12 mg/L @! ø(8�, dq� ¬­

! �� ¿l>� 36 mg/L?35, dq� ¬­� ¯c;! �� c

;�T �GL- Û 3@%2 §� xB9A� # � C-. �7� °

D� c;�T #� $% f, ��aI ¯c;� B3Ð ! T�

Fig. 6. Freundlich isotherm curves for activated carbons.

Table 2. Coefficients of freundlich adsorption isotherm calculated fromthe adsorption data

PK1-3 GAC 1240 ROW 0.8 SUPRA

1/n 0.4126 0.7532 0.8387Kf 6.6418 1.7076 1.7734

Fig. 7. SCOD decreased and adsorbed during SBR treatment with acti-vated carbon PK1-3(500 mg/L).

Fig. 8. SCOD decreased and adsorbed during SBR treatment with acti-vated carbon GAC 1240(500 mg/L).

Fig. 9. SCOD decreased and adsorbed during SBR treatment with acti-vated carbon ROW 0.8 SUPRA(500 mg/L).

HWAHAK KONGHAK Vol. 38, No. 2, April, 2000

Page 6: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

274 �������������������� ����

(: F� 8i: ��! SCOD ¿l! 2C� � � C� S�)

°öõ-.

Fig. 7-9E L�, fÑ� 8��� dq�! ¬­� ¬­>� ¿l

(8�, #�� SCOD>� ��( �� � � C-. ��� f

Ñ� 8��� ¯c;! �� SCOD #�� ���y, ��� ç�

SCOD ¿l3, ��ç� SCOD K2M dq� Ö�! ¬­õ

SCOD K2 °�! ��� �æ: F(6 ¬­õ SCOD� -f D

­�: ¨�x ��-.  �5, dq�-i� ��� ��� $%� Ð

4 ::� ØÙÚE O2� 9:; 9·!2 ?j() ¬­ $%?

3 I(6 Ð4 Ü:E ¼�fÀ8 �) @A FU :3� �GfÔ

� C $%� �%q, ¯c;� c;�T �G3 I� SCOD K2

¿l, R�) ��� 9:; K2 ��� F� D­ �2 ��3 c

;�T {c *O2 � � C-. �7� c;�T {c, > dq�

� dq ©�� �� -f c;�T �G *+� ,x � C), c

;�T �G *+� �� -f dq�� dq ©�� ��3 �B

8¦3, dq� �� $%O i� ��� ��� ÿÿ �(� ³H

õ $%� �t� ���, 53 fá8 *OE �ºç $%��)

n � C£-. Table 3� Fig. 3-5� ©öE ::3 (6, dq�� Ü

·(à� ¨� ÿÿ� #�*+!5 i� ��� ���� Ð4(à

� ¨� #�*+� I¦35 ¥0�ô?y, dq� ��3 I� f

á8 *O� ,OI, ��õ SCOD #�*+� ÿÿ� dq� K2

03 �ºçô-. Table 3!5 PK1-3� �, i� ��� ��:�

� Ð4(à� ¨L-2 dq� PK1-3� 100 mg/L� K23 Ü·(

à� ¨ Û 9.4%, 200 mg/L� K23 Ü·(à� ¨ Û 8.2%,

R�) 500 mg/L3 Ü·(à� ¨ 14.1%� #�*+� ���

�� # � C-. ��� dq� �� $%!5� SCOD ¿l� �

8 ¬­>�� ���, c;�T dq��� fá8 *O! �� 9

:; �G+ ��I �?3 °öõ-. Fig. 6!5 PK1-3� ��õ

��!5 �íT?3 �o ¬­V(��T-;�T ¬­�� �¯µ)�

ß� dq�?3 �º98�, D���E �8)5 Dè� ,OI

Table 3!5 GAC1240� -� dq�! îG ¯c;� c;�T f

á8 *O! �� #�*+ ��� � < �?3 �º9-. � î

� dq�� ��T, ;�T ¬­V� ��(��2, c;�T fá8 *

O! CB5 -� ,OE �âJ � C- �� �¯�-. >, �

íT?3 î� ��� dq�x8�2 �� #�! D�3 TUn ¨

! DèD �e� pilot scale� Z� �¥E S�?35, �íT ¬

­VO c;�T fá8 *OE |t(6 dq�� KLG� n �

�-. � Dè! °U�B� dq�<� Fig. 6O Table 3� |tG �

¨, 53 î�� #� *V� �ºM� # � C-.

Fig. 10-12�8 �7� dq�-i� ��� ��: $%! k´�

Y� 9·�ô� �� 9:; �G *+! =� Dè,O�-. °U

�B� dq�� ¬­ Yì�! �G ¬­ qV� ß� �?3 N&

� PK1-3�-. Fig. 10� PbE ��(à� ¨�), Fig. 11� CdE

��(à� ¨, R�) Fig. 12 Cr ��(à� ¨� Dè,O�-.

Fig. 10sÅ 12!5 $�T?3 � � CO� Pb, Cd, Cr� K2� 10

mg/L� �! CB5 #� *+� ÿÿ 26.1%, 36.4%, 43.8%35

i� ��� ����� Ð4(à� ¨� 50%, 46.4%, 54.5%L-2

� PBQ� � � C ¾, ��� $!5 g±� ãM ¡� 9:;

L- k´�� �78! Ó¸ ¬­�S� ¤ k´� �ì<� ¯c

;� =°O%! ¸G�3 �I �R� �ºÍ-. 6:!, dq��

500 mg/L3 Ü·(à� �! #� *+� ÿÿ 58.7%, 63.6%,

66.1%3 ¸G *O� �S½ �� ���, SCOD #� *+� ��

�ôA� � � C-. � dq� Ü·?3 I� dq ©�� ��

3 I� 9:; ¬­O dq�� k´� ¬­?3 I� ¸G�� ¿

l3 9:; �G *+� ���ô: ¨�x ��-. ¤, ²�Gq ;

�I phenol! =� 9:; �G *+� Fig. 13! �M C-. k´

�O ðS�83 phenol� 10 mg/L Ü·(à� �! 29.8%35

¯c;� 9:; �G *+� ¸G( ;�R� # � Cô?y, d

q� PK1-3� 500 mg/L3 Ü·(à� ¨� #�*+� 39.2%35

¸G*O� �S×� � � Cô-. � dq�-i� ��� ���

� 9:; �S!2 *+T�8�, k´��� phenolO ¡� ¸G�

� ¬­!2 pf *OTR� �ºç ,O� n � C£-.

Table 3. SBR treatment efficiency enhanced by adding granular ac-tivated carbons(%)

PK1-3 GAC 1240 ROW 0.8 SUPRA

50 mg/L 9- 95.1 9-100 mg/L 99.4 11.9 94.1200 mg/L 98.2 13.6 98.3500 mg/L 14.1 17.0 16.6

Fig. 10. SBR treatment with activated carbon PK1-3 and Pb.

Fig. 11. SBR treatment with activated carbon PK1-3 and Cd.

���� �38� �2� 2000� 4�

Page 7: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

���� ��� �� ��� ��� 275

ent,”

ent,

ant

-

ch

rs,”

nd

ctor

ater

ual

m

e

ious

R

-

tch

4.� �

� ij!5 c;�T #�E F(6 i� ��� ��:E °U

(à?y, �! dq�� ��� dq�-i� ��� ��:! =�

ijE (à-. °U�B� dq�� e� ·rdq�I PK1-3, GAC

1240, R�) ROW 0.8 SUPRA�-. ·r dq�� oaI °U�

T�µ, U�� ÑTq, {c� U�qO �?B, dq�� ���!

VW X·µ?35 Ý� � C ØÙÚ7Ð 9:; s(! =� $

%� �%qO k´��� ²�Gq ;� Y� ¯c; dq ¸G�

� 9·?3 I� ���� *+ ¸(! =î(: F(6 s9r?

3 ��(à-.

PK1-3� 500 mg/L� K23 ���! Ü·(à� ¨! Û 14.1%,

GAC 1240� 500 mg/L3 Ü·(à� ¨ Û 17.0%, ROW 0.8 SUPRA

E 500 mg/L3 Ü·(à� ¨ 16.6%� 9:; #� *+� ��

×� # � Cô-. �7� 9:; #� *+ ��� �8 ¬­>!

�� ��� ���, dq�� Ü·?3 I� ¯c; dq� ��f

À fá8 *OY �� # � Cô?y, ¤� ��M dq� Ö�

� K2 ��?3 I� D­ �2� ��3 dq�� c;�T {c

*O2 ÑWT?3 HIn � Cô-. °U�B� 3|}� ·r dq

� e�!5 �7� fá8 *OM c;�T {c PQ� �)� �

Cô-. ¤, Pb, Cd, Cr ¡� k´��� phenolO ¡� ²�Gq ;

�� ���ç! Ü·�ô� �, #�*+� ÿÿ 26.1%, 36.4%,

43.8%, 29.8%3 ¯c; dq! ¸G�3 °U�B8 �� HI(

à?y, �7� ¸G *OE �S(: F(6 dq�� 500 mg/L3

Ü·(à� �! ÿÿ #�*+� 58.7%, 63.6%, 66.1%, 39.2%

3 ¸G *O� �S×� �)� � Cô-. ·r dq�� i� �

�� ���! Ü·( $%� Ð4 ::! dq� ¬­?3 I

� SCOD ¿l� �y, �� ¯c;! �� SCOD ¿l� �æBQ

?35 9:; �S *+! < *O� CA� Z[n � Cô), ¸

G;�! =G52 �� $%� �%q� �8 �?3 ij�ô-.

� \�� 1999]2 ~Ð=�ï ïç�^ijî! �(6 ij�

ô_�-.

���

1. Schroeder, E. D. and George, T.: “Water and Wastewater Treatm

Addison Wesley, Reading, MA(1990).

2. George, T. and Frankline, L. B.: “Wastewater Engineering: Treatm

Disposal, Reuse,” McGraw-Hill, Inc.(1991).

3. Water Pollution Control Federation: “Wastewater Treatment Pl

Design, Draft Manual of Practice,” 1988.

4. Eckenfelder, W. W.: “Industrial Water Pollution Contral,” McGraw-

Hill, NewYork(1989).

5. Arora, M. L., Barth, E. F. and Umphres, M. B.: “Technology Evalu

ation of Sequencing Batch Reactor,” J. of WPCF, 57(8), (1985).

6. Udeme, J. N.: “Kinetic Modeling of the Anaerobic Sequencing Bat

Reactor(ASBR),” Iowa State University, Iowa, 50011(1993).

7. U. S. Environmental Protection Agency: “Sequencing Batch Reacto

EPA, Cincinnati, OH(1986).

8. Subramaniam, K., Greenfield, P. F., Ho, K. M., Johns, M. R. a

Keller, J.: “Efficient Biological Nutrient Removal in High Strength

Wastewater using Combined Anaerobic-Sequencing Batch Rea

Treatment,” Wat. Sci. Technol., 30, 315(1994).

9. Henze, M., Harremoës, P., Jansen, J. C. and Arvin, E.: “Wastew

Treatment-biological and Chemical Process,” Springer(1995).

10. U. S. Environmental Protection Agency: “Process Design Man

for Carbon Adsorption,” EPA, Cincinnati, OH(1973).

11. McKay, G.: “Use of Adsorbents for the Removal of Pollutants fro

Wastewaters,” CRC Press Inc.(1996).

12. Yu, H. Q., Gu, G. W. and Song, L. P.: “The Effect of the Fill Mod

on the Performance of Sequencing Batch Reactors Treating Var

Wastewater,”Bioresource Technol., 58, 49(1996).

13. Artan, N., Akkaya, M. and Artan, S. R.: “Experiences with the SB

Treatment of Industrial Wastewaters,” First IAWQ Specialized Con-

ference on Sequencing Batch Reactor Technology, 3/18(1996).

14. Philip, A. H., Robert, L. I. and Kenneth, M. C.: “Biological Treat

ment of Hazardous Waste in Sequencing Batch Reactors,” J. of WPCF,

57, 1163(1985).

15. Kolb, F. R. and Wilderer, P. A.: “Activated Carbon Sequencing Ba

Fig. 12. SBR treatment with activated carbon PK1-3 and Cr.

Fig. 13. SBR treatment with activated carbon PK1-3 and phenol.

HWAHAK KONGHAK Vol. 38, No. 2, April, 2000

Page 8: (SBR) · When 10 mg/L inhibitor was introduced into the SBR process which includes 500 mg/L GAC, the efficiency was increased as 32.6%, 27.2%, 22.3%, and 9.4%, respectively. Key words:

276 �������������������� ����

nic

he

ted

CT

ds

Biofilm Reactor to Treat Industrial Wastewater,” First IAWQ Spe-

cialized Conference on Sequencing Batch Reactor Technology, 3/18

(1996).

16. Ketchum, L. H.: “Design and Physical Features of SBR Reactors,”

First IAWQ Specialized Conference on Sequencing Batch Reactor

Technology, 3/18(1996).

17. Xiaojian, Z., Zhansheng, W. and Xiasheng, G.: “Simple Combination

of Biodegradation and Carbon Adsorption-The Mechanism of the

Biological Activated Carbon Process,” Water Res., 25, 165(1991).

18. German, B. and Romulo, F.: “Phenolic Compounds Biodegradation

Using an SBR System Packed with a Porous Volcanic Support,”

IAWQ, 3/18(1996).

19. Chua, H. and Hua, F. L.: “Effects of a Heavy Metal(zinc) on Orga

Adsorption Capacity and Organic Removal in Activated Sludge,” Bio-

chem. & Biotechnol., 57, 5(1996).

20. Sublette, K. L., Snider, E. H. and Sylvester, N. D.: “A Review of t

Mechanism of Powdered Activated Carbon Enhancement of Activa

Sludge Treatment,”Water Res., 16, 1075(1982).

21. Márquez, M. C. and Costa, C.: “Biomass Concentration in PA

Process,” Elsevier, Great Britain(1996).

22. Andrew, D. E., Lenore, S. C. and Arnold, E. G.: “Standard Metho

for the Examination of Water and Wastewater,” APHA(1995).

���� �38� �2� 2000� 4�