Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf ·...

88
Satallax, possibly higher-order set theory Brown Before the Introduction Introduction Higher Order Tableau Higher-Order Example The Other Levels Satallax, possibly higher-order set theory Chad E. Brown November 2015

Transcript of Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf ·...

Page 1: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax, possibly higher-order set theory

Chad E. Brown

November 2015

Page 2: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Outline

Before the Introduction

Introduction

Higher Order Tableau

Higher-Order Example

The Other Levels

Page 3: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Page 4: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Page 5: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Automation

Fill Gaps in Interactive Proofs

Page 6: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Automation

Fill Gaps in Interactive Proofs

Satallax

Page 7: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Automation

Fill Gaps in Interactive Proofs

Satallax

Egal

Egal

Page 8: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Outline

Before the Introduction

Introduction

Higher Order Tableau

Higher-Order Example

The Other Levels

Page 9: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax

◮ Automated theorem prover for

extensional higher-order logic with choice

◮ Instantiation Based

◮ Open Source

Alt version already: Satallax-MaLeS (Kuhlwein)

◮ First and/or Second in THF Division of CASC since2011.

Page 10: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax

◮ Objective Caml

◮ Foreign Function Interface to MiniSat (Een, Sorensson2003) (C++)

◮ Incremental Use of MiniSat

◮ Optional use of first-order prover E

Page 11: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

Page 12: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

◮ Initialize: Create a state ΣA.

Page 13: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

◮ Initialize: Create a state ΣA.

◮ Search: ΣA → Σ1 → Σ2 → · · ·

Page 14: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

◮ Initialize: Create a state ΣA.

◮ Search: ΣA → Σ1 → Σ2 → · · ·

◮ Associate states with sets of propositional clauses:

CΣA ⊆ C

Σ1 ⊆ CΣ2 ⊆ · · ·

Page 15: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

◮ Initialize: Create a state ΣA.

◮ Search: ΣA → Σ1 → Σ2 → · · ·

◮ Associate states with sets of propositional clauses:

CΣA ⊆ C

Σ1 ⊆ CΣ2 ⊆ · · ·

◮ Soundness: CΣn propositionally unsat. ⇒ A is unsat.

Page 16: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: The General Idea

◮ Goal: Show a set of assumptions A is unsatisfiable.

◮ Initialize: Create a state ΣA.

◮ Search: ΣA → Σ1 → Σ2 → · · ·

◮ Associate states with sets of propositional clauses:

CΣA ⊆ C

Σ1 ⊆ CΣ2 ⊆ · · ·

◮ Soundness: CΣn propositionally unsat. ⇒ A is unsat.

◮ Completeness: A is unsat. ⇒ a fair search leads tosuch a propositional unsatisisfiable state Σn.

Page 17: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax: Theoretical Basis

◮ Directed, Cut-Free, Ground Tableau System for HOL(Brown, Smolka [LMCS 2010])

◮ Extended to include Choice (Backes, Brown[2010-2011])

◮ Restricted Instantiations

◮ “Satisfiability” = Henkin Satisfiability (Sparse Function

Spaces)

◮ Tableau Refutability Sound and Complete

Page 18: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example

Assume ∀x .x = b and prove (¬pb → pa) → pb.

Refute a “branch” with two formulas:

◮ ∀x .x = b

◮ ¬((¬pb → pa) → pb).

Page 19: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)

Page 20: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

Page 21: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

Page 22: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

Page 23: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

Page 24: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Tableau Refutation

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

a = b

Page 25: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Satallax Refutation

◮ 1 ∀x .x = b

◮ 2 (¬pb → pa) → pb

MiniSat Clauses

[1][−2]

Page 26: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Satallax Refutation

◮ 1 ∀x .x = b

◮ 2 (¬pb → pa) → pb

◮ 3 ¬pb → pa

◮ 4 pb

MiniSat Clauses

[1][−2][2 ⊔ 3][2 ⊔ −4]

Page 27: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Satallax Refutation

◮ 1 ∀x .x = b

◮ 2 (¬pb → pa) → pb

◮ 3 ¬pb → pa

◮ 4 pb

◮ 5 pa

MiniSat Clauses

[1][−2][2 ⊔ 3][2 ⊔ −4]

[−3 ⊔ 4 ⊔ 5]

Page 28: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Satallax Refutation

◮ 1 ∀x .x = b

◮ 2 (¬pb → pa) → pb

◮ 3 ¬pb → pa

◮ 4 pb

◮ 5 pa

◮ 6 a = b

MiniSat Clauses

[1][−2][2 ⊔ 3][2 ⊔ −4]

[−3 ⊔ 4 ⊔ 5][4 ⊔ −5 ⊔ −6]

Page 29: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example: Satallax Refutation

◮ 1 ∀x .x = b

◮ 2 (¬pb → pa) → pb

◮ 3 ¬pb → pa

◮ 4 pb

◮ 5 pa

◮ 6 a = b

◮ Unsatisfiable

MiniSat Clauses

[1][−2][2 ⊔ 3][2 ⊔ −4]

[−3 ⊔ 4 ⊔ 5][4 ⊔ −5 ⊔ −6]

[−1 ⊔ 6]

Page 30: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Outline

Before the Introduction

Introduction

Higher Order Tableau

Higher-Order Example

The Other Levels

Page 31: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Branches

We write [s] for the βη-normal form of s.A branch is a finite set of normal formulas (conjunctive)

B = {s1, . . . , sn}

◮ A branch B is closed if ⊥ ∈ B .

◮ A branch B is open if it is not closed.

Page 32: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau

Brown, Smolka [LMCS 2010]Tableau calculus inductively defines the set of refutablebranches.Complete for Henkin models without Choice

Page 33: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau

Brown, Smolka [LMCS 2010]A few unsurprising rules...

T¬s, ¬s

⊥T 6=

s 6=ι s

⊥T→

s → t

¬s | t

T¬→

¬(s → t)

s,¬t

T∀∀αs

[st]t : α T¬∀

¬∀αs

¬[sx ]x ∈ Vα fresh

Page 34: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau

Brown, Smolka [LMCS 2010]Mating and decomposition...

Tmatδs , ¬δt

s 6= tTdec

δs 6=ι δt

s 6= t

δ a variable (also, for arity > 1)

Page 35: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau

Brown, Smolka [LMCS 2010]...and more rules...extensionality, equality

Tcons =ι t , u 6=ι v

s 6= u , t 6= u | s 6= v , t 6= vTbe

s 6=o t

s , ¬t | ¬s , t

Tbqs =o t

s , t | ¬s , ¬t

Tfes 6=αβ t

¬[∀x .sx = tx ]x /∈ Vs ∪ Vt

Tfqs =αβ t

[∀x .sx = tx ]x /∈ Vs ∪ Vt

Page 36: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Restrictions on Instantiations

T∀∀αs

[st]t ∈ U

α

Restrict instantiations in the T∀ rule based to Uα on thetype:

Page 37: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Restrictions on Instantiations

T∀∀αs

[st]t ∈ U

α

Restrict instantiations in the T∀ rule based to Uα on thetype:

Uι Only terms s occurring as s 6= t or t 6= s on branch.If there are none, use some arbitrary “default” term oftype ιFinitely many!

Page 38: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Restrictions on Instantiations

T∀∀αs

[st]t ∈ U

α

Restrict instantiations in the T∀ rule based to Uα on thetype:

Uι Only terms s occurring as s 6= t or t 6= s on branch.If there are none, use some arbitrary “default” term oftype ιFinitely many!

Uo Only ⊥ and ¬⊥ (false and true)Finitely many!

Page 39: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Restrictions on Instantiations

T∀∀αs

[st]t ∈ U

α

Restrict instantiations in the T∀ rule based to Uα on thetype:

Uι Only terms s occurring as s 6= t or t 6= s on branch.If there are none, use some arbitrary “default” term oftype ιFinitely many!

Uo Only ⊥ and ¬⊥ (false and true)Finitely many!

Uαβ Only normal terms using variables free on the branchInfinitely many, of course.

If only quantifiers at o and ι, the procedure sometimesterminates.

Page 40: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)

Page 41: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

Rule used:

T¬→

¬(s → t)

s,¬t

Page 42: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pbpa

Rule used:

T→s → t

¬s | t

Page 43: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

Left branch is closed.

T¬s, ¬s

Page 44: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

Rule used:

Tmatδs , ¬δt

s 6= t

Page 45: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

Rule used:

Tmatδs , ¬δt

s 6= t

Page 46: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

Note a, b ∈ Uι since a 6= b is on the branch.

Page 47: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

a = b

Note a, b ∈ Uι since a 6= b is on the branch.Rule used:

T∀∀αs

[st]t ∈ U

α

Page 48: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Simple Example Revisited

∀x .x = b

¬((¬pb → pa) → pb)¬pb → pa

¬pb

¬¬pb⊥

pa

a 6= b

a = b

Right branch is closed.

T¬s, ¬s

Refutation complete

Page 49: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Adding Choice Operators

New Logical Constants:

◮ For each type α, εα has type (αo)α.

◮ εαp is an element such that p(εαp) if such an elementexists.

Page 50: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)

Page 51: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)◮ Add (restricted) choice rule.

Tε[∀x .¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

When is εαs accessible? Depends on α:

Page 52: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)◮ Add (restricted) choice rule.

Tε[∀x .¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

When is εαs accessible? Depends on α:

ι: εs 6=ι t or t 6=ι εs on the branch

Page 53: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)◮ Add (restricted) choice rule.

Tε[∀x .¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

When is εαs accessible? Depends on α:

ι: εs 6=ι t or t 6=ι εs on the branch

α1 · · ·αnι: (εs)u1 · · · un 6=ι t on the branch

Page 54: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)◮ Add (restricted) choice rule.

Tε[∀x .¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

When is εαs accessible? Depends on α:

ι: εs 6=ι t or t 6=ι εs on the branch

α1 · · ·αnι: (εs)u1 · · · un 6=ι t on the branch

o: εs or ¬εs on the branch

Page 55: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher Order Tableau with ChoiceExtended to include Choice (Backes, Brown [2010-2011])

◮ Extend Mating and Decomposition to allow for ε.

Tmatεs , ¬εt

s 6= tTdec

εs 6=ι εt

s 6= t

(also for arity > 1)◮ Add (restricted) choice rule.

Tε[∀x .¬(sx)] | [s(εs)]

εs accessible, x /∈ Vs

When is εαs accessible? Depends on α:

ι: εs 6=ι t or t 6=ι εs on the branch

α1 · · ·αnι: (εs)u1 · · · un 6=ι t on the branch

o: εs or ¬εs on the branch

α1 · · ·αno: (εs)u1 · · · un or its negation on the branch

Page 56: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Outline

Before the Introduction

Introduction

Higher Order Tableau

Higher-Order Example

The Other Levels

Page 57: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Epsilon Induction

Axiom of ∈-Induction (Foundation):∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxTheorem: ∀x .x 6∈ x

Proof:

Use λx .x 6∈ x for P in ∈-Induction.

Prove ∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x .Assume IH: ∀y .y ∈ x → y 6∈ y . Prove x 6∈ x .

Assume x ∈ x .

Use x for y : x ∈ x → x 6∈ x .

Page 58: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Epsilon Induction

Axiom of ∈-Induction (Foundation):∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxTheorem: ∀x .x 6∈ x

Proof:

Use λx .x 6∈ x for P in ∈-Induction.

Prove ∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x .Assume IH: ∀y .y ∈ x → y 6∈ y . Prove x 6∈ x .

Assume x ∈ x .

Use x for y : x ∈ x → x 6∈ x .

Page 59: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Epsilon Induction

Axiom of ∈-Induction (Foundation):∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxTheorem: ∀x .x 6∈ x

Proof:

Use λx .x 6∈ x for P in ∈-Induction.

Prove ∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x .Assume IH: ∀y .y ∈ x → y 6∈ y . Prove x 6∈ x .

Assume x ∈ x .

Use x for y : x ∈ x → x 6∈ x .

Page 60: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Epsilon Induction

Axiom of ∈-Induction (Foundation):∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxTheorem: ∀x .x 6∈ x

Proof:

Use λx .x 6∈ x for P in ∈-Induction.

Prove ∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x .Assume IH: ∀y .y ∈ x → y 6∈ y . Prove x 6∈ x .

Assume x ∈ x .

Use x for y : x ∈ x → x 6∈ x . Contradiction.

Page 61: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 62: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 63: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 64: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 65: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 66: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a a 6∈ a

∀x .x 6∈ x

Page 67: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Tableau Refutation of Example

¬∀x .x 6∈ x

∀P .(∀x .(∀y .y ∈ x → Py) → Px) → ∀x .PxP := λx .x 6∈ x

(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x) → ∀x .x 6∈ x

¬(∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x)¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

∀y .y ∈ a → y 6∈ y

a ∈ a

y := a

a ∈ a → a 6∈ a

a 6∈ a

⊥a 6∈ a

∀x .x 6∈ x

Page 68: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Example

Idea: Generate

◮ Formulas,

◮ Instantiation Terms, and

◮ Propositional Clauses

Success when Propositional Clauses are Unsatisfiable

Page 69: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x

Page 70: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1

Page 71: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .

Page 72: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x

Page 73: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)

Page 74: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5][5 ⊔ 6][5 ⊔ 7]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)◮ 6 ∀y .y ∈ a → y 6∈ y◮ 7 a ∈ a

Page 75: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5][5 ⊔ 6][5 ⊔ 7]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)◮ 6 ∀y .y ∈ a → y 6∈ y◮ 7 a ∈ a◮ Instantiation a. Use in 6

Page 76: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5][5 ⊔ 6][5 ⊔ 7][−6 ⊔ 8]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)◮ 6 ∀y .y ∈ a → y 6∈ y◮ 7 a ∈ a◮ Instantiation a. Use in 6◮ 8 a ∈ a → a 6∈ a

Page 77: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5][5 ⊔ 6][5 ⊔ 7][−6 ⊔ 8]

[−8 ⊔ −7 ⊔ −7]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)◮ 6 ∀y .y ∈ a → y 6∈ y◮ 7 a ∈ a◮ Instantiation a. Use in 6◮ 8 a ∈ a → a 6∈ a◮ -7 a 6∈ a

Page 78: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Satallax Refutation of Termination Example

MiniSat Clauses

[1][−2]

[−1 ⊔ 3][−3 ⊔ −4 ⊔ 2]

[4 ⊔ −5][5 ⊔ 6][5 ⊔ 7][−6 ⊔ 8]

[−8 ⊔ −7 ⊔ −7]

◮ 1 ∈-Induction◮ -2 ¬∀x .x 6∈ x◮ Generate Instantiation λx .x 6∈ x◮ Use in 1◮ 3 ∈-Induction with P := λx .x 6∈ x .◮ -4 ¬∀x .(∀y .y ∈ x → y 6∈ y) → x 6∈ x◮ 2 ∀x .x 6∈ x◮ Fresh Witness a for -4◮ -5 ¬((∀y .y ∈ a → y 6∈ y) → a 6∈ a)◮ 6 ∀y .y ∈ a → y 6∈ y◮ 7 a ∈ a◮ Instantiation a. Use in 6◮ 8 a ∈ a → a 6∈ a◮ -7 a 6∈ a◮ Propositional Clauses Unsatisfiable

Page 79: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Outline

Before the Introduction

Introduction

Higher Order Tableau

Higher-Order Example

The Other Levels

Page 80: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Automation

Fill Gaps in Interactive Proofs

Satallax

Egal

Egal

Page 81: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Foundation

◮ Higher-Order Tarski Grothendieck Set Theory

◮ (Very) Simple Type Theory with Choice◮ No polymorphism, no product types, etc.◮ The kind of logic Satallax targets◮ Curry-Howard proof terms (simple proof checker)

◮ Set Theory Axioms: Extensionality, ∈-Induction, EmptySet, Unions, Power Sets, Replacement, Universes

◮ The systems with big libraries can translate into it.

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Page 82: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher-Order Tarski Grothendieck

◮ No schemes (finitely many axioms)

◮ ∈-Induction (Higher-Order):

∀P : ιo.(∀x .(∀y ∈ x → Py) → Px) → ∀x .Px

◮ Implies Regularity: ∀x .x 6= ∅ → ∃y ∈ x .x ∩ y = ∅

Page 83: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher-Order Tarski Grothendieck

◮ No schemes (finitely many axioms)

◮ ∈-Induction (Higher-Order):

∀P : ιo.(∀x .(∀y ∈ x → Py) → Px) → ∀x .Px

◮ Implies Regularity: ∀x .x 6= ∅ → ∃y ∈ x .x ∩ y = ∅

◮ Replacement (Higher-Order): replAF for {Fx |x ∈ A}

∀F : ιι.∀y .y ∈ {Fx |x ∈ A} ↔ ∃x ∈ A.y = Fx

Page 84: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher-Order Tarski Grothendieck

◮ No schemes (finitely many axioms)

◮ ∈-Induction (Higher-Order):

∀P : ιo.(∀x .(∀y ∈ x → Py) → Px) → ∀x .Px

◮ Implies Regularity: ∀x .x 6= ∅ → ∃y ∈ x .x ∩ y = ∅

◮ Replacement (Higher-Order): replAF for {Fx |x ∈ A}

∀F : ιι.∀y .y ∈ {Fx |x ∈ A} ↔ ∃x ∈ A.y = Fx

◮ Grothendieck Universes: every N is in some U where U

is transitive, closed under unions, power sets andreplacement.

Page 85: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Higher-Order Tarski Grothendieck

◮ No schemes (finitely many axioms)

◮ ∈-Induction (Higher-Order):

∀P : ιo.(∀x .(∀y ∈ x → Py) → Px) → ∀x .Px

◮ Implies Regularity: ∀x .x 6= ∅ → ∃y ∈ x .x ∩ y = ∅

◮ Replacement (Higher-Order): replAF for {Fx |x ∈ A}

∀F : ιι.∀y .y ∈ {Fx |x ∈ A} ↔ ∃x ∈ A.y = Fx

◮ Grothendieck Universes: every N is in some U where U

is transitive, closed under unions, power sets andreplacement.

◮ Claim: Grothendieck Universes imply Tarski’s Axiom A:every N is in some M such that

◮ X ∈ M and Y ⊆ X imply Y ∈ M◮ M is closed under power sets◮ X ⊆ M implies either X ∈ M or X has the same

“potency” as M

Page 86: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Regarding Formalization of Mathematics

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments (Documents/Articles/Theories)

Interactive Proof ConstructionImport from the Library

Populate the Library

Automation

Fill Gaps in Interactive Proofs

Page 87: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

Library (Theorems, Definitions)

Foundation (HO Tarski Grothendieck Set Theory)

Small Proof Checker (ensuring correctness)

Naming by Hashing (ensuring originality)

Developments

Interactive

Prover 1

· · ·Developments

Interactive

Prover n

Automation

Automated

Prover 1

· · ·Automation

Automated

Prover m

Page 88: Satallax, possibly higher-order set theoryarg.ciirc.cvut.cz/slides/2015-cebrownpragueslides.pdf · Egal Egal. Satallax, possibly higher-order set theory Brown Before the Introduction

Satallax, possiblyhigher-order set

theory

Brown

Before theIntroduction

Introduction

Higher OrderTableau

Higher-OrderExample

The Other Levels

References

◮ Chad E. Brown. Reducing Higher-Order Theorem Proving to aSequence of SAT Problems.CADE 23. 2011. (JAR 2013)

◮ Julian Backes and Chad E. Brown. Analytic Tableaux for Higher-OrderLogic with Choice.

◮ Chad E. Brown and Gert Smolka. Analytic Tableaux for Simple TypeTheory and its First-Order Fragment.Logical Methods in Computer Science. Volume 6, Issue 2. 2010 Journalof Automated Reasoning 2011.

◮ Andreas Teucke. Translating a Satallax Refutation to a TableauRefutation Encoded in Coq.

◮ Chad E. Brown and Christine Rizkallah. From Classical ExtensionalHigher-Order Tableau to Intuitionistic Intentional Natural Deduction.Third International Workshop on Proof Exchange for Theorem Proving.June 2013

◮ Niklas Een, Niklas Sorensson. An Extensible SAT-solver.SAT 2003.

◮ Armin Biere. Picosat essentials.JSAT 2008.