Sascha [email protected] D-PAD Sparse Aperture Array.

39
Sascha Schediwy [email protected] .ac.uk D-PAD Sparse Aperture Array
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of Sascha [email protected] D-PAD Sparse Aperture Array.

Page 1: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Sparse Aperture Array

Page 2: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Presentation Overview

D-PAD Aims What is D-PAD? Advantages of this design Recent results Future work

Page 3: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Aims

Broadband SKA test system which will work in RFI environment

Develop an SKA1 AA-low compatible digital back-end processing system

Experimentally quantify the effect of side lobes on imaging dynamic range

Investigate novel direct imaging correlator algorithms

Compare calibration issues of aperture arrays with dishes of similar frequency

Page 4: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

What is D-PAD?

D-PAD = Danny’s PhD Aperture-array Demonstrator

Key Values: f = 1000-1500MHz, 8 stations/tiles, sparse high-gain antennas

the first tile

Page 5: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

What is D-PAD?

Least complex instrument possible that replicates most key aspects of an SKA aperture array

Flexible and reconfigurable hardware and software

Testbed for comparing measurements with simulations

Digital system can be recycled forAA-low and AA-mid test systems

Science with AA-high feasibility study;transients, solar, local HI, pulsars?

Page 6: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD High Gain Antenna Antenna element beam pattern@1300MHz)

Half power beam width: ±24°, directivity: 8.45dBi, sidelobe: -15dB, front-to-back: -18dB , ellipticity: 8%

Page 7: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue System

Page 8: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue SystemY-Polarisation

antenna blade

antenna blade

LNA LNA2-way 0° combiner

X-Polarisation

amp2

coax

antenna blade

antenna blade

LNA LNA2-way 0° combiner

amp2

coax

filterfilter

gain block

gain block

gain block

16-way 0° beamformer 16-way 0° beamformer

gain block

coax coax

filter

coax coax

gain block

gain blockfilter

Page 9: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

10GbE

D-PAD Digital System

16-port 10GbE switch

data acquisition computer

10GbE

X2 Y2X1 Y1

ROACH

F F F F

ROACH

X

X4 Y4X3 Y3

ROACH

F F F F

X6 Y6X5 Y5

ROACH

F F F F

X8 Y8X7 Y7

iADC iADC

ROACH

F F F F

10GbE 10GbE 10GbE

10GbE

iADC iADCiADC iADCiADC iADC

Image credits CASPER

Page 10: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Digital System

F Design Type Continuum 21-cm Line FPGA Clock 250MHz 75MHz Band Pass 500MHz 150MHz Nyquist Zone 3rd 9th Frequency Range 1000-1500 1350-1500Spectral Channels 2048 4096Spectral Resolution 488kHz 36.6kHz Velocity Resolution 51km/s 7.7km/s

Complimentary spectrometer designs

Milli-second, fast transient spectrometer design will be incorporated shortly

Image credits CASPER

Page 11: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Advantages of this Design

High-gain antenna results in greater sensitivity also reduces impact of sparse array grating lobes higher imaging dynamic range than sparse arrays with omni-

directional antennas

Sparse aperture arrays have faster survey speed small diameter stations = larger intrinsic Field-of-View than dishes

of same total collecting area: FoV = π (1.22*λ/d)2

Wide radio frequency bandwidth (500MHz) greater continuum sensitivity, greater flexibility

(compare with LOFAR and MWA; 32MHz )

Greater sensitivity for line surveys at higher redshift full collecting area over entire bandwidth: Aeff = G λc

2/4π

Page 12: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Advantages of this Design

Analogue beamformer reduces cost fewer receiver chains, less power, less computation

Fast ADCs means no complicated down conversion Direct sampling in 3rd Nyqusit zone

(same digital hardware as 30-470MHz SKA AA-low system)

Novel correlators reduce computational cost direct imaging correlators MOFF or FFTT

(close-packed tiles can use Fourier transform on a spatial grid ) MOFF can use FFT while traditional FX correlator must use DFT

Higher operating frequency, less demanding calibration lower sky brightness temperature, fewer bright in foreground

subtraction, less complex polarisation calibration

Page 13: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Frequency Spectrum

1000 1100 1200 1300 1400 1500

Frequency (MHz)

40

30

20

10

0

Arb.

Pow

er (d

B)

Page 14: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Continuum Observations

20,000 spectra per polarisation over 5 days with 20s integration time

Page 15: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

21cm Neutral Hydrogen Line

10,000 spectra per polarisation over 3 days with 17s integration time

Page 16: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Future Work

Detailed analysis of observations Millisecond transient spectrometer Array beam pattern measurement Construction of 8-tile system

Page 17: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Supplementary Slides

Page 18: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Advantages of this Design

Greater sensitivity for line surveys at higher redshift full collecting area over entire bandwidth

effective area: Aeff = G λc

2/4π

Page 19: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Page 20: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Digital SystemX2 Y2

Finite Impulse Response Band-Pass Filter

Analogue to Digital Analogue to Digital

Fast Fourier Transform Real

Convert to Power

Vector Accumulate

BRAM BRAM

Vector Accumulate

BRAM BRAM

Cast/Slice

Packetise to 10GbE

Cast/Slice

Convert to Power

X1 Y1

Page 21: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Radio Frequency Interference

Page 22: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Sidelobe Mitigation Techniques

Page 23: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Noise Figure Measurements

Page 24: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components LPDA Antenna (at boresight)

Page 25: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Receiver Board (noise temperature ≈ 35K)

Page 26: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Gain Amplifier

Page 27: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Band-Pass Filter

Page 28: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Beam-Forming Combiner

Page 29: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Coaxial Cable A and C

Page 30: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue Components Coaxial Cable B

Page 31: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PAD Analogue System Total Gain

Page 32: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

SKA Key Science Drivers

Page 33: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

SKA Document Parameters

Page 34: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Grating Lobes

Station beam pattern

Antenna Element Separation

Station Beam Pattern

Antenna separation:dense (f < 1)nominal (f = 1)sparse (f > 1)random (f > 1)

[SKA Memo 87]

BeamPower

Page 35: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Instantaneous Field of View Fully Digital Dense A. Array 120deg

10,000deg2

18deg 250deg2

Hybrid Dense A. Array 120deg

10,000deg2

28deg 625deg2

18deg 250deg2

60m Dish + Phased Array Feed 120deg+

10,000deg2+ 18deg

250deg2

Sparse High Gain A. Array 36deg

1,000deg2

18deg 250deg2

Page 36: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

100 200 300 500 700 1000 20000.01

0.1

1

10

Frequency (MHz)

Eff

ectiv

e A

rea

(m2)

Effective Area Effective Area: Aeff (θ,φ) = G (θ,φ) λc

2/4π

sparse limit

Effective Area per Element

dense up to fc = 700MHz

dense up to fc = 1000MHz

fc

fc

[SKA Memo 100]

fc = 300MHz

Page 37: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Sky Brightness Temperature Tsky = 5e8 * f -2.861 + 4

SKA Memo 95 by Germán Cortés Medellín.

Page 38: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

Sensitivity SKA Phase 1 Sensitivity

Page 39: Sascha Schediwyschediwy@physics.ox.ac.uk D-PAD Sparse Aperture Array.

Sascha Schediwy [email protected]

D-PADY-PolarisationX-Polarisation

filter

gain block

gain block

2-way 0° combiner

antenna blade

antenna blade

LNA LNA2-way 0° combiner

amp2

coax

antenna blade

antenna blade

LNA LNA2-way 0° combiner

amp2

coax

gain block

coax

filter

coax

iADC

ROACH